
Gregers Koch
Datalogisk Institut Københavns Universitet
Sigurdsgade 41
DK-2000 København N

NATURAL LANGUAGE PROGRAMMING

1. Aims

This is a study of automated programming. We are aiming

at the stepwise development of a programming environmemt

consisting of an automatic translation system to trans­

late texts in natural language (e.g. software requirement

specifications) into certain logical formulae according

to some semantic theory, as well as into executable programs.

The only semantic theories considered here are logical

theories, whether they be related to the lambda calculus

or to the predicate calculus, and we shall henceforth talk

about the level of logical representation (rather than

semantic representation).

The paradigm of the method may be guessed from the figure 1.

The horisontal axis displays the gap between the human user

and the computer (that is the so-called man-machine communi­

cation p r ob le m). The vertical axis indicates the level of

abstraction, from low levels of abstraction up to higher

ones. The areas of natural language, programming language,

and the predicate calculus are indicated with an overlap

between the latter two, as some predicate calculus expressions

are executable and other are not.

132

Natural Language Programming
Gregers Koch
Proceedings of NODALIDA 1983, pages 132-144

Figure 1

The aim of this project is to develop a rigorously

defined "square" sublanguage of natural language with

a corresponding system performing automated translation

into the predicate calculus.

133

133Proceedings of NODALIDA 1983

2. Developing natural sublanguages

Starting with whatever semantic theories are available in

the literature the aim here is to develop step by step a

computational sublanguage of natural language. This deve­

lopment is performed on the basis of carefully selected

examples (and it will be illustrated by examples). The

textual formulation of the requirement specification will

thus be translated automatically into a logical represen­

tation .

The figure 2 shows the same thing in a diagrammatic form.

Here are indicated the documents occuring during the

process, for instance

Requirement

Specification

and a few processes to be discussed, for instance

Translate

Several aspects of the figure 2 will be commented upon

in the rest of the paper.

3. Reverse translation

Generating i.e. reverse translation back into natural

language, makes it possible to check the quality of the

textual translation process.

It is a characteristic property of logic programming

languages that (at least in principle) the user may apply

the same program for translation and for generation.

4. Logical alternatives

The particular choice of logical representation is essen­

tially arbitrary, but the scientific literature heavily

134

134Proceedings of NODALIDA 1983

Figure 2

supports two kinds of representations. Here we chose a

logic grammar (like [4]). An interesting alternative is

a intensional grammar S la PHLIQAl [3,7,14,16] .

Conceivably the latter alternative may be characterized

as a prototypical lambda calculus method and the former

alternative as a prototypical predicate calculus method,

135

135Proceedings of NODALIDA 1983

Also in a more narrow context of parsing (instead of full

translation) the following method is probably preferable to

that of the Uppsala Chart Parser [17] as far as modifia­

bility, extensibility, portability, and experimentation

with regard to grammatical descriptions are concerned.

The stepwise development of the computational sublanguage

of ordinary English used a number of carefully selected

benchmark p r ob le ms.

5. An example

The first benchmark problem is simple enough to allow

a fairly thorough presentation.

By the example of the fallible Greek we also demonstrate

the idea of expressing a grammar as a logic program.

The problem consists in having the computer respond in a

sensible way to the following ordinary English text (or

natural language requirement specification);

Turing is human.

Socrates is human.

Socrates is Greek.

every human is fallible.

which human is Greek and is fallible ?

i.e. the program should answer the query in the last

sentence.

We select the following simple context-free grammar
<Sentence>

<Term>

<Nounphrase>

<Relativeclause>

<Verbphrase>

<Determiner>

<Noun>

<Transitiveverb>

<Propername>

=<Term><Verbphrase>

=<Propername>I<DeterminerxNounphrase>

=<Noun> I <NounxRelativeclause>

= that <Verbphrase>

= <Transitiveverb><frerm> I <^Verbphrase>and ^erbphrase>

= every I which

= human

= is I isn't

:= Turing | Socrates I Greek I fallible I human

136

136Proceedings of NODALIDA 1983

If we just want a parser (to accept or reject the input

sentence) we may simply change the grammar into the logic

program of figure 3, where the variables function as point­

ers to the input string.

To solve our problem of the fallible Greek we need a some­

what more sophisticated translation of the accepted input

sentence, as shown in figure 4. For the sake of clarity we

have here omitted the variables functioning as pointers

(as in figure 3). We have only given the variables designa­

ting the focus and result(s).

Translate:

Sentence(x,z) if Term(x,y) & Verbphrase(y,z) .

Term(x,y) if Propername(x,y).

Term(x,z) if Determiner(x,y) & Nounphrase(y,z).

Nounphrase(x,y) if Noun(x,y).

Nounphrase(x,z) if Noun(x,y)SRelativeclause(y,z) .

Relativeclause(x,z)if Check(that,x,y)sVerbphrase(y,z)

Verbphrase(x,z)if Transitiveverb(x,y)&Term(y,z).

Verbphrase(x,w) if Verbphrase(x,y)SCheck(and,y,z)

& Verbphrase(z , w) .

Determiner(x,y)if Check(every,x,y).

Determiner(x,y)if Check(which,x,y).

Noun(x,y)if Check(human,x,y).

Transitiveverb(x,y)if Check(x,y)

Transitiveverb(x,y)if Ch ec k(is n't , x, y).

Propername(x,y)if Check(Turing,x,y).

Propername(x,y)if Check(Socrates,x,y).

Propername(x,y)if Check(Greek,x,y).

Propername(x,y)if Check(fallible,x,y).

Propername(x,y)if Check(human),x,y).

Figure 3.

137

137Proceedings of NODALIDA 1983

Sentence (z) if Term(x, z1 ,z)&Verbphrase (x, z1) .

Term(x,z,z)if Propername(x).

Term(x,z1,z)if Determiner(x,z2,z 1,z)&Nounphrase(x,z2)

Nounphrase(x,z)if Noun(x,z).

Nounphrase(x,z1&z2)if Noun(x,z1)SRelativeclause(x,z2)

Relativeclause(x,z)if Check(that)SVerbphrase(x,z).

Verbphrase(x,z)if Transitiveverb(x,y,z1)&Term(y,z 1 ,z)

Verbphrase(x,z1&z2)if Verbphrase(x,z1)&Check(and)

& Verbphrase(x,z2).

Determiner (x, z 1, z2 , Vx[z1=^z2]) if Check(every) .

Determiner(x,z1,z 2 ,Which(x,z1&z2))if Check(which).

Noun(x,Is(x,Human)) if Check(human).

Transitiveverb(x,y,Is(x,y)) if Check(is).

Transitiveverb (x,y,~*Is (x,y)) if Check (isn't).

Propername(Turing)if Check(Turing).

Propername(Socrate^(if Check(Socrates).

Propername(Greek) if Check(Greek).

Propername(Fallible)if Check(fallible).

Propername(Human)if Check(human).

Figure 4.

Translate:

The computational processing of the second and the second

last sentences are displayed in the figures 5 and 6,

respectively.

In conclusion the output from the translation program

Translate is shown in figure 7.

138

138Proceedings of NODALIDA 1983

Example

Socrates IS

Sent en ce(z)

human

= Is(x,y)

= Is(Socrates, Human)

Figure 5

Example

every human

Sentence(z)

IS fallible

= Vx[Is (x. Human) "^Is (x,Fallible)]

Figure 6

139

139Proceedings of NODALIDA 1983

Is (Turing, H u m a n) .

Is (Socrates, H u m a n) .

Is (Socrates, G r e e k) .

Vx [Is (x. Human) =^Is (x. Fallible)] .

Which (x. Is (x,Greek) & Is (x,Fallible)&Is (x,Human))

Figure 7.

Translation output:

140

140Proceedings of NODALIDA 1983

The further transformation of formulae in the logical

representation depends heavily upon the particular choice

of logic programming language. In case of a dialect of

Prolog the transformation should constitute a normaliza­

tion into conjunctive normal form (or clausal fo rm). Here

the question is raised whether or not the sublanguage

actually will generate logical formulae in a clausel form

that are definite (Horn clauses). (An interesting problem would

be to characterize the sublanguages satisfying this requirement)

In the first benchmark problem we get the normalized formulae

of figure 8.

Clausal form (conjunctive normal form):

Is(Turing,Human).

Is(Socrates,Hu m a n) .

Is(Socrates,Greek).

Is(x,Fallible)if Is(x,Human).
Print(x) if I s (x , G r e e k) & I s (x , F a l l i b l e) (x , H u m a n) .

Figure 8.

6. Normalization

7. Verifying handwritten programs

The logical representation may be used in the context of

verifying handwritten logic programs, as indicated in figure 2

As an example of verification we have the second benchmark

problem which is a variant of the Alpine Club problem from

the artificial intelligence literature [15].

8. Natural language programming

The logical representation allows direct execution on the

computer, which means that we are really developing an auto­

mated programming system based on natural language. It seems

likely that this level of logical representation should be

141

141Proceedings of NODALIDA 1983

considered as yet another level (a fifth) in the context

of the four levels dealt with in the EUROTRA project [13],

Actually it is an obvious possibility to extract this kind

of information from the third, so-called logico-semantic

level and build the recommended logical representations

from that information. Unfortunately, I tend to be very

pessimistic as to whether this task will actually be

realised by the EUROTRA participants.

It is relatively easy to supplement this automated pro­

gramming system with specific rules concerning the pro­

blem domain to make it a knowledge-based system, whether

the rules are formulated in a notation akin to the chosen

logical representation, or in the form of additional texts

in natural language.

So this system may constitute the kernel of a knowledge

based automated programming system, where frame information

specific to the universe of discourse are to be added.

This kind of programming may very well be termed "programming

in natural language" or "natural language programming"(hence

the title of this p a p e r) .

The third benchmark problem is a prototypical database query

language problem [19]. The fourth benchmark problem is a small

computer aided design problem in architectural design. These

benchmark problems fall into the class of natural language

programming. Further details may be found in the report [12].

9. Status remarks

The system here was written for English to develop an

English computational sublanguage. An obvious alternative

could be to develop a similar system in some (or every)

Scandinavian language (and it might include the surface

structures of the logic programming language). A related

experiment using the same method in the automated transla­

tion from Japanese will be reported on (in [2]).

142

142Proceedings of NODALIDA 1983

When developing the appropriate natural sublanguage certain

difficulties showed up in connection with pronouns. They

may be exemplified by the sentence:

A man takes an apple and he eats it.

The difficulties concerned the scope rules of the quantifi­

cation and they could certainly be overcome by extending the

logical connectives into two-dimensional operators in a

systematic manner [12].

As far as the plural of nouns and quantification are concerned,

they were needed in the fourth benchmark problem. There seems

to be essentially six different ways to extend the computatio­

nal sublanguage with quantification, as illustrated in figure 9,

There is a need for gaining experience with the use of systems

like this one. Virtually nothing is available in the scientific

literature.

Such a system should not be considered completely trivial to

use, although its potentiality for popularization should be

recognised (Virtually everybody who is not an analphabet might

learn to use i t) .

Decisions:

1 :

2 ;

3

1

Should the translation be one-pass or two-pass (many-pass) ?

Should the result be expressed in higher order functions

(or cardinality) ?

Should there be two truth-values or three (many) ?

Passes

2 :

Higher-order

3:

Values

1 No 2 (here)

1 No 3 -

1 Yes 2 (Intensional grammars and

1 Yes 3 Lexical-Functional Grammars)

2 Yes 2 (here)

2 Yes 3 (Logic grammars) .

Figure 9.

143

143Proceedings of NODALIDA 1983

A few related contributions from my institute are included

in the list though not referred to in the paper.

10. References

[1] F. Als et al: Compiling in Prolog
(in Danish), DIKU report 83/16, Institute of Datalogy.

Copenhagen University, 1983.
[2] A. Bernth: Logics applied to the translation of Japanese

(in Danish), these proceedings.
[3] W.Bronnenberg et al.; The question answering system

PHLIQA1, in L. Bole (ed.) Natural communication with
computers Vol. 2, 1980.

[4] A. Colmerauer: An interesting subset of natural language,
in ClarJc and Tarnlund (eds.) Logic programming, 1982.

[5] N.D.Jones and A.Mycroft: Stepwise development of denota­
tional semantics for Prolog, DIKU report 83/1,
Institute of Datalogy, Copenhagen University, 1983.

[6] P.H. Jørgensen and G. Koch: Two hew methods of natural
language database queries (in Danish), Proc. NordDATA
Conf., Copenhagen 1981, 2, 227-232.

[7] G.^^^ch: Experimental formalization of Danish . Institute
of Datalogy, Copenhagen University, 1979. DIKU report
79/19 (in Danish).

[8] G. Koch: A Prolog way of representing natural language
fragments, DIKU report 80/16, Institute of Datalogy,
Copenhagen University, 1980.

[9] G. Koch: A problem oriented software development method
in computational linguistics (in Danish), Proc. De Nordi-
slce Datalingvistikdagene, E. Lien (red.),
Trondheim University, 1981, 47-63.

[10] G. Koch: Grammars and predicate calculus, DIKU report 81/16,
Institute of Datalogy, Copenhagen University, 1981.

[11] G. Koch and K.B. Larsen: Logical prototyping in system
development (in Danish), Proc. NordDATA Conf.,Göteborg,
1982, 1, 270-273.

[12] G. Koch: Stepwise development of logic programmed software
development methods, DIKU report 83/5, Institute of Datalogy,
Copenhagen University, 1983.

[13] B. Maegaard and H.Ruus; Multilingual syntax and morphology
for machine translation, in K. Hyldgaard-Jensen and
B.Maegaard (eds.): Machine translation and comptutational
lexicography, Copenhagen 1982, 26-34.

[14] R. Montague; Formal philosophy, 1974.
[15] N.J.Nilsson; Principles of artificial intelligence,

Springer-Verlag 1982.
[16] P.S.Olsen; Computational philosophy, future DIKU report,

[17]

[18]

[19] J.E.'uilman:Principles of database systems, 1980.

Institute of Datalogy, Copenhagen University, 1984.
,0V

Sågvall-Hein: A parser for Swedish, Uppsala
University, UCDL-R-83-2.
E. Upfal; Programming in predicate logic, DIKU report 81/9,
Institute of Datalogy, Copenhagen University, 1981

144

144Proceedings of NODALIDA 1983

