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Abstract

We present a recurrent neural network based
system for automatic quality estimation of
natural language generation (NLG) outputs,
which jointly learns to assign numerical rat-
ings to individual outputs and to provide pair-
wise rankings of two different outputs. The
latter is trained using pairwise hinge loss over
scores from two copies of the rating network.

We use learning to rank and synthetic data to
improve the quality of ratings assigned by our
system: we synthesise training pairs of dis-
torted system outputs and train the system to
rank the less distorted one higher. This leads to
a 12% increase in correlