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Abstract

Quantified expressions have always taken up
a central position in formal theories of mean-
ing and language use. Yet quantified expres-
sions have so far attracted far less attention
from the Natural Language Generation com-
munity than, for example, referring expres-
sions. In an attempt to start redressing the bal-
ance, we investigate a recently developed cor-
pus in which quantified expressions play a cru-
cial role; the corpus is the result of a carefully
controlled elicitation experiment, in which hu-
man participants were asked to describe visu-
ally presented scenes. Informed by an analy-
sis of this corpus, we propose algorithms that
produce computer-generated descriptions of a
wider class of visual scenes, and we evalu-
ate the descriptions generated by these algo-
rithms in terms of their correctness, complete-
ness, and human-likeness. We discuss what
this exercise can teach us about the nature of
quantification and about the challenges posed
by the generation of quantified expressions.

1 Introduction

A long tradition of research in formal semantics
studies the question how speakers express quan-
tification. Much of this work starts from the idea
that the prime function of Noun Phrases (NPs) is to
express quantitative relations between sets of indi-
viduals. Obvious examples are akin to the univer-
sal and existential quantifier of First Order Pred-
icate logic, as in “all A are B” and “Some A B”.
Crucially, researchers observed that NPs permit
much more variation in terms of the relations ex-
pressed: not only can we say things like “between
2 and 5 A are B” (where “between 2 and 5 A” is a
noun phrase), but also things like “most A are B”
and “Few A are B”, which are not even express-
ible in First-Order Predicate Logic. For this rea-
son, this research are, is known as the study of

Generalised Quantifiers, often regarded as start-
ing from Mostowski (1957); the link with natu-
ral language was more fully established with Bar-
wise and Cooper (1981) and further elaborated
in Keenan and Moss (1985); Van Benthem et al.
(1986); Peters et al. (2006).

Though the main focus of this work has been
on mathematical logic, there is a growing body
of empirical work. For example, there is some
psycholinguistic work on the human use of vague
quantifiers (Moxey and Sanford, 1993), and work
that investigates the links between quantifiers’ log-
ical types and the human processing of quantified
expressions (Szymanik and Zajenkowski, 2010;
Szymanik et al., 2016, QEs). Sorodoc et al. (2016)
looked at speakers’ choice between all, some, and
no (see also Grefenstette (2013) and Herbelot and
Vecchi (2015)). However, there has been no at-
tempt to find out how the wider class of all (“gen-
eralised”) quantifiers are used by human speakers.

In a simple version of the problem, consider a
table with two black tea cups and four coffee cups,
three of which are red while the remaining one is
white. Each of (a)-(d) describes the scene truth-
fully (though not necessarily optimally):

(a) There are some red cups.
(b) At least three cups are red.
(c) Fewer than four cups are red.
(d) All the red objects are coffee cups.

The computational challenge is to design an
NLG algorithm that chooses the “best” statement,
choosing from all the ones above and many others.
In more complicated situations, which cannot be
adequately described by one single quantified pat-
tern, the algorithm should generate a sequence of
sentences. This is a difficult computational mod-
elling challenge to which the present paper makes
a contribution.

In section 2, we discuss a strand of work in
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NLG that provided inspiration for this enterprise.
Section 3 proposes a computational mechanism,
which will show up some surprising common-
alities between the task of the present paper –
Quantified Description Generation (QDG) – and
the Referring Expressions Generation (REG).
Section 4 details our evaluation experiment and
section 5 discusses implications and future work.
Code for the proposed QDG algorithms can be
found at: https://github.com/a-quei/
quantified-description-generation.

2 Background

An early investigation of the choice between pat-
terns (a)-(d) above rested on the idea that the gen-
erator should always choose the logically strongest
statement that holds true in the situation described
(Creaney, 1996). Thus, statement (b) was always
preferred over (a). However, this attractive idea
ran into difficulties over pairs of statements that
are logically independent of each other, such as
(b) and (c), or also (b) and (d), where each of the
two statements conveys some information that the
other one does not. Clearly, other computational
mechanisms are called for. The present paper pro-
poses and evaluates a family of such mechanisms.

