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Abstract

Deep neural networks (DNN) are quickly be-
coming the de facto standard modeling method
for many natural language generation (NLG)
tasks. In order for such models to truly be use-
ful, they must be capable of correctly gener-
ating utterances for novel meaning represen-
tations (MRs) at test time. In practice, even
sophisticated DNNs with various forms of se-
mantic control frequently fail to generate ut-
terances faithful to the input MR. In this pa-
per, we propose an architecture agnostic self-
training method to sample novel MR/text ut-
terance pairs to augment the original train-
ing data. Remarkably, after training on the
augmented data, even simple encoder-decoder
models with greedy decoding are capable of
generating semantically correct utterances that
are as good as state-of-the-art outputs in both
automatic and human evaluations of quality.

1 Introduction

Deep neural network (DNN) architectures have
become the standard modeling method for a host
of language generation tasks. When data is plen-
tiful, the sequence-to-sequence framework proves
to be incredibly adaptable to a variety of problem
domains. Recent evaluations of end-to-end trained
DNNs for dialogue generation have shown that
they are capable of learning very natural text real-
izations of formal meaning representations (MRs),
i.e. dialogue acts (DAs) with slot-filler type at-
tributes (see Figure 1 for an example). In many
cases, they beat rule and template based sys-
tems on human and automatic measures of quality
(Dušek et al., 2019).

However, this powerful generation capability
comes with a cost; DNN language models are
notoriously difficult to control, often producing
quite fluent but semantically misleading outputs.
In order for such models to truly be useful, they

Inform name[The Golden Curry]
near[The Six Bells]
familyFriendly[yes]

Training Reference Utterance
Near The Six Bells is a venue that is children
friendly named The Golden Curry.

Figure 1: Example MR for the Inform DA with exam-
ple human reference utterance.

must be capable of correctly generating utterances
for novel MRs at test time. In practice, even
with delexicalization (Dušek and Jurčı́ček, 2016;
Juraska et al., 2018), copy and coverage mech-
anisms (Elder et al., 2018), and overgeneration
plus reranking (Dušek and Jurčı́ček, 2016; Juraska
et al., 2018), DNN generators still produce errors
(Dušek et al., 2019).

In this work, rather than develop more sophisti-
cated DNN architectures or ensembles, we explore
the use of simpler DNNs with self-training. We
train a bare-bones unidirectional neural encoder-
decoder with attention (Bahdanau et al., 2014) as
our base model from which we sample novel ut-
terances for MRs not seen in the original training
data. We obtain a diverse collection of samples us-
ing noise injection sampling (Cho, 2016). Using
an MR parser, we add novel utterances with valid
MRs to the original training data. Retraining the
model on the augmented data yields a language
generator that is more reliable than the sophisti-
cated DNNs that have been recently developed,
in some cases reducing test set semantic errors to
zero, without sacrificing linguistic quality.

In this paper we make the following contribu-
tions. 1) We propose a general method of data aug-
mentation for natural language generation (NLG)
problems using noise injection sampling and self-
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training. 2) We show a reduction of attribute re-
alization errors across several dialog generation
datasets, while achieving competitive automatic
and human quality evaluation scores. 3) Finally,
we show that these results hold even when the MR
parser is noisy or we use fully lexicalized genera-
tion models.1

2 Datasets and Problem Defintion

We ground our experiments in three recent di-
alogue generation datasets, the E2E Challenge
Dataset (Dušek et al., 2019), and the Laptops and
TVs datasets (Wen et al., 2016). We only briefly
review them here. Each dataset consists of dialog
act MRs paired with one or more reference utter-
ances (see Figure 1 for an example from the E2E
dataset). The structure of each MR is relatively
simple, consisting of the dialog act itself, (e.g. in-
form, recommend, compare, etc.) and a variable
number of attribute slots which need to be realised
in the utterance. All attribute values come from a
closed vocabulary. If an attribute is not present in
the MR it should not be realized in the correspond-
ing utterance.

