Kimmo Koskenniemi

Research Unit for Computational Linguistics
University of Helsinki, Hallituskatu 11
SF-00100 Helsinki, Finland

COMPILATION OF AUTOMATA FROM MORPHOLOGICAL TWO-LEVEL RULES

1. INTRODUCTION

The two-level model is a framework for describing
word inflection. The model consists of a lexicon system and a
formalism for two-level rules. The lexicon system defines all
possible lexical representations of word-forms whereas the
rules express the permitted relations between lexical and
surface representations. Word recognition is thus reduced into
the question of finding a permissible lexical representation
which is in a proper relation to the surface form. Similarly,
generation is the inverse where the lexical representation is
known and the task is to find a surface representation which
is in a proper relation to it.

Within the two-level model these relations pertaining to
the rule component have been expressed in two ways. A rule
formalism has been used for communicating the idea of the
rules, whereas the actual implementations have been
accbmplished by hand-coding the rules as finite state
automata. The close connection between rules and finite state
machines has facilitated this hand-coding.

Expressing rules as numbers in a transition matrix is, of
course, not optimal. Although it has proven to be feasible, it
is tedious. It also tends to distract the linguist's thoughts
from morphophonological variations to technical matters.
Furthermore, hand compiled automata are often not quite
consistent with intended rules. Discrepancies arise because

the design of rule automata is often affected by assumptions

-143-

Conpi |l ation of automata from norphol ogi cal two-1evel rules
Ki mmo Koskenni em
Proceedi ngs of NODALI DA 1985, pages 143-149

on the regqularity of actual word-forms. Thus, such automata
usually function correctly with most of the data but they have
a less clear relation with original intended rules.

The rule compiler described below rectifies this problem
by letting the linguist write rules in a true rule formalism
while the computer produces the automata mechanically. These
can then be used in conventional two-level programs, both for
testing and and for production use. Several two-level
descriptions are now on their way towards completion using the

compiler.

2. THE FORMALISM OF TWO-LEVEL RULES

The actual rule formalism supported by the two-level
compiler differs only slightly from the original formalism
proposed in Koskenniemi (1983). One of the differences is the
use of linear representation for pairs, thus a:o is used
instead of g. Furthermore, the equal sign is no longer used
for denoting the full lexical or surface alphabet. A surface
vowel is written simply as :V and a lexical a as a:. Other

basic elements are as they used to be:

(1) A sequence of elements are written one after
another, thus :V :V stands for two successive
surface vowels.

(2) Alternative elements are separated by a vertical bar
and enclosed in square brackets, e.g. [:i | :3j]
stands for either a surface i or a surface j.

(3) Iteration is indicated with a superscript asterisk
or plus sign, e.qg. :C* stands for zero or more
surface consonants whereas :Ct requires at least one

surface consonant.

Rules with operators => <= and <=> exist as before and

they are interpreted as before. A rule:

~144-

Pr oceedi ngs of NODALI DA 1985 144

states that every occurrence of a pair I:j must be in a
context of .. :V __ :V .. i.e. between two surface vowels. A
rule:

states that between surface vowels a lexical I has no other
possible realizations than a j. Rules with operators <=> are
combinations of those with <= and =>.

There is one new type of rules with an operator a<=. This
rule forbids any occurrences of LC CP RC, i.e. it forbids CP
in the context LC __ RC .

Another difference is in the formalism for collapsing
several similar rules into one rule. The initial formalism
used angle brackets, but this has been replaced by equivalent
means using so called "where" clauses. If W denotes a morpho-
phoneme for vowel doubling then a rule for vowel doubling

is expressed in the present formalism as:
W:x <=> :x __ ; where x in V;

The definition of the rule component of two-level
descriptions consists of six sections:

- a surface alphabet as a list of surface characters

- subsets of the surface alphabet which are used in the
rules
- a lexical alphabet
- subsets of the lexical alphabet
- definitions for abbreviations or subexpressions used in
. the rules

- two-level rules.

A sample two-level description is given below:

-145-

Pr oceedi ngs of NODALI DA 1985 145

Lexical Alphabet

abcdefghijklmnopgrstuvw

Xy z aaodal a2 EI = W;

Lexical Sets

:

V=aeiouya

C

Diacritics = / 7;
Surface Alphabet

0 al a2 E I W;
bcdfghjklmnpgrstvwzxz;

abcdefghijklmnopgrstuvw

Xy x & a o;
Surface Sets

V=aeiouy diao;

C=bcdfghjklmnpgrstvwzxz;

Definitions

Defaults = al:a a2:a E:e I:i;

Rules
"Vowel doubling" W:X

=> : X ;

where X in V;

"Suppressed doubling" W:0

"Stem final V" [al

"Plural 1" I:j

<=> Iz
I: _ ;
W:V _ ;
:0 | a2:0| E:0 | i:e]
<=> _ I:;
<=> :V;

Note that surface and lexical alphabets are declared

separately. This guarantees that the role of each segment is

uniquely determined. The sets are separate also because it is

not always evident e.g. which segments are considered to be

vowels on the lexical level.

