Lauri Carlson
University of Helsinki

Research Unit for Computational Linguistics

LP RULES IN UNIFICATION GRAMMAR

The purpose of this paper is to consider extension of
unification based context free grammar with (a suitable
generalization of) the IDLP formalism of Gazdar et al. (1985).

We define unification based context free grammar (UCFG) as a
generalization of CF grammar. The shared property is the CF forn
of productions {(a single nonterminal on the LHS of a rule).
This allows use of appropriately modified CFG parsing
algorithms. The HUG grammar formalism of Lauri Karttunen (paper
presented in this conference) can be regarded as an instance of
UCFG.

The structure of the present paper is as follows. In section 1,
definitions are given to relevant types of grammar. Section 2
discusses generalization of IDLP grammar to unification. 2
parsing problem bound up with the generalization is described ir
section 2.2, which closes with a definition of unification IDLE
grammar. Direct parsing of UIDLP grammar is discussed in sectior
2.3. The last section 2.4 proposes a generalization of the
notion of a unification LP rule, aimed to avoid the cost of
parsing full UIDLP grammar while retaining enough expressive
power for the statement of common types of word order
constraints.

1l. Definitions
Standard notations of formal grammar theory are used (see e.g

Hopcroft and Ullman (1979) for definitions). in, +, and iff are

used for set theoretic membership, union and definitional

~35_

LP rules in unification grammar

Lauri

Carl son

Proceedi ngs of NODALI DA 1985, pages 35-48



equivalence, respectively.

1.1. Definition of standard CF grammar

We recapitulate the definition of standard CF grammar to serve

as a point of comparison.

G = <N,T,P,S>, N, T disjoint and finite, P a finite subset of NxV*.

u=>wiff u = xAy and w = xUy for some A -> U in P, xy in V*,

w in L(A) iff A =>* w. L(G) = L(S).

Then the definition of UCFG can be approached as follows.

1.2. Definition of unification based CF grammar (UCFG)

G = (N,T,P,S) where N = L(G') for the following CFG:

G' (N',T',P',Cat), T' = F +C + =),(,1,v,fail.

Pl
Cat -> fail
Cat -> Var, vVar -> v; Varl

Cat -> ¢, cin C
Cat -> (fl=Cat f2=Cat ... fn=Cat), where f1,f2,...,fn = P

P afinite subset of N x V*, S in N.

The foremost difference here is that the set of nonterminal
symbols of a UCFG is infinite (it is the language of another
context free grammar).

Although only a finite number of nonterminals can occur in

rules, a rule can match (unify with) an infinity of different

nonterminals in the course of different derivations. In other

~36-

Pr oceedi ngs of NODALI DA 1985

36



words, a UCFG rule can have an infinite number of rule

instances.

To define the yield relation, we need to introduce a number of
auxiliary concepts.

1.2.1. Substitutions

An substitution is a partial function s from L{(Var) to L(Cat).
A substitution s is extended to V* by the clause s(xy) =

s(x)s(y).

A substitution which is one-one in L(Var) is acalled a renaming

of variables. We define a notational equivalence relation ==

among alphabetic variants so that x==y if x = s(y) for a
renaming of variables s. == is extended to productions in the
obvious way: p=A -> U == -> W iff AU == BW.

A substitution s with values in L(Var) can be iterated. To
define eventual values of s, we define s*(x) so that s*(x) = x
if s(x) is undefined or s™(x) = x for some n>0; else s*(x) =

s*(s(x)).

The smallest substitution is the empty substitution 0. The

inconsistent substitution 1 is such that 1l(x) = fail for any x.

1.2.2. Unification

A unifier for categories A,B is a substitution s s.t. s(A)

s(B). s is a maximally general unifier (mgu) for A,B, or s
mgu(A,B), if u(s(AB)) = u(AB) for any unifier u for A,B. It
can be determined up to alphabetic variance using the following
schema.

mgu(A,B) = u(A,B,0), where

-37-

Pr oceedi ngs of NODALI DA 1985

37



u(c,c,0) 0, c in C

u(v,B,0) = <v,B> if v in L(Var) does not occur in B.

u((fl=cl...fn=cn),(fl=dl...fn=dn),0) =
u(cl,dl,u((f£2=c2...fn=cn), (£2=42...fn=dn),0)

u(A,B,s) = s + u(s*(aA),s*(B),0)

otherwise u(A,B,s) = 1.

A unifies with B iff mgu(A,B) is not 1. The unification of A and
B is mgu(A,B)'(A) = mgu(A,B)'(B). A subsumes B iff mgu(A,B) (A)

== A. That is, unification of B into A does not change A.