The three datasets also represent different train-
ing size conditions; there are 42,061, 7,944, and
4,221 training examples in E2E, Laptops, and TVs
datasets respectively.

The NLG task for all three datasets is to produce
an utterance for a given MR such that all attributes
in the MR are realized naturally and correctly.

E2E Model Input Following previous
sequence-to-sequence approaches for the E2E
dataset (Juraska et al., 2018), we treat the MRs
as a linear sequence of tokens x = (x1, . . . , x8)
where each of the 8 positions represents the value
of a corresponding attribute. If an attribute is
not specified in the MR we assign it an attribute
specific n/a token. In the E2E dataset there is
only one dialog act type, Inform, so we do not
represent it in x.

Prior work often delexicalizes the Name and
Near attributes (i.e. replaces verbalizations of at-
tribute values with a placeholder token), which
can later be replaced with the original attribute
value in a post-processing step. For example, the
delexicalized version of the utterance in Figure 1
would be “Near NEAR is a venue that is children
friendly named NAME.” Name and Near have

1Code and data for this paper can be found at
https://github.com/kedz/noiseylg

a relatively large vocabulary of valid slot fillers,
some of which are only seen infrequently in the
training data; it can be difficult for fully lexical-
ized models to produce some of the rarer location
names for these attributes.

However, since delexicalization might be dif-
ficult or impossible in other domains, we imple-
ment both delexicalized and lexicalized versions
of the generation models on the E2E dataset to
more fully evaluate the self-training method.2

Laptops and TVs Model Inputs The Laptops
and TVs datasets have a more diverse set of dia-
log acts and can have repeated attributes (with dif-
ferent values) in some cases, so we abandon our
fixed length, fixed position encoding, and repre-
sent each MR as a initial dialog act token and then
a variable length sequence of tokens for each of
the specified attributes. The evaluation script for
these datasets uses delexicalization to evaluate at-
tribute realization error, and so we use it here to be
consistent with prior work, delexicalizing all pos-
sible attributes. See Appendix B for example input
sequences for all datasets.

3 Generation Model

We treat the generation task as a sequence-to-
sequence transduction problem, where we learn a
probabilistic mapping p from the linearized MR
x to a sequence of N tokens y = (y1, . . . , yN )
consituting the utterance. The model p is imple-
mented using a two-layer unidirectional3 encoder-
decoder architecture with gated recurrent units
(Cho et al., 2014) and feed-forward style attention
(Bahdanau et al., 2014) as this is a canonical recur-
rent architecture for sequence-to-sequence model-
ing. We use 512 dimensions for all embeddings
and GRU states.

We fit the model parameters θ by minimiz-
ing the negative log likelihood of the training set
D, i.e. L(θ) = −

∑
(x,y)∈D log p(y|x; θ) using

stochastic gradient descent. Going forward we
omit θ for clarity.

3.1 Generating from p

Deterministic Decoding Given an arbitrary MR
x, we can generate an utterance ỹ using greedy
decoding, i.e. ỹi = arg maxyi p(yi|ỹ<i, x).

2 Additional preprocessing details can be found in Ap-
pendix A.

3In initial experiments, we found the unidirectional en-
coder to perform better than a bidirectional one.

https://github.com/kedz/noiseylg
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To produce an “n-best” list of outputs, we can
also use beam decoding where n candidate utter-
ances are maintained during each decoding step.
Both greedy and beam decoding are known to
produce somewhat homogeneous outputs (Serban
et al., 2016). Diversifying beam outputs often in-
volves careful tuning of secondary search objec-
tives which trade off fluency (Li et al., 2015).

Moreover, when training fully lexicalized mod-
els we found that we could often not pro-
duce certain Name and Near attribute values.
For example, we constructed a novel MR with
near[Burger King] and fed it into our base gen-
erator. Even with an impractically large beam size
of 512, we could not produce an utterance with
“Burger King” in it. This failure mode makes
beam search a relatively unuseable method for
producing utterances for MRs under-represented
in the training data.4

To overcome this limitation we explored several
sampling methods for generating these rarer utter-
ances, namely ancestral and noise injection sam-
pling.

Stochastic Decoding Ancestral sampling (i.e.
drawing a random token from p(Yi|y<i, x) at each
decoder step) is another option for generating di-
verse outputs, but the outputs can be of lower flu-
ency and coherence. Producing rare tokens often
involves tuning a temperature parameter to flatten
the output distribution, but this again can hurt flu-
ency.

As an alternative, we can obtain diverse sam-
ples from greedy decoding by injecting Gaus-
sian noise into the decoder hidden states follow-
ing Cho (2016). Under our model, the probabil-
ity p(yi|y<i, x) = f(x, hi) of the i-th token is a
function of the encoder inputs x and the decoder
hidden state hi ∈ RD. When peforming noise
injection sampling, we replace hi with a noisy
state h̃i = hi + εi where εi is drawn from a D-
dimensional Gaussian distributionN (0, σ2i I) with

variance σ2i =
σ2
0
i . The base variance σ20 is a a hy-

perparameter. Effectively, the first few steps allow
the decoder to reach a novel hidden state space,
while the gradually diminishing noise allows the
decoder to produce fluent outputs.

Generating Rare Values Remarkably, the sam-
ples obtained by noise injection maintain fluency

4The MR in this case had three attributes. near[Burger
King] only occurs in size eight MRs in the training data.

and valid syntactic structure. At the same time
they often hallucinate or drop attributes. For ex-
ample, see the last noise injection sample in Ta-
ble 1 where the attribute near[The Bakers] is hal-
lucinated. This kind of error is actually useful be-
cause, as long as we have a reliable MR parser,
we can recover the MR of the sample and we now
have a totally valid extra datapoint that we could
use for training. Syntactic errors of the kind pro-
duced by ancestral sampling (see the last ancetral
sampling example in Table 1), on the other hand,
are not good to train on because they damage the
fluency of the decoder.

Returning to the “Burger King” example, with
noise injection sampling we were able to produce
over 10,000 novel instances of it. See Appendix D
for more samples.

4 MR Parsing Model

Given a novel utterance ỹ sampled from p, we
need to reliably parse the implied MR, i.e. x̃ =
q(ỹ), where q is our parsing model. We have two
things going for us in our experimental setting.
First, even with noise injection sampling, model
outputs are fairly patterned, reducing the variabil-
ity of the utterances we need to parse in practice.

Second, the MRs in this study are flat lists of
attributes that are somewhat independent of each
other. We only need to detect the presence of each
attribute and its value. For the Laptops and TVs
datasets we also need to recover the dialog act but
these also are signaled by a fairly limited reper-
toire of cues, e.g. “we recommend.” Given this,
we experiment with both hand crafted regular ex-
pression rules and learned classifiers to predict the
value of an attribute if present or that it is missing.

Rule-based parser qR We design hand-crafted
regular expression based rules to match for the
presence of key phrases for each of the attributes
and DAs in the datasets while also checking to
make sure that there is only one match per at-
tribute.

To construct the rules, we look through both the
training data references as well as the generation
model outputs as this is what the rules will be oper-
ating on in practice. For each lexicalized attribute
(and DA) we develop a list of regular expres-
sions such as, /is (family|kid|child)
friendly/ ⇒ familyFriendly[yes]. For the
delexicalized attributes, we simply check for the
presence of the placeholder token.
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Input MR
Inform(name[The Cambridge Blue], eatType[Restaurant], customerRating[high], food[Italian])
Ancestral Sampling
The Cambridge Blue is an Italian restaurant with a high customer rating.
The Cambridge Blue is an Italian restaurant with high ratings.
*Italian restaurant, the Cambridge Blue, has a high customer rating. (Phrase fragments, not fluent.)
Noise Injection Sampling
The Cambridge Blue is a restaurant that serves Italian food. it has a high customer rating.
*The Cambridge Blue is a highly rated restaurant. (Drops food[Italian].)
*The Cambridge Blue is a restaurant located near the Bakers. (Hallucinates near[The Bakers].)

Table 1: Examples of ancestral sampling and noise injection sampling (σ0 = 1.0). * indicates output that is either
not grammatical or is not correct with respect to the input MR. Text in parentheses explains the details of the error
in either case.

We design these rules to be high precision, as it
is safer to miss out on more obscure varieties of
utterance to avoid adding incorrectly parsed data
points. However, in many cases the rules are also
high recall as well. The average F-score on the
E2E validation set is 0.93.

Classifier-based parser qφ It is perhaps too op-
timistic to believe we can construct reasonable
rules in all cases. Rule creation quickly becomes
tedious and for more complex MRs this would be-
come a bottleneck. To address these concerns, we
also study the feasibility of using learned classi-
fiers to predict the presence and value of the at-
tributes. For each attribute in the E2E dataset,
we trained a separate convolutional neural net-
work (CNN) classifier to predict the correct at-
tribute value (or n/a if the attribute is not present).
The CNN architecture follows that of Kim (2014)
and is trained with gradient descent on the original
training data. See Appendix C for full architecture
and training details. The average E2E validation
F-score is 0.94.

5 Self-Training Methodology

Our approach to self-training is relatively straight-
forward and invariant to the choices of whether or
not to use delexicalization, and rule vs. classifier
based parser. There are minor differences depend-
ing on the dataset and we elaborate on those be-
low. There are three main steps to our self-training
approach. Starting with an initially empty aug-
mented dataset A, we

1. Train a base generator model p0 on the origi-
nal training data D.

2. Repeat many times:

(a) Sample a random MR x ∼ X .
(b) Sample K utterances ỹ(i) ∼ p0(·|x, ε)
(c) Parse MR, x̃(i) = q(ỹ(i)), discarding

any samples with invalid parses, and
adding the survivors to A.

3. Train a new generator p1 on the combined
dataset D ∪A.

Steps 1 and 3 are identical, the generators p0 and
p1 have the same architecture and training setup,
ony the dataset,D vs. D∪A, is different. We now
discuss step 2 in detail.

Step 2: E2E Dataset To sample a novel MR
with S attributes, we sample a combination of
S − 1 attributes uniformly at random (always ap-
pending the name attribute since every MR con-
tains it). We then sample attribute values for each
slot inversely proportional to their empirical fre-
quency in the training set so as to increase the
likelihood of creating a novel or under-represented
MR.

After obtaining such a sample x we then per-
form noise injection sampling, generating 200
samples ỹ(i) ∼ p0(·|x, ε(i)) in parallel and dis-
carding all but the top 20 samples by average log
likelihood according to p0. We also discard any
utterances that have previously been generated.

We then apply the parser to the sampled utter-
ances, to obtain its predicted MR, x̃(i) = q(ỹ(i)).
If using the rule based parser qR and x̃ = ∅, i.e.
the utterance does not have a valid parse, we dis-
card it. Similarly, when using the classifier based
parser, qφ, if any attribute value is predicted with



588

less than 50% probability we discard it. All sur-
viving (x̃(i), ỹ(i)) pairs are added to A. We repeat
this process 25,000 times for each valid MR size
S. See Table 8 for statistics on the total sample
sizes after filtering.

Step 2: Laptops and TVs On the Laptops and
TVs dataset, for each DA and legal number of at-
tributes S we draw S random attributes (modulo
any required attributes like Name; not all DAs re-
quire it).5

We then perform noise injection sampling, gen-
erating 200 samples ỹ(i) ∼ p0(·|x, ε(i)) under the
same settings as the E2E dataset. We repeat this
process 25,000 times for each DA and DA size.
We obtain 373,468 and 33,478 additional samples
for the Laptops and TVs datasets respectively.