A body of work that is indirectly relevant con-
cerns the generation of referring NPs (Krahmer
and van Deemter, 2012; van Deemter, 2016). One
strand of this work focusses on corpora of re-
ferring expressions (REs) that were elicited un-
der experimentally controlled conditions (e.g., the
TUNA corpus (Gatt et al., 2007; van Deemter
et al., 2012); such corpora were used in evalua-
tion campaigns where computer-generated refer-
ring expressions were compared with the corpus
gold standard (Gatt and Belz, 2010). This com-
parison allowed researchers to know which algo-
rithms worked best, and to develop new algorithms
that match human language production even more
closely. These evaluation campaigns created a tra-
dition of NLG “generation challenges”, consistent
with the broader tradition of evaluation campaigns
in Machine Translation (Barrault et al., 2019),
parsing (Buchholz and Marsi, 2006), and other ar-
eas of Computational Linguistics.

Focusing on a far wider class of NPs, a series
of elicitation experiments was recently conducted,
called here the QTUNA experiments (Q stands for
quantification). We will summarise the main find-
ings from these experiments before proposing and

experimentally comparing algorithms that seek to
mimic the aforementioned corpus. More details
can be found in Chen et al. (2019) 1.
The QTUNA experiment was set up in order to
study how speakers use sequences of QEs to de-
scribe a visual scene. Participants were asked to
describe a series of abstract visual scenes. Partic-
ipants were told that their descriptions should al-
low readers to reconstruct the scene modulo their
location. Each scene contained n objects, which
is either a circle or a square and either blue or red.
To chart how domain size n influences human pro-
duction of QEs, QTUNA conducted 3 experiments,
with n of 4, 9, and 20 respectively.

The experiment was conducted on a total of 187
subjects, producing a total of 1414 multi-sentence
descriptions for the resulting QTUNA corpus. Each
description was annotated with its meaning repre-
sentation: following Barwise and Cooper (1981),
each quantifier was cast as a relation between 2
or more set-denoting arguments. For example,
“Half of the objects are blue” was represented as
Half(O, B). 2 To represent plurality, (as in “Some
blue squares ...”, as opposed to “Some blue square
...”) the suffix -s was appended. Examples with
their corresponding meaning representations are
shown in Table 1.

Analysis of this corpus (see Chen et al. (2019))
taught us the following lessons: 1) Speakers use
more vague quantifiers (e.g., most, few) as do-
main size increases; 2) Speakers also use more
under-specifications in larger domains, describing
large domain “with a broad brush”; 3) The aver-
age length of quantified descriptions is not sig-
nificantly larger in larger domains than in smaller
ones; 4) Speakers tends to start describing the high
level information of the whole scene, before going
into detail about parts; 5) Speakers tend to mention
shape before the colour.
Quantified Expression Generation. Previous
computational models of speakers’ choice of
quantifiers focus on the choice between a lim-
ited number of candidate quantifiers (Grefenstette,
2013; Yildirim et al., 2013; Herbelot and Vecchi,
2015; Sorodoc et al., 2016; Castillo-Ortega et al.,
2009; Barr et al., 2013; Ramos-Soto et al., 2016).
Barr et al. (2013) studies the use of quantifiers that

1The dataset can be found at: https://github.com/
a-quei/qtuna

2O, S, C, R, C are property representations representing
object, square, circle, red, and circle, respectively. BS means
blue square, and so on.

https://github.com/a-quei/quantified-description-generation
https://github.com/a-quei/quantified-description-generation
https://github.com/a-quei/qtuna
https://github.com/a-quei/qtuna
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(a) (b)

Figure 1: Examples from (a) the n = 4 experiment; (b) the n = 9 experiment.

n Description Meaning

4 There are 4 squares. All objects are blue. ∃=4(Ss) ∧ All(Os, Bs)
9 Most of the items are red circles, but there are a cou-

ple of blue squares.
Most(Os, RCs) ∧ ∃=2(BSs)

20 All the objects in the picture are circles and majority
of them is blue.

All(Os, Cs) ∧Majority(Os, Bs)

Table 1: List of example descriptions from QTUNA corpus; n indicates domain size.

are part of a referring expression. The present pa-
pers models how human speakers use quantifiers
as part of a wider task, namely the task of describ-
ing a complicated visual scene.