The first rule represents a set of several rules:

The "where" clause is interpreted in this way because the

dummy variable X occurs on both sides of the rule. If it would

146~

Pr oceedi ngs of NODALI DA 1985

146

occur only on the context side then the abbreviation denotes
one single rule with many context parts (one for each
possibility of X).

Another effect of the expansion of "where" clauses is the
introduction of some new character pairs. Pairs W:a, W:e, ...,
W:0 do not occur anywhere in the description but they are

implicitly included.

3. STEPS OF THE COMPILATION

The compilation of the two-level description into finite
state automata proceeds in several steps. The computation
relies essentially on Ron Kaplan's program packages (FSM, FST)
for manipulating finite state machines and transducers. The
collection of rules has to be treated as a whole because the
set of character pairs (CPS) might be changed if some rules
are altered thus changing the interpretation of some other

rules. The steps of the compilation are:

(1) Transformation of the two-level rule description
into a recursive list expression where rule
components and pairs are identified.

(2) Expansion of "where" clauses in the rules.

(3) Collecting all pairs explicitly mentioned in rules
and definitions in addition to the default set of
all x:x where x is both a lexical and a surface
character.

(4) Computing the exact interpretation of pairs which
are not concrete pairs (where both the lexical and
the lexical components are single characters). Some
pairs like :V leave one level fully open and others
may use the defined subsets such as W:V (character W
corresponding to any of the vowels but not to a zero
0). All such (partially) unspecified pairs X:Y
denote the subset of CPS consisting of pairs x:y
where x is X or is in X and y is Y or is in Y.

(5) Expand each abbreviation of the above type into an
alternation. Insert the defined expression in place

of the name of the expression.

-147-

Pr oceedi ngs of NODALI DA 1985 147

(6) Compile the components of the rules (correspondence
parts, left contexts and right contexts) into finite
state machines.

(7) Split rules with the operator <=> into one rule with
operator => and another with <=,

(8) Expand rules with operator <= and with multiple
contexts into distinct rules with one context each.

(9) Compile the individual component rules separately.

(10) Merge the automata resulting from a single original

rule into one rule automaton by intersecting them.

In the present version of the compiler each rule as
defined by the user is compiled into a single automaton. If
the expansion or compilation splits the rule into subparts
these are finally combined into a single machine by the
compiler.

The compilation is done on a Xerox 1108 Lisp machine with
programs written in Interlisp-D. The resulting automata can
then be used either on the Lisp Machine or transported to
other systems. In order to be used by the present version of
the Pascal two-level program the automata are converted into a
tabular format which can be readily used. The format is
slightly different from the original one given in Koskenniemi
(1983) but it is significantly faster to read in. Such
automata have been successfully used on MS-DOS micro computers
such as IBM PC and Olivetti M24. Martti Nyman at the
University of Helsinki working on one description for Modern
Greek and another for Classical Greek and Jorma Luutonen at
the University of Turku is working on one for Cheremis. Ol1i
Blaberg has reformulated his Swedish description in terms of
the present compiler.

The compiler was written during the summer 1985 at the
Center for Studies on Language and Information at Stanford
University. In addition to the finite state package written by
Ron Kaplan the compiler utilizes Kaplan's concept of compiling
complex rules with operator => and several context parts. The
compiler was presented at a symposium on finite state
morphology on July, 29-30 1985 at CSLI. The compiler has also
stimulated some parallel efforts (Bear, in press, Ritchie et.

al. 1985, Kinnunen, in preparation).

-148-

Pr oceedi ngs of NODALI DA 1985 148

REFERENCES

Bear, John, (in press). A morphological recognizer with
syntactic and phonological rules. Proceedings of COLING-
86, Bonn.

Kinnunen, Maarit, (in preparation). Morfologisten saantdjen
kﬁéntéminen ddrellisiksi automaateiksi. (The compilation
of morphological rules into finite state automata)
Masters thesis, Department of Computer Science,
University of Helsinki.

Koskenniemi, K. 1983. Two-level morphology: A general
computational model for word-form recognition and
production. Publications, No. 11, University of Helsinki,
Department of General Linguistics. Helsinki.

---, 1984. A general computational model for word-form
recognition and production. Proceedings of COLING-84. pp.
178-181.

Ritchie, G.D., S.G. Pulman, and G.J. Russel, 1985. Dictionary
and morphological analyzer (Prototype), User guide:
Version 1.12. Department of Artificial Intelligence,

University of Edinburgh.

-149-

Pr oceedi ngs of NODALI DA 1985 149