6 Experiments

6.1 E2E Self-Training

We train base generators p0 on the original training
data D, with and without delexicalizing the Name
and Near attributes. We train for 500 epochs with
gradient descent. We use a batch size of 128, with
a learning rate of 0.25, weight decay penalty of
0.0001, and a dropout probability of 0.25. We se-
lect the best model iteration using validation set
BLEU score6.

Using the self-training method outlined in sec-
tion 5, we create augmented datasets using either
qR or qφ, which we refer to as AqR and Aqφ re-
spectively (qφ is only in the delexicalized setting).

For bothD∪AqR andD∪Aqφ we train new gen-
erators p1 using the same training setting as above
(although we terminate training after 50 epochs
because the models converge much faster with the
additional data).

Results Table 2 shows the automatic quality
measurements on the E2E test set using BLEU,
ROUGE-L, and METEOR. We show results for
both greedy and beam decoding with beam size
8 under p0 and p1 models. We compare our mod-
els to the best sequence-to-sequence DNN model,
Slug (Juraska et al., 2018), the best grammar
rule based model, DANGNT (Nguyen and Tran,
2018), and the best template based model, TUDA

5A number of attributes S is “legal” if we observe a DA
instance with that many attributes in the original training data.

6We use the official shared task script to compute auto-
matic quality metrics on the E2E dataset.

Model BLEU R.-L MET.

Slug 66.19 67.72 44.54
DANGNT 59.90 66.34 43.46

TUDA 56.57 66.14 45.29

delex. p0 greedy 66.91 68.27 44.95
beam 67.13 68.91 45.15

p1 qR greedy 65.57 67.71 45.56
beam 66.28 68.08 45.78

qφ greedy 63.76 67.31 44.94
beam 64.23 67.54 45.17

lex. p0 greedy 60.35 64.51 41.82
beam 61.81 65.83 42.69

p1 qR greedy 64.74 68.21 44.46
beam 64.81 67.83 44.39

Table 2: BLEU, ROUGE-L, and METEOR metrics on
the E2E test set. Baseline methods all rely on at least
partial delexicalization, puting our delexicalized mod-
els at a relative disadvantage.

(Puzikov and Gurevych, 2018), as determined dur-
ing the shared task evaluation (Dušek et al., 2019).

Surprisingly, p0 using greedy decoding surpases
all of the baseline systems. This is quite shock-
ing as the Slug model ensembles three different
sequence-to-sequence models producing 10 out-
puts each using beam search and reranking based
on slot alignment to select the final generation out-
put. The p1/qR model remains competitive with
Slug, again even using greedy decoding. The
p1/qφ starts underperforming Slug on BLEU score
but remains competitive on ROUGE-L and ME-
TEOR again when using greedy decoding. Overall
the augmented training data tends to hurt genera-
tion quality. In this regard, the added noise of the
trained classifier exacerbates things as it reduces
quality more than the rule-based filtering.

In the lexicalized setting, p0 produces lower
quality output than the Slug system. However, the
augmented training procedure increases the qual-
ity of the lexicalized p1 model which beats Slug
on ROUGE-L.

The automatic quality evaluations are somewhat
limited, however. To gain more insight into model
performance we apply our rule based parser to
estimate attribute realization error for all system
outputs on the test set, similarly to (Dušek et al.,
2019) (e.g., if the MR specifies food[French], we
check to make sure the generated utterance says
so). The results of this evaluation are shown in
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Model Name Near
Family

Area
Customer

Food
Price Eat

All
Friendly Rating Range Type

Slug 0 0 6 1 6 10 35 9 67
DANGNT 0 0 18 0 0 0 0 58 76

TUDA 0 0 0 0 0 0 0 0 0

delex. p0 greedy 0 0 23 23 16 26 27 0 115
beam 0 0 60 3 9 3 8 0 83

p1 qR greedy 0 0 0 0 0 0 0 0 0
beam 0 0 0 0 0 0 0 0 0

qφ greedy 0 0 1 0 8 1 9 0 19
beam 0 0 0 0 3 0 0 0 3

lex. p0 greedy 145 141 14 15 2 14 2 0 333
beam 155 124 62 0 0 0 0 0 341

p1 qR greedy 0 0 2 0 0 125 0 0 127
beam 0 2 0 0 0 119 0 0 121

Table 3: Attribute realization errors on the E2E test set. The Slug model and our delexicalized models delexicalize
the NAME and NEAR slots, thus making 0 errors on these attributes. DANGNT and TUDA models perform
complete delexicalization.