3 Quantified Description Generation

The aim of our generator is to perform the same
task as was given to the human participants in
the QTUNA experiments, but unlike those exper-
iments, we would like our algorithm to succeed
in domains of any reasonable size – including the
sizes 4, 9, and 20 of those experiments and all
sizes in between. Domains with fewer than 4 ob-
jects, and those in which there are many more ob-
jects than can be counted in a few seconds, are
beyond the scope of this work. Participants in the
QTUNA experiments were asked to make the gen-
erated descriptions correct (i.e., truthful) and com-
plete (i.e., giving as much information as can rea-
sonably be expected). Our generator endeavours
to do the same and will therefore be evaluated us-
ing these same two criteria, plus an additional cri-
terion that asks more explicitly how human-like
the generated descriptions are. We start by intro-
ducing the general framework of our QDG system,
which is a pipeline including a pre-processor, a
QDG algorithm, and a surface realiser. Second,

we introduce two pre-defined knowledge bases
that will be used by the QDG system. Third, we
propose and sketch two QDG algorithms.

3.1 General Framework
Our explanation will make use of the following
formalisation. Given a target scene s with its do-
main knowledgeKd (for details see §3.2), the gen-
erator constructs a set S containing all possible
scenes in the same domain as s. The generator
then calls a QDG algorithm to construct a descrip-
tion D containing a set of L QEs {ql(v)}Ll=1. We
use q(·) to represent a quantified pattern, for in-
stance All(·, ·). Furthermore, v is a property tu-
ple. If v is capable of filling in the slots of a quan-
tified pattern, we say that the pattern accepts v,
and we write q(v). The QE q(v) is a logical form,
as introduced in §2. The algorithm selects from a
set of candidate patterns Q, based on the common
knowledge Kc (for details see §3.2) defined on Q
by mimicking how human beings did so in the ex-
periment. Finally, a simple template-based surface
realiser is called to map D into natural language
text. The architecture of the generator is shown in
Figure 2.3

3In the future, a Sequentialiser will put the QEs in an op-
timal order, but the algorithms in this section will realise the
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Figure 2: Sketch of the Quantified Description Generation System.

3.2 Knowledge Bases for QDG Algorithms

Domain Knowledge Kd. This is the list of
possible attributes with their possible values,
represented as a set of key-value pairs. For
example, matching the experimental setting of
QTUNA, its domain knowledge is {SHAPE :
[square, circle],COLOUR : [red, blue]}.
Common Knowledge Kc. This is a body of
knowledge that corresponds to the quantified pat-
terns in Q. For a quantified pattern q(·), this
knowledge includes the meaning of the quantified
pattern, and a list of possible property tuples that
could be assigned to v. The list of supported pat-
terns can be found in the supplementary materials.

The meaning of a quantified pattern has two
parts: its semantics and its pragmatics. For ex-
ample, the semantics of All(A,B) asserts that
[[A]] ⊆ [[B]]. The pragmatics says that [[A]] is not
empty. Determining the semantics and pragmat-
ics of each English quantifier term can be tricky,
but the QTUNA corpus allowed us to choose defi-
nitions that match majority usage in that corpus.

3.3 An Incremental QDG Algorithm

Looking at the QTUNA dataset, some quantifier
patterns are more frequent than others, and some
choices of properties to fill a given pattern are
more frequent than others. Therefore, to mimic
people’s production of quantified descriptions, a
natural idea is to maintain a sequence of proper-
ties and a sequence of fillers, which the algorithm

QEs in the order in which they were selected.

can then make use of to determine in what order
to consider the different types of statements for in-
clusion in the generated description:

• Quantifier Sequence. Inspired by our find-
ing that humans tend to start describing the
scene as a whole, QEs such as all, half, and
most have high priority.

