Osten bDahl

Univ of Stockholm

THE INTERPRETATION OF BOUND PRONOUNS

This paper is a report on work in progress with the aim of
simulating on a computer some aspects of the process of
understanding sentences, more specifically the interpretation
of so-called bound pronouns. The work connects directly to some
earlier papers of mine (Dahl 1983a and 1983b), where those

problems were discussed from a theoretical point of view.

A bound pronoun is, roughly speaking, a pronoun which behaves
analogously to a bound variable in logic. There are at least
two kinds of criteria for regarding a pronoun as bound: (i)
syntactic criteria - some kinds of pronouns, such as
reflexives, reciprocals and so-called logophorics, must find
their antecedents in syntactically defined domains, (ii)
semantic criteria - some pronouns cannot be assigned referents
“in the world” but can be understood only if regarded as
referentially dependent on their antecedents: this concerns
e.g. pronouns bound by quantified NPs and wh-phrases (e.g.

himself in Nobody likes himself). Although the classes of

pronouns delimited by these criteria are not quite identical,
they overlap to such an extent that in most cases, they can be

regarded as equivalent.

In my earlier papers, 1 have discussed some cases of bound
pronouns which are troublesome for the current theories that
account for bound pronouns by translating them into some kind
of logical notation using bound variable or equivalent devices.

Those cases include:

(i) sloppy identity’ cases (as in John loves his wife and so

does Bill, where Bill may be understood to love either his own

or John’s wife)

(ii) ‘dislocated bound pronouns’, that is pronouns that have

~09-

The interpretati on of bound pronouns

Gst en Dahl

Proceedi ngs of NODALI DA 1985, pages 49-57

been ‘moved’ (presupposing a transformational analysis) out of

the scope of their binders, e.g. Himself, everyone despises,

and in particular amonyg those

(i1i) pronouns with ‘relational’ (Engdahl 1985) or ‘second-

order’ readinygs, as in a sentence such as The only woman every

Englishman admires is his mother, the interpretation of which

cannot be rendered without having recourse to second-order

logic

The main idea put forward in my papers was that the troublesome
cases could be accounted for if the location of the antecedent
in the syntactic structure were considered an integral part of

a bound pronoun’s interpretation.

So far, two main versions of the pronoun interpretation program
have been developed. In Dahl 1985, I report an attempt to
construct a syntactic parser to be used on an 8-bit
microcomputer, written in the LISP dialect muLISP. The first
version of the pronoun interpretation program (henceforth
“Version 1°) used a somewhat more elaborate version of this
parser as its base, that is, the semantic part of the program
took syntactically analysed sentences as its input and assigned
referents to the noun phrases in them. In addition, the program
had what can be called rudimentary conversational competence:
the sentences processed were compared with a database and
depending on the type of sentence, the appropriate action was
taken: in the case of interrogative sentences, an answer was
given, in the case of a declarative sentence, the proposition
was added to the database. The reference assignment process in
Version 1 worked in an top-down fashion, assigning referents
first to the highest NPs in the syntactic structure. Extensive
use was made of temporary registers, where processed NPs (with
identified referents) were stored so as to be retrieved later
on when needed as antecedents of pronouns. When an antecedent
was found for a pronoun, both the referent and the location
(that is, where it was found in the registers) of the
antecedent was stored on the property list of the pronoun. This
information was then exploited by the mechanisms used in the
-50-

Pr oceedi ngs of NODALI DA 1985

50

“troublesome cases’ listed above. Version 1 was thus able to
handle both sloppy identity and at least some ‘relational

guestions’, e.g. the following:

(1) whom does every man love, his wife or Mary?

However, Version l was rather slow, with processing times up to
half a minute for processing some sentences (this would include
both syntactic parsing, reference assignment, comparison with
the database and appropriate reaction). There were several
reasons for that, including inherent limitations in the
hardware and software used. Of a more direct linguistic
relevance, however, were the following circumstances: The
syntactic and semantic components Oof the systems were wholly
autonomous from each other, and indeed worked in rather
different fashions: the syntactic parser was strictly bottom-
up, systematically taking into considerations all possible
analyses of the sentences, whereas the semantics, as has
already been pointed out, worked from the top down, and with
the principle of always choosing the first possible
alternative. When I considered the slowness of Version 1 and
also realized that what the semantic part of it did was largely
repeating the syntactic analysis of the sentence, it appeared
to me that it might be fruitful to try and build a system where
syntactic and semantic analysis would be done in an integrated
fashion. This, however, put stronger demands on the parsing
mechanism, since it required a more intelligent way of handling

structural ambiguities.