Table 3. Immediately, it is revealed that p0 is far
worse than the baseline methods making 115 and
83 errors using greedy and beam decoding respec-
tively.

The p1/qR model achieves zero test set er-
rors even when using the greedy decoding. The
p1/qφ model is slightly worse (in agreement
with the automatic quality measurements), but its
greedy search is still superior to the more sophis-
ticated Slug decoder, achieving 19 total test set er-
rors compared to Slug’s 67 errors.

The lexicalized p0 model has especially high
error rates, particularly on the Name and Near
attributes. With augmented data training, the
p1 model reduces these errors to zero when us-
ing greedy search and 2 with beam search. Un-
fortunately, the augmented training is more unsta-
ble in the lexicalized setting, as it produces a large
spike in food attribute errors, although the p1 mod-
els still have lower overall error than p0.

6.2 Laptops and TVs Self-Training

We perform similar experiments on the Laptops
and TVs datasets. We train a separate p0 model
for each dataset for 300 epochs with a learning rate
of 0.1 for Laptops and 0.25 for TVs. The weight
decay penalty was 0.0001 and dropout probability
was 0.25. Best model iteration is determined by
validation set BLEU score. As in the E2E exper-
iments, we create an augmented dataset for both

the Laptops and TVs dataset using the method out-
lined in section 5. We then train new generators
p1 on the union of original training data and the
augmented dataset.

Results We automatically evaluate our models
using the evaluation script of Wen et al. (2016),
which computes BLEU scores, as well as slot
alignment error rate (since this dataset is almost
fully delexicalized, it simply checks for the pres-
ence of the correct attribute placeholders accord-
ing to the MR). We compare again to the Slug
model as well as the Semantically Conditioned
LSTM (SCLSTM) (Wen et al., 2015) which report
state-of-the-art results on these datasets.

The results are more mixed here. Our BLEU
scores are about 15 points below the baselines on
the Laptops dataset and 20 points below the base-
lines on the TVs dataset. Upon examing the evalu-
ation script in detail we see that BLEU score is cal-
culated using 5 model outputs which Juraska et al.
(2018) and Wen et al. (2016) do. We only produce
the 1-best output at test time, perhaps explaining
the difference.

Looking through our model outputs we see
mostly good utterances, often nearly exactly
matching the references. Our models outperform
the state of the art models on errors. The best state
of the art models make errors by generating sen-
tences that do not match the input representation
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Laptops TVs
Model BLEU Err. BLEU Err.

SCLSTM 51.16 0.79% 52.65 2.31%
Slug 52.38 1.55% 52.26 1.67%
p0 beam 37.13 0.72% 32.63 0.72%
p1 greedy 37.21 0.13% 32.43 0.28%

beam 37.19 0.14% 32.59 0.20%

Table 4: BLEU and automatic attribute error on the
Laptops and TVs datasets.

0.79% and 1.67% of the time on the Laptops and
TVs datasets respectively. Our p1 model reduces
that error to only 0.13% and 0.20%.

6.3 Experiment 4: Human Evaluation

E2E Dataset We had two undergraduate stu-
dents not involved with the research look at 100
random test set utterances for six of our model
variants. They were shown both the Slug output
and one of our model outputs and asked to se-
lect which output was of better linguistic quality
and correctness or indicate that they were equally
good. We resolved disagreements in favor of the
baseline, i.e. if any annotator thought the base-
line was better we considered it so. If an anno-
tator marked one of our systems as better and the
other marked it as equal, we considered it equal
to the baseline. Inter-annotator agreement was
high, with 92% agreement on correctness and 88%
agreement on quality.