• Property Sequence. Informal inspection of
QTUNA suggested that, for patterns of the
form All(A,B), the first argument, A, is
more often a SHAPE property, whereas B
is more often a COLOUR. For example, the
algorithm should check the property tuple
(S,R) before (R,S).

The algorithm generates the description by con-
sidering possible quantifiers and properties one by
one, starting at the top of the sequence, working
its way down. Because of its similarity with the
Incremental algorithm of Dale and Reiter (1995),
we call this algorithm the Incremental QDG al-
gorithm (abbreviated QDG-IA). Likewise, we al-
lude to the “Preference Order” of properties em-
ployed by Dale and Reiter’s REG algorithm by
speaking of the Quantifier Preference Order (in-
stead of Quantifier Sequence) and the Property
Preference Order (instead of Property Sequence).
Algorithm 1 shows the detailed QDG-IA.

Given the inputs listed in Algorithm 1, the QDG-
IA will go through all the quantified patterns in Q
in the order of the quantifier preference order. In
each iteration, for the selected quantified pattern
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Algorithm 1 The Incremental Algorithm for Gen-
erating Quantified Descriptions
Input: A target scene s, a set S of all possible

scenes, a set of quantified patternsQ, the com-
mon knowledge Kc defined on Q, a Quanti-
fier Preference Order defined on Q, a set of
all possible property tuples in the domain V ,
and a property preference order defined on V .

Output: A quantified descriptionD of s that uses
conjunctions of single or multiple q(v)s.

1: D := {}
2: for each q in Q (in order of the Quantifier

Preference Order) do
3: for each v in V such that q accepts v (in

order of the Property Preference Order) do
4: q(v) := pluralise(q(v), s)
5: if q(v) is true for s, and D 6|= q(v)

then
6: D := D ∪ {q(v)}
7: S := {s′ ∈ S : q(v) is true for s′}
8: Until S = {s} or |D| ≥ δ

q(·), QDG-IA will test all possible property tuples
accepted by q(·), in the order of property prefer-
ence order. (Recall that the information which q(·)
accepts which property tuples can be found in the
common knowledgeKc.) The algorithm then calls
the pluralise function on the QE, where the
pluralise assigns a plural suffix on properties
that appear multiple times in the target scene s.

In step 5, the algorithm will first validate
whether q(v) is correct as a QE for s. The val-
idation is performed by using both the semantics
and pragmatics of q(v), in a somewhat unexpected
manner. The semantics of a QE q(v) is the same
as the semantics of the pattern q(·), but the prag-
matics takes issues such as plurality into account.

For example, consider Few(O,S). The seman-
tics says that fewer than n O are S; the pragmat-
ics of this QE says that there exist at least two
O. Consequently, the QE will not be included in
the description unless there exist two O (and if it
is included, this information is taken into account
when scenes are removed from S in line 7).

Subsequently, step 5 ensures that q(v) does not
follow from the generated description D, ensur-
ing that q(v) rules out one or more further scenes.
Crucially, this validation is performed by using
only the semantics of q(v), not the pragmatics.
To see why, consider QE Few(O,S) again: if the

pragmatics of this QE (which says that at least 2O
are S) were taken into account during validation,
then the algorithm would end up adding this QE to
a description D even in cases where the QE’s only
contribution to D is the (pragmatic) requirement
that at least 2 O are S (because other QEs, previ-
ously added to D, already ensure that fewer than
n O are S). This would tend to lead to unwieldy
descriptions, some of whose constituent QEs con-
tribute very little to the description of the scene.