1.2.3. Derivability

With these basic concepts, we can define the UCFG yield relation
as follows.

u => w iff u = xAy and w = s(xWy) where B -> W == p for some

production p in P, xy in V* and substitution s = mgu(A,B).

The main differences compared to CF are that the matching
relation between A and the left hand side of p is not identity
but unification (a rule can match an infinite number of
nonterminals consistent with it) and that the expansion of A

with p can instantiate (rewrite) nonterminals in u outside A.
The == relation in the definition allows renaming of variables

between repeated applications of a rule. We have chosen to

rename the production p. Equivalently, we could rename u.

-38-

Pr oceedi ngs of NODALI DA 1985

38



Example UCFG:

(cat=S num=v0) -> (cat=A num=vl) (cat=B num=vl) (cat=C num=vl)

(cat=v1l num=(num=v2)) -> (cat=vl num=v2) (cat=vl num=0)

(cat=A num=0) -> a

(cat=B num=0) -> b

(cat=C num=0) -> c

This UCFG generates the non-CF language aPpRch,

1.3. CF IDLP grammar

Standard rewriting rules contain dominance and precedence
information connected together. The idea of IDLP grammars is to
separate dominance from precedence. There are two types of
rules: ID rules of form

A -> Bl, ... , Bn

where A is a nonterminal and Bl, ... Bn form a multiset (set

with possible repetitions) of symbols in V, and LP rules of form
A < B

where A and B are nonterminals in N.

A CFIDLP grammar H can be defined as a pair (G,<) where G is a
standard CF grammar and < is a strict partial ordering in NxN.
For simplicity, we fix a standard ordering of the RHS's of ID
rules which contains < as a subset. Henceforth we assume ID

rules are normalized into standard order.

To define the yield relation, we proceed as follows. Let L be a

-39.

Pr oceedi ngs of NODALI DA 1985

39



subset of V*, We define Sat(L,<) as the set of those words w in
L that are not of form xByAz where A < B. If w is in Sat(v*,<)
we say that w satisfies <. A production p satisfies < iff its
RHS satisfies <. We define a relation —=> in V* so that x --> y

iff y is a permutation of x and y satisfies <.

Then u => w in H = (G,<) iff u = xAy, w = xUy, and A -> W is in
P st.t W --> U.

The novelty here is that a given production actually defines a
set of ordered productions obtained by permuting its right hand

side in LP acceptable ways.

Thus any IDLP grammar has an equivalent ordered grammar.
Conversely, any ordered G has a trivial equivalent ILDPG. The
conversions affect the nonterminal vocabulary and therewith the

parse trees generated by the grammars.

In Gazdar et al. (1985:49) the strong generative capacity of
IDLP grammars is characterized in terms of the ECPO (Equivalent
Constant Partial Ordering) property. In an IDLPG with fixed
nonterminal vocabulary, if A <B in the RHS of one production, A
< B in the RHS of all productions. If and only if a ordered
grammar has this property, it can be rewritten as an IDLP

grammar without changing the nonterminal vocabulary.

Since it is easy to move from the extended vocabulary of a
covering IDLP grammar to the original vocabulary of the ordered
grammar in any given derivation (cf. Aho and Ullman72:275), the
ECPO property is of slight practical interest. This is all the
more true in UCFG, where the feature composition of the top
category provides a more flexible description of sentence

structure than derivation history.

~40-

Pr oceedi ngs of NODALI DA 1985

40



1.3.2. Parsing of IDLP grammar

This section assumes standard notions of Earley parsing (see
e.g. Aho and Ullman 1972).

Barton (1985) shows parsing of IDLP grammars NP complete in the
worst case (when < is empty). The basic fact is that the number
n! of permutations of a string of length n grows exponentially
with n. The combinatorial explosion arises in cases of lexical
ambiguity, where (say) a string of form al...an can be parsed in
n! ways by an IDLP grammar H = (G,<) with G = (S -> Al...An, Ai
-> aj for all i,j) and < empty.

Though exponential in the worst case, direct parsing of IDLP
grammars can show savings compared to parsing corresponding
ordered grammars. The source of the savings is that the number
of items in the parse table can be kept small by keeping
together items that are represented separately in the ordered
grammar. In the worst case, this gets the number of items down
from O(/G/!) to O(Z/G/) (one item per subset of RHS symbols
instead of one per permutation).

An Earley parse item A -> x.y is <--> to item A -> z.w iff x <--
>z and y <--> w. To simplify the identification of equivalent
items, they can be normalized to a fixed alphabetic order.

The test yB <--> By involves checking LP-acceptability of By
This can be done by looping through all LP rules and pairs B,C,
C in y. Since the result of the test depends only on G, it can
be precomputed.