Table 5 shows the results of the evaluation. We
find that the p1 model outputs are indistinguish-
able from the Slug model in terms of linguistic
quality, regardless of the setting. In terms of cor-
rectness, the lexicalized p1 model is as good as or
better than the Slug model 98% of the time. When
using the delexicalized models, we don’t even
need beam search. The delexicalized p1 greedy
decoder is as good as or better than Slug 100% of
the time.

Laptops Dataset We had the same annotators
look at 100 random Inform DAs from the Laptops
test set since they are the majority DA type and
we could use the same annotator guidelines from
the E2E experiment. We do not have access to
the Slug or SCLSTM outputs on this dataset, so
we compared to one of the two test set reference
sentences (picking at random) vs. the p1/qR with
greedy decoding. Table 6 shows the results. De-

Correct. Quality
Model > = < > = <

delex. p0 b 7 89 4 1 96 3
delex. p1 qR g 7 93 0 0 100 0
delex. p1 qR b 7 93 0 0 100 0
delex. p1 qφ g 5 95 0 0 100 0
delex. p1 qφ b 8 92 0 0 100 0

lex. p1 qR g 8 90 2 0 100 0

Table 5: Human correctness and quality judgments
(%). Comparisons are better than (>), equal to (=),
and worse than (<) the baseline Slug model. (g) and
(b) indicate greedy and beam decoding respectively.

Correct. Quality
Model > = < > = <

delex. p1 qR g 0 100 0 2 91 7

Table 6: Human correctness and quality judgments
(%). Comparisons are better than (>), equal to (=),
and worse than (<) the test set references.

spite the low BLEU scores, we find our outputs to
be of comparable quality to references 91% of the
time. Moreover, they are equally as correct as the
human references 100% of the time. Annotators
agreed 99% and 87% of the time on correctness
and quality respectively.

7 Sample Analysis and Discussion

We hypothesize that self-training improves the
correctness of outputs by sacrificing some expres-
sivity of the model. For example, p1 BLEU scores
on the E2E dataset drop by at least 0.8 as com-
pared to p0 with beam search. We see a similar
pattern on the TVs dataset. Self-training increases
automatic metrics in the lexicalized setting, but
this could be attributable to reductions in Name
and Near realization errors, which are orthogonal
to the syntactic diversity of generation.

To better quantify these effects we report the
average length in words, average number of sen-
tences, and average revised Developmental Level
(D-Level) score according to the D-Level analyser
(Lu, 2009). The D-Level analyser automatically
categorizes the syntactic complexities of an utter-
ance into one of eight categories, with eight be-
ing the most complex, based on the revised Devel-
opmental Level scale (Rosenberg and Abbeduto,
1987; Covington et al., 2006).
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Model Words Sents MDL

Human Refs. 24.06 1.76 2.25
Slug 24.20 1.86 1.39

lex. p0 greedy 25.73 2.18 1.84
lex. p0 beam 26.00 2.20 1.50
lex. p1 qR greedy 26.01 2.20 1.39
lex. p1 qR beam 26.04 2.17 1.45

delex. p0 greedy 24.83 2.10 1.79
delex. p0 beam 24.51 2.03 1.48
delex. p1 qR greedy 26.50 2.29 1.74
delex. p1 qR beam 26.46 2.28 1.74
delex. p1 qφ greedy 25.33 1.76 1.77
delex. p1 qφ beam 25.49 1.75 1.87

Table 7: Words/sentences per utterance and mean D-
Level score of model outputs on the E2E dataset.

A Size Words Sents MDL

delex. Aqφ 384,436 22.5 2.0 1.77
delex. AqR 501,909 22.7 2.1 1.76
lex. AqR 1,591,778 23.2 2.1 1.69

Table 8: E2E augmented dataset statistics: total ut-
terances, words per utterance, sentences per utterance,
and mean D-Level score.