Once the above two conditions have been vali-
dated, q(v) is appended at the end of the descrip-
tion and the scenes for which q(v) is not true are
removed from S. Both semantics and pragmat-
ics are used for removing such “distractor” scenes.
The generation terminates when all the distractors
are removed from S or the length of D reaches
an upper bound δ. The idea of setting a upper
bound comes from the observation that, in QTUNA,
descriptions were remarkably constant across do-
main sizes. As for the design of preference orders,
we started with testing the following settings, once
again based on analysis of the corpus: 1) the quan-
tifier preference order is a linear preference order,
which starts with All � Half � Most 4 (A � B
means A following B in the preference order); 2)
the property preference order was designed by fol-
lowing some constraints, e.g., SHAPE properties
have higher priorities in the first argument place of
a quantified pattern, whereas COLOUR properties
have higher priority in order argument places. The
preference order was designed and refined based
on the data from the pilot experiments and the n=4
QTUNA experiment.

When we ran the algorithm, we found that some
quantified patterns that have low preference will
never be chosen by the algorithm, so the gener-
ated descriptions used only a very limited set of
patterns. For example, the pattern All(·, ·) has
higher preference than the pattern Everything(·),
and consequently the latter is never chosen, be-
cause its meaning is covered by the former. To in-
crease the variety of quantifier patterns in the de-
scriptions generated, we introduced a probability
θ, with which the QDG-IA can perform a one-off
move of a quantified pattern with low preference
into a higher preference order. Since quantified
patterns with low preference order should not ap-
pear frequently, the value θ should not be high. For

4A full linear quantifier preference order can be found in
the supplementary materials.
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Algorithm 2 The Greedy Algorithm for Generat-
ing Quantified Descriptions
Input: A target scene s, a set S of all possible

scene, a set of quantified patternsQ, the com-
mon knowledge Kc defined on Q, a set of all
possible property tuples V

Output: A quantified descriptionD of s that uses
conjunctions of single or multiple q(v)s.

1: D := {}
2: while S 6= {s}, and |D| < δ do
3: q(v) := FindBestQE(s, S,Q,V,Kc)
4: if D 6|= q(v) then
5: D := D ∪ {q(v)}
6: S := {s′ ∈ S : q(v) is true for s′}

the work reported in this paper, we set θ to 0.1. A
list of quantified patterns that have high meaning
overlap with each other (so the use of one tends to
preclude the use of the other) can be found in the
supplementary material.

3.4 A Greedy QDG Algorithm
The QDG task can be viewed as a search problem,
searching for the best set of QEs that can single
out a scene s from its distractors. From this per-
spective, another natural idea is to use a greedy
algorithm, which selects a QE that singles out the
largest number of distractors in each iteration.

We propose a greedy algorithm for QDG (ab-
breviated QDG-GREEDY), as in Algorithm 2. In
each iteration, the algorithm calls the function
FindBestQE to choose the QE that rules out the
most distractors from all possible QEs. Specifi-
cally, for each QE q(v), it first pluralises the q(v),
as in step 4 of Algorithm 1, and check whether it is
true for the target scene using q(v)’s semantics and
pragmatics. Then it calculates the number of dis-
tractors that can be removed by only using q(v)’s
semantics. The number of distractors that q(v) can
remove is called q(v)’s discriminatory power. At
last, the FindBestQE will return the QE that has
the highest discriminatory power.

In line 4, the algorithm ensures that the discrim-
inatory power of the selected q(v) is not zero. If it
passes this test, q(v) is added to D, and distractor
scenes are removed from S. The stop criterion of
QDG-GREEDY is the same as the one of QDG-IA.

In order to increase the variation in the gen-
erated quantified descriptions, the FindBestQE
function returns all the best QE that has the same
discriminatory power. In step 5, one of these is

randomly selected and appended to D.

3.5 Realisation
Since our main focus was on quantifier choice (not
wording), the QDG system uses a simple template
based surface realiser. For each quantified pattern,
there is a specific template. When filling the slots
with chosen properties, some simple syntactic and
morphological operations are employed. For ex-
ample, if a COLOUR property takes the first place
of a quantified pattern, a noun is appended to pack-
age it into a NP (e.g., red → red object). If a
property has a plural suffix, the surface form of the
property is mapped into its plural form. A number
of further constraints, specific to particular quanti-
fier patterns, were also coded in the realiser.