2. UIDLP grammar

2.1. Definition

Analogy with the CF case suggests the following definitions.

4] -

Pr oceedi ngs of NODALI DA 1985

41



A UIDLP grammar is a pair H = (G,<) where G is a UCFG and < is a

strict partial order on V.

Let L be a subset of V*. Sat(L,<) = (w in L: w is not of form
xCyDz where A < B and CD subsumes BA). If w is in Sat(V¥*,<) we
say that w satisfies <. A production p satisfies < iff its RHS
satisfies <. x -=> y iff y is a permutation of x and y satisfies

<.

Then u => w in H = (G,<) iff u = xAy and w = s(xWy) where s(W)
<-=-> U and B -> U == p for some production p in P, xy in V* and

substitution s = mgu(A,B).

This definition combines the UCFG and IDLP yield relations in
the straightforward way. LP rules are used as local tests
checking a permutation of the RHS of a rule when the rule is
applied. Category identity as the matching relation 1is

generalized to subsumption.

2.2. Nonlocal subsumption problem

It follows from these definitions that the LP-acceptable
permutations of an instance of a UID rule can be a proper subset
of the permutations of the original rule. The reason is that in
general, Sat(L,<) is a subset of Sat(s(L),<) but not vice
versa. Instantiation can make LP rules applicable which do not

apply to the uninstantiated rule.

In other words, in UIDLP grammar, word order can be sensitive to
context. For example, the order of a V and its complements may
depend on the character of the clause they belong to (German,
Finnish). This cannot be decided locally by looking at the verb
and its complements. This situation is exemplified in the
following UIDLP grammar. (CF category symbols indexed with
feature equations serve as shorthands for UCFG category

symbols.)

_42-

Pr oceedi ngs of NODALI DA 1985

42



S' -> S(type=main)

S' -> Comp S(type=sub)
S(type=x) -> NP VP(type=x)
VP(type=x) -> V(type=x) NP
Comp —-> dass

NP -> Jungen

V -> sind

V(type = main) < NP

NP < V(type=sub)

This grammar left generates the sentences Jungen sind Jungen and

dass Jungen Jungen sind (but not the illicit orders).

However, the same grammar parsed bottom up right to left accepts

the illicit sentence dass Jungen sind Jungen:

S'
Comp S(type=sub)
S (type=x)
NP VP (type=x) - passes LP rules
V(type=x) NP
dass Jungen sind Jungen

A similar paradox can be constructed between left and right top
down derivations of a variant grammar with rules S' ->
Comp(type=x) S (type=x), Comp(type=main) -> e, Comp(type=sub) ->
dass.

This result is undesirable in that it imports an order
dependent, procedural feature to an otherwise declarative
formalism. The LP-acceptability of a sentence can depend on the
order applying the rules of grammar, so that certain parsing
strategies can pass sentences which fail LP-rules on the
surface.

As far as the definition of derivability is concerned, what we
should have said to begin with is fairly clear. We want LP rules

to regulate the order of sister constituents at all stages of

Pr oceedi ngs of NODALI DA 1985

43



derivation (in particular, at the end of derivations). This can
be stated as a global condition on derivations, or, as is
actually done in GPSG (Gazdar et al. 1985:46), by interpreting
LP conditions as node admissibility conditions. In this

interpretation, an LP-rule A < B reads:

(LP) A pair of nodes B'A' subsuming BA cannot appear as

sisters in a derivation tree.

Given that LP-acceptability is taken care of by (LP), we can
simplify the UIDLPG yield relation as follows:

=> w in H = (G,<) iff u = xAy and w = s(xWy) where s(W) is a
permutation of U and B -> U == p for some production p in P, xy

in V* and substitution s = mgu(A,B).

2.3. Parsing of UIDLP grammars

One way to parse UIDLP as revised above is to simply apply LP
rules in the completed parse so as to filter out LP-inconsistent

parses.

This is conceptually straightforward but inefficient. All
permutations would be considered only to be discarded at the
final step. We should bring LP constraints to bear as soon as
possible, i.e. apply LP rules as global constraints on

derivations.

Consider again the illicit parse above. Although V and its
complement NP do not subsume the LP rule NP < V(type=sub), they
do unify with the rule. (If they did not unify with the rule,
they could not subsume it later either.) Such undecided
applications of LP rules should remain active until a decision
can be made. (Again, the decision should be done as early as
possible to cut off parses.) Let us say that in such cases, the
LP rule properly unifies with the pair of categories.

_44—

Pr oceedi ngs of NODALI DA 1985

44



Assume B < C properly unifies with B', C' when item A ->
xC'.yB'z is formed. We need to save the active constraint with
the undecided item in such a way that it will be reapplied to

instances of the original undecided pair.