Version 2, then, has been designed to meet these demands. It is
written in the MS-DOS version of muLISP and has been run on
several kinds of IBM compatible computers. It has not yet been
developed as fully as Version 1 (the ‘conversational’ part has
not been implemented, for instance) but its performance is
significantly better than that of Version 1, partly due to
better hardware but also due to a more efficient structure of
the parsing mechanism. Thus, the parsing time (including
reference assignment) is about 20 miiliseconds per word on an

IBM AT computer. Perhaps the main advantage is that this time

-51-

Pr oceedi ngs of NODALI DA 1985

51

is more or less linear, whereas the parsing time per word in

Version 1 grew very rapidly with the length of sentences.

The syntactic analysis in Version 2 is done according to the

following principles:

(1) the output is a LISP structure which can be characterized
as an ‘almost unlabelled bracketing’, that is, with very few
exceptions, the syntactic category of a constituent
(which has the form of a list) is not explicitly marked but has
to be deduced from the lexical category of its ‘head’, that is

the first member (CAR) of the list

(ii) parsing is done from left to right in a more or less

deterministic way

(iii) the fact that the category of a constituent is in general
known when you have identified its head or its first word
(which is often the same thing) is systematically exploited in

predicting what comes next

(iv) backtracking is made by a systematic use of local
parameters of LISP functions: every time a new word 1s parsed a
call is made to a function and the partial structure built so
far is passed to that function as a parameter - 1f the
continued parse does not succeed, one automatically returns to

the previous state

(v) at any point in the parsing process, the partial analysis
arrived at so far is represented as a single stack of “active
constituents” (called the ACTIVESTACK), that is, constituents
that have not yet been finished. To show what the parsing of a
sentence may look like, we show the successive stages of the

parsing of (2) in (3).

-52-

Pr oceedi ngs of NODALI DA 1985

52

(2) John believes that Mary loves Bill

€))

(expression to be parsed:) (ACTIVESTACK:)
1: John believes that Mary loves Bill NIL
2: believes that Mary loves Bill ((John) VP (S))
3: that Mary loves Bill (NP (believe -s) (S (John)))
4: Mary loves Bill (S (that) (believe =-s) (S (John)))
5: loves Bill ((Mary) VP (S) (that)(believe =-s) (S (John)))
6: Bill (NP (love -s) (S (Mary)) (that) (believe -s) (S (John)))
7: NIL ((Bill) (love -s) (S (Mary)) (that) (believe -s) (S (John)))

(close all constituents)

(S (John) (believe -s (that (S (Mary) (love -s (Bill))))))

The assignment of referents to WPs 1s done during the syntactic
analysis, more specifically, when the noun phrase in question
is ‘closed’, i.e. moved off the stack of active constituents.
When a referent is assigned to a noun phrase, a ‘dotted pair’
representing the referent is added to the list which represents
the constituent in the structure. At present, the system can
handle three kinds of NPs: proper names, bound pronouns, and
NPs with a possessive in the determiner slot. For proper nouns,
the assignment process is trivial: the proper name itself is
used as a reference indicator. Thus, the LISP expression to the
left of the arrow is converted into the one to the right of the

ArITrow:

(4) (John) ----> (John (REF. John})

Some people may be disturbed by this rather vacuous process:
the point here is that since we are not directly concerned with
how proper names are interpreted we do not want to introduce
any complications here. Of course, we could easily plug in a

53

Pr oceedi ngs of NODALI DA 1985

53

routine that puts in a referential index or the like.

For NPs with a possessive determiner, the principle is also
slightly ad hoc: the referent of the possessive expression is
first determined, then the property list of that referent is
examined to see if there is some property which coincides with
the head noun of the NP: in that case, the value of that
property becomes the referent of the whole NP. For instance, if
we have the NP gohn's wife and we find the item (wife.Mary) on
John’s property list, then the referent of John’s wife is taken

to be Mary.

The most interesting part of the referent assignment procedure
is that which assigns antecedents and referents to bound
pronouns. The assumption is that the antecedent of a bound
pronoun is to be found among the NPs that c-command it.
According to the current definition, a node x c-commands a node
y if and only if the node that immediately dominates x also
dominates y. In the present system, the c-commanders of an NP
that is being ‘closed’ are always precisely those NPs that are
immediate constituents of the members of the ACTIVESTACK. For
instance, when the NP Bill in (2) above is closed, the

ACTIVESTACK looks as follows:
(5) (Love -s) (S (Mary)) (that) (believe -s) (S (John)))

The c-commanders in (5) are thus Mary and John.

This makes it possible to formulate a relatively simple
algorithm for finding the possible antecedents. In addition to
assigning a referent to a pronoun, the algorithm also stores
the distance (in nodes) between the pronoun and its antecedent.

The point of this will become clear later.

In rauLISP formalism the main antecendent-finding function looks

as follows (some irrelevant details have been left out):

-54-

Pr oceedi ngs of NODALI DA 1985

54

(6)

(DEFUN ANTECEDENT (LAMBDA (X Y XNP XNODE DIST)
(SETQ Y (CDR ACTIVESTACK)) Define Y as the ACTIVESTACK minus the NP
under consideration.