3.6 Comparing QDG with REG
The two algorithms presented above (1) start out
from the set S of all possible scenes, (2) accumu-
late, one by one, quantified statements q(v) that
are true for the target scene and false for some
other elements of S, (3) remove from S all scenes
for which q(v) is false (4) until the target scene
is the only remaining element of S or some other
stopping condition is met.

Quantification is not normally seen as a refer-
ence problem. Yet our approach resembles the
classic algorithms for Referring Expressions Gen-
eration (REG) originally discussed in Dale and
Reiter (1995), where a referring expression is con-
structed by accumulating properties (e.g., colours,
sizes) one by one, each of which is thought to
“remove” from consideration a set of “distractor
objects” (i.e., potential referents that differ from
the target referent in one or more respects). We
have emphasised this similarity throughout, by us-
ing terms familiar from REG (e.g., “target”, “(re-
moving) distractors”, “preference order”, and so
on).

One difference is that, in REG: (1) a set of po-
tential referents takes the place of the set of all
possible scenes, and (2) properties (such as “red”)
take the place of quantified statements. These dif-
ferences have important consequences. Quantified
statements are much more complicated than prop-
erties, hence the distinction between choosing a
pattern q(·) (line 2 of Algorithm 1) and instantiat-
ing the pattern by choosing a value v (line 3). And,
unlike the set of all possible referents in REG, the
set S of all possible scenes is not a given but needs
to be computed from the properties that are given



535

(e.g., red, blue, circle, square). Furthermore, our
algorithms have had to find a way to take both
the semantics and the pragmatics of a quantifier
pattern into account. Finally, the QTUNA experi-
ments have taught us that, except in very small do-
mains (such as the QTUNA one where n=4), vague
quantifiers (such as many, most) are highly fre-
quent, and hence need to be taken into account by
any QDG algorithm. By contrast, REG has been
able to disregard vague properties for a long time,
because in domains consisting of simple objects
(such as the TUNA furniture domains, and those
of Dale and Viethen (2009), where all properties
were crisp and well defined,) they did not play an
important role. A related difference is that, for
larger domains, it is typically not feasible to pro-
duce a description that identifies the target scene
completely. This different in REG, where except
in very complicated situations (e.g., van Deemter
(2016, Chapters 11-15)), producing a distinguish-
ing description (i.e., one that singles out its refer-
ent) is par for the course.

4 Evaluation by Human Judgements

Although our algorithms were informed by exten-
sive elicitation experiments, we wanted to gain ad-
ditional insights into the quality of the generated
descriptions. We were curious how humanlike
these descriptions were perceived to be; at a more
detailed level, we wanted to know how correct and
informative these descriptions were thought to be.

Note that these are not things that could easily
be measured automatically. Consider the exam-
ple of the QE Few(O,S) once again. Suppose 5
out of 20 O are S, then is it correct to say that
Few(O,S), or does this underestimate the num-
ber of O are S? And if Few(O,S) is all that
is said about the proportion of O that are S, is
this sufficiently informative or not quite? We are
not aware of any existing metric or algorithm that
would give us a reliable answer.

To get an insight into these difficult issues,
we recruited 4 academics from Utrecht Univer-
sity, none of whom had been involved in our re-
search. Two were young lecturing staff in com-
putational linguistics and two were senior lectur-
ing staff in computational logic and formal argu-
mentation. We divided the experiment into exper-
iment A and experiment B. For A, we randomly
selected 3 or 4 scenes (10 in total) from each of
the 3 sub-corpora of QTUNA, each of which was

paired with 3 descriptions: one by QDG-IA, one by
QDG-GREEDY, and one selected at random from
our corpus. A number of example scenes paired
with their descriptions produced by human beings,
QDG-IA, and QDG-GREEDY are listed in Table 3.