To do so, we associate with each undecided item with a list of
constraints of the following kind. A constraint c is of form "A
< B to B'A'". It is matched if A'B' subsumes AB, irrelevant if
A'B' does not unify with AB, and active otherwise. If s is an
substitution, s{(c) = "A < B to s(B'A')".

Whenever a new item i = s(A -> xC'.yz) is to be combined from
items j = A -> x.yC'w and k = C" -> u. using mgu s, we check
each constraint on the constraint list (s(c): ¢ is on the
constraint list of i or j or is of form "B < C to C'B'", B' iny
and B < C a LP rule.) If c is matched, reject the combination.
If ¢ is irrelevant, delete the constraint from the constraint
list. Finally, if the combination 1is not rejected, assign the

remaining constraints as the constraint list of the new item.

The above procedure is rather cumbersome. What is more, it is
difficult to find cases in actual languages where it is really
needed. The types of context sensitive word order constraints I
have found allow for a simpler fix which is sketched in the

following section.

2.4. Generalized LP rules

A UCFG category can be represented by a set of feature
equations, specifying values of features instantiated in each
category. Conversely, the set constitutes the least solution of

its representing equations in the domain of UCFG categories.

A pair of UCFG categories can be similary represented as a
higher order category with attributes 0,1 for the members of the
pair. Feature equations can then be used to describe category
pairs. (The idea is adapted from Karttunen (this volume).)

—45-

Pr oceedi ngs of NODALI DA 1985

45



The standard interpretation of a unification LP rule A < B can

be restated as follows.

(1) If A'B' subsumes AB, then A' < B'.

The contraposition of this constraint (given A' is not B') is
(2) If A' > B', then not: A'B' subsumes AB.

If the complement c(AB) of the specification AB can be
expressed, the contrapositive constraint can be further
rewritten as

(3) If A' > B' then A'B' unifies with c(AB).

Then (3) could be directly verified by unifying c(AB) into A'B'
whenever the antecedent of (3) is taken. This suffices to
guarantee satisfaction of the consequent of (3), in fact
strengthens it to subsumption.

In our example grammar, since (type=sub) = c(type=main),
application of NP < V(type=sub) to the pair V(type=x) NP could

simply instantiate V into V(type=main).

These observations suggest the following generalization of the

notion of a LP rule.

(4) Assume x > y. Then if xy subsumes AB then xy subsumes
CD.

Or equivalently,

(5) Xx <y if xy subsumes AB, else xy subsumes CD.

Let us consider some special cases of this general form. The

original rule A < B is obtained as

_46-

Pr oceedi ngs of NODALI DA 1985

46



(6) X <y if xy subsumes AB else xy subsumes fail.

Our example of nonlocal subsumption is taken care of by the pair

of rules

(7) Assume x > y. Then if xy subsumes ((x cat) = V)(y cat)
= NP)) then xy subsumes ((x type) = sub)

(8) Assume x > y. Then if xy subsumes ((x cat) = NP) (y cat)

= V)) then xy subsumes ((x type) = main)

These rules instantiate the main and subordinate clause features
at the time when the VP order is fixed. (An abbreviation of
complementary rules such as (7)-(8) into one rule seems
appropriate.)

The next example is a rule of functional word order
interpretation.

(9) X < y if xy subsumes (x = (y subject)) else xy
subsumes ((x function) = rheme)

This rule says that a subject following the main verb is
rhematic.

As suggested before, generalized LP rules of form (4)
(respectively, (5)) can be implemented in parsing so that the
consequent (else) condition of the rule is actually unified in
when the order condition of the rule is applicable (violated).

An implementation of generalized LP rules of this kind into HUG
is in progress.

It should be kept in mind that generalized LP rules do not solve
the nonlocal subsumption problem. At best, they make it possible
to avoid the problem by allowing statement of some context
sensitive word order rules without reference to nonlocal

_4u7-

Pr oceedi ngs of NODALI DA 1985

47



conditions.

References

Aho, A. and J. Ullman (1972), The Theory of Parsing,
Translation, and Compiling. Volume 1l: Parsing. Prentice-Hall.

Barton, E. (1985), "The Computational Difficulty of ID/LP
Parsing”, in Proceedings of the 23rd Annual Meeting of the ACL,

Chicago.

Gazdar, G, E. Klein, G. Pullum and I. Sag (1985), Generalized

Phrase Structure Grammar. Harvard University Press.

Hopcroft, J. and J. Ullman (1979), Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley.

Shieber, S. (1984), "Direct Parsing of ID/LP Grammars",
Linguistics and Philosophy 7, 135-154.

_48-

Pr oceedi ngs of NODALI DA 1985

48