Table 8 shows the statistics for the E2E test
set outputs. In the lexicalized setting, the mean
D-level results support our hypothesis; syntac-
tic complexity of test set outputs decreases from
p0 to p1. In the delexicalized setting this is some-
what true; three of the p1 models have lower
mean D-level scores than p0 with greedy decod-
ing. Curiously, p1/qφ with beam search has the
highest overall syntactic complexity of any our
model variants, at odds with our hypothesis. No
models are as syntactically complex as the human
references, but our models come closest, with a
mean D-Level category of 1.87 using the delex.
p1/qφ model with beam decoder.

We also see that p1/qR models are over two sen-
tences in length on average while the human ref-
erences are under two sentences, suggesting they
are more often falling back to simple but reliable
ways to realize attributes (e.g., appending “It is a
family-friendly venue.”).

That our simple models with greedy search and
no semantic control mechanisms can perform as
reliably as more sophisticated models suggest that
in standard training regimes we are often not fully

learning from all information available in the train-
ing data. Via sampling we can uncover novel re-
combinations of utterances that are only implied
by the provided references. The gains of self-
training also suggest that additional research into
active learning for this task might bear fruit.

One curious observation about the self-training
procedure is that it leads to a convergence in out-
put complexity of greedy and beam decoding. The
differences between mean D-level score on the
p0 models is 0.34 and 0.31 in the lexicalized and
delexicalized settings respectively. This shrinks
to 0.0 and 0.1 in the delexicalized p1 settings and
0.06 for lexicalized p1, suggesting that the model
probability distributions are sharpening around a
smaller set of output structures.

8 Related Work

Neural encoder-decoder models, are a popular
choice for dialog generation (Mei et al., 2015;
Dušek and Jurčı́ček, 2016; Chen et al., 2018;
Juraska et al., 2018; Elder et al., 2018). How-
ever, the quality can vary significantly, with rela-
tively similar architectures yielding both poor and
competitve performance (Dušek et al., 2019). All
of the cited work on the E2E or Laptops and
TVs datasets uses beam search to achieve compet-
itive performance. In addition, they often employ
reranking to ensure that all attributes are realized
(Dušek and Jurčı́ček, 2016; Juraska et al., 2018;
Wen et al., 2015). (Elder et al., 2018) employ
pointer generators to directly copy attribute values,
while also using coverage penalties on the atten-
tion weights to ensure that all attribute slots are at-
tended to. Unlike these approaches, we do not re-
quire beam search, reranking, or other specialized
attention mechanisms or loss functions to obtain
low error rates. Instead we use data-augmentation
to obtain a more reliable but simpler model.

Data augmentation has also been used by prior
neural generation models. Juraska et al. (2018)
breaks multi-sentence utterances into separate
training instances. They also try training on more
complex sentences alone but this model was less
reliably able to realize all attributes correctly.
They also do not generate new utterance/MR pairs
for training as we do.

Our method is in some ways similar to the re-
constructor setting of Shen et al. (2019), where a
base speaker model S0 produces utterances and a
listener model L reconstructs the input MR. In the
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framework of rational speech acts (RSA) (Mon-
roe and Potts, 2015), a rational speaker model is
obtained by composing the base speaker and lis-
tener, i.e. S1(y|x) = L(x|y) · S0(y|x). While
we do not directly compose our parser q and p0,
the p1 model is learning from the composition of
the two. The theoretical commitments of RSA are
somewhat orthogonal to our approach. It would
be interesing to combine both methods, by incor-
porating self-training into the RSA framework.

9 Conclusion

We present a novel self-training methodology for
learning DNN-based dialogue generation mod-
els using noise injection sampling and a MR
parser. Even with relatively simple architectures
and greedy decoding we are able to match the
performance of state-of-the-art baselines on auto-
matic measures of quality while also achieving su-
perior semantic correctness. These findings hold
under a human evaluation as well. On automatic
measures of syntactic complexity we also find our
approach is closer to matching human authored
references than prior work. In future work, we in-
tend to explore methods of self-training that futher
improve syntactic diversity.
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