As for experiment B, to test the generality of our
algorithms, we focused on two new domain sizes,
namely n=6 and n=16. For each of these we sam-
pled 6 scenes, each of which was paired with 2
descriptions: one by QDG-IA5, and one by QDG-
GREEDY. (Human-generated descriptions were
not available in these new domains.) All these
66 scene-description pairs were put together and
randomly allocated to our four “judges”. Each
judged 33 scene-description pairs. Thus, each
scene-description pair was judged by two judges.
Judges were asked three questions in each case:

• Q1 (Naturalness): On a scale of 1-5, how
likely do you think it might be that this de-
scription was uttered by a human? [1=very
unlikely, 5=very likely]

• Q2 (Informativity): On a scale of 1-5, do you
believe the description is as informative as it
can be expected to be? [1= description isnt
even nearly informative enough, 5= descrip-
tion gives as much information as is possible]

• Q3 (Correctness): On a scale of 1-5, how cor-
rect do you consider this description to be?
[1= the description is not at all correct, 5=ev-
erything the description says is correct.]

The words Naturalness, Informativity, and Cor-
rectness were not seen by the judges. Our instruc-
tions to them added, “Please note that were mainly
interested in the ‘logic’ of how people describe the
scene, and less in the details of the wording, so
please disregard minor syntax errors and typos.”

Because in Experiment A, question Q1 was
asked about a human-produced description as well
as two computer-generated descriptions, this setup
allowed us to perform what is essentially a Tur-
ing test.The other two questions offered invalu-
able formative evaluation.

We formulated a number of hypotheses: 1)
humans perform better at naturalness than QDG-
IA and QDG-GREEDY; 2) both algorithms per-
form better at informativity and correctness than
humans, because both of them were explicitly

5The preference order used in all 3 experiments of this
paper was the same.
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Model Naturalness Informativity Correctness

Experiment A
Human 3.45 4.05 4.6
QDG-IA 2.85 3.95 4.55
QDG-GREEDY 3.45 3.8 4.8

Experiment B
QDG-IA 3.7 3.8 4.83
QDG-GREEDY 3.46 4.2 4.83

Table 2: Average scores for each algorithm and for human-produced descriptions, by naturalness, informativity,
and correctness as annotated by our four human judges.

designed to optimise informativity and correct-
ness; 3) QDG-IA performs better at naturalness
than QDG-GREEDY. We reasoned that, in REG,
the incremental algorithm offered greater human-
likeness than the greedy algorithm, so why should
things be different this time?

Table 2 shows the scores from the judges. Both
algorithms performed well, scoring well over 3 in
all except one cell, confirming our impression that
the descriptions were of respectable quality.

Remarkably, the first hypothesis was rejected;
in terms of naturalness, QDG-GREEDY gained the
exact same score as the human speakers. QDG-
IA had a slightly lower score, but there was no
significant difference (tested by a paired t-test).
Though “no difference” results always need to be
approached with caution, this might be seen as a
case of an NLG algorithm passing a Turing test
(focussing on a limited type of language use of
course, rather than real conversation).

In an effort to understand the low naturalness
performance of QDG-IA, we investigated the cases
where QDG-IA had particularly low scores. We
found that these were almost always descriptions
that contain vague quantifiers (e.g., few, most),
where we know that our semantic and pragmatic
definitions were especially tentative. What con-
firmed this suspicion was the observation that
vague quantifiers are used disproportionally often
in the scenes of Experiment A (where some scenes
for n = 9 and n = 20 were chosen to find out
how vague quantifiers are used), and far less in
the scenes of Experiment B (which were gener-
ated at random); accordingly, the QDG-IA scored
much better on naturalness in Experiment B.

Our analysis of the second hypothesis shows
some of the hidden difficulties of the description
task that our algorithms solve. All quantified de-
scriptions performed similarly in terms of infor-
mativity and correctness. To understand why, we

decided to separately calculate the average infor-
mativity score for those descriptions in experiment
B that were logically complete (i.e., the algorithm
stopped when S = {s}). For this reduced set of
descriptions, the average scores for QDG-IA and
QDG-GREEDY were a mere 3.88 and 4.1, instead
of 5 (as one might expect). One possible cause
is the fact that our algorithms judged the logical
completeness of these descriptions by taking both
their semantics and their pragmatics into account,
which is something our judges may have disagreed
with. Similar things may have happened when
they were judging correctness.