(SETQ DIST 0) Set the variable DIST to O.
(LooP Repeat until Y is empty or antecedent is
found:

((NULL Y) N1L)
(SETQ XNODE (POP Y)) Set XNODE to next member of Y.
(SETQ XNP (FIRSTNP XNODE)) Find the first NP in XNODE: call it XNP.

((AND

(MEMBER (CAR X) REFLPROLIST) If the pronoun is reflexive and
(EQ (CAT XNODE) S)) XNODE is a sentence, then
(PUT X “ANTEC-DIST DIST) set the antecedent-distance to DIST and
(AGREE X XNP)) the antecedent to XNP, if it agrees with
the pronoun, else to NIL,
((AND (if the pronoun is non-reflexive:)
(AGREE X XNP) if XNP agrees with the pronoun then
(NOT (AND unless the pronoun is non-possessive
(NOT (POSSESSIVE X)) and
(EQ (GET XNP REF) (GET (SUBJECT) REF))))) XNP is

coreferent with the
subject of the sentence,
(PUT X “ANTEC-DIST DIST)then set the antecedent-distance to DIST

XNP) and the antecedent to XNP.
XNP)
(SETQ DIST (ADD1 DIST)))))) Add 1 to DIST.

This is certainly a simplified rule: for instance, it assumes
that the antecedent of a reflexive is always the subject.
However, in most simple cases, it assigns the closest possible

antecedent to any bound pronoun.

Let us now have a closer 1look at the antecedent distance
parameter. Its function is to define the location of the
antecedent of a pronoun: this information is above all useful

when the stored interpretation of the constituent which

~55_

Pr oceedi ngs of NODALI DA 1985

contains the pronoun is retrieved later on. We shall illustrate
what this means by looking at the way in which the program
handles ‘sloppy identity’. Consider the again the example from

the beginning of the paper:

(7) John loves his wife and so does Bill

At present, the program 1is only able to handle a somewhat

unidiomatic paraphrase of (7):

(8) John loves his wife and Bill too.

Basically, the following 1s what happens when (8) 1is

interpreted by the system: First, the clause John loves his

wife is parsed. Assuming that the system knows that Mary is
John’s wife, it will assiyn Mary as a referent to his wife.
Then, the reduced clause Bill too is parsed. After the subject
NP Bill the system expects a verb phrase: it takes the particle
too as a signal of an elliptical VP. Every time a VP is parsed,
it becomes the value of the variable LASTVP: in this case,

LASTVP is loves his wife. The parsed version of this expression

is now copied into the place where the VP should occur in the
elliptical sentence. When this happens, the NP his wife is
again subjected to the reference assignment process - however,
since it is the second time, the antecedent is found not by the
function ANTECEDENT but by another called FIND-ANTECEDENT-
AGAIN. This function 1looks at the antecedent distance
associated with the pronoun his and tries to find the NP at the
corresponding place in the tree. In this case, it is Bill, so

the referent of his wife is now taken to be Bill’s wife.

Version 2 has not yet been developed so far that it can take
care of the other problematic cases of bound pronouns, but in
principle similar mechanisms as the one mentioned should be
sufficient to solve the problems, as was demonstrated by
Version 1. The point is that the antecedent distance parameter
approach is inherently more powerful than the common way of
displaying coreference relations, viz. by referential indices

or multiple occurrences of the same variable letter, in that it

~-56-

Pr oceedi ngs of NODALI DA 1985

56

has a meaningful interpretation also out of context.

The above account has been lacking in explicitness in various
ways. There are two reasons for this: the rather early stage of
development of the program and the limited space available. The
long-range aim of the undertaking is to provide a small yet
powerful ‘module’ for processing natural languages sentences
and texts, where the pronoun interpretation mechanism will only
be a small part. Hopefully, the work on the ‘module’ will be
possible to shed liyht on some questions of general theoretical

interest.

REFERENCES

Dahl, O. 1983a. On the nature of bound pronouns. PILUS 48,

Dept. of Linguistics, Univ. of Stockholm.

Dahl, 0. 1983b. Bound pronouns in an integrated process model.

In F. Karlsson, ed., Papers from the Seventh Scandinavian

Conference of Linguistics. University of Helsinki, Dept. of

General Linguistics.

Dahl, O. 1985. Syntactic Parsing on a Microcomputer. In S.

Backman and G. Kjellmer, eds., Papers on Language and

Literature presented to Alvar Ellegdrd and Erik Frykman.

Gothenburg Studies in English 60. Goteborg: Acta Universitatis
Gothoburygensis.

Engdahl, E. 1985. The Syntax and Semantics of Questions with

Special RrReference to Swedish. Dordrecht: Reidel.

-57-

Pr oceedi ngs of NODALI DA 1985

57