The last hypothesis was rejected, as there was
no significant difference between the naturalness
performance of QDG-IA and QDG-GREEDY. This
may be caused by the fact that the preference or-
der that we proposed for quantified patterns has
much higher complexity than that of properties
(or attributes) in REG. In particular, the number
quantifiers is considerable, and our preference or-
der of quantifiers was not linear (as discussed in
§3.3). And although our preference orders were
informed by a study of the QTUNA corpus, this
step was far from water tight, and further improve-
ments to these preference orders are likely, for ex-
ample if they can be learnt automatically.

5 Discussion and Future Work

We have investigated Generation of Quantified
Descriptions of abstract scenes that are populated
by a limited number (4-20) of simple objects, and
given that this task is full of hidden complexities,
our algorithms performed remarkably well. We’re
curious whether the essence of the findings re-
ported in this paper will stand up when more nat-
uralistic scenes are described. Naturalistic scenes
permit many more than 2 attributes (in our exper-
iment: COLOUR and SHAPE), each of which will
tend to have more than 2 values. Furthermore, in
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Scene Model Description

BS:2
RS:2
BC:0
RC:0

Human All the objects are squares and half of them is blue.
QDG-IA Every object is square. There are equally many blue squares and red

squares.
QDG-GREEDY Half of the objects are blue squares, the rest are red squares.

BS:2
RS:2
BC:5
RC:0

Human Two objects are red squares. Two objects are blue squares and the re-
mainder is blue.

QDG-IA Every circle is blue. Half of the squares are blue. More than half of the
objects are blue circles.

QDG-GREEDY Half of the squares are red, the rest are blue. Most of the objects are
blue circles.

BS:1
RS:6
BC:2
RC:0

Human Two thirds of the objects are red squares. The remaining objects are
blue, of which two are circles.

QDG-IA All of the circles are blue. There are more red squares than blue circles.
There are more red objects than blue objects. More than half of the blue
objects are circles.

QDG-GREEDY More than half of the objects are red squares. There is only one blue
square. Some objects are blue circles. All of the circles are blue.

BS:9
RS:2
BC:8
RC:1

Human There is a mixture of squares and circles. Most of them are blue. Some
of them are red.

QDG-IA All possible objects are shown. A minority of the objects are red
squares. Less then half of the objects are blue circles. Less then half
of the objects are blue squares. Less then half of the objects are circles.

QDG-GREEDY All possible objects are shown. A minority of the objects are red
squares. Less then half of the objects are blue circles. Less then half
of the objects are blue squares. Less then half of the objects are circles.

Table 3: Examples of quantified descriptions produced by humans, QDG-IA, and QDG-GREEDY. The numbers
after each type of object represents the number of that object in the input scene.

real life, it may often be difficult to state what the
set S of all possible scenes is, which played such
a key role in our algorithms.

Suppose, for instance, you want to describe the
people in a football stadium, saying “About half
the people were wearing a hat”. It is then unclear
what were all the possibilities that your descrip-
tion is trying to rule out, since it is difficult to de-
termine all the things people might be wearing. A
possible solution is to abandon the idea of starting
from the set of all possible scenes, starting instead
from a suitably sized sample of possible scenes,
possibly gleaned from other football matches in
the same stadium, proceeding as before in other
ways (e.g., terminating when all distractor scenes
from the sample have been ruled out). An added
advantage of this approach would be that it would
be sensitive to constraints and statistical regulari-
ties that the speaker and hearer are attuned to. For

instance, the sample would tend to bear out the
regularity that if one’s left shoe is brown then so is
one’s right shoe.

We have seen that our algorithms for the gener-
ation of quantified descriptions bear some striking
resemblances with existing algorithms designed
for a very different problem, namely REG. We
plan to look at some recent advances of REG algo-
rithms, such as those of Ramos-Soto et al. (2016);
Monroe and Potts (2015); Li et al. (2018); van
Gompel et al. (2019) to see how they can inspire
improvements of our QDG models.
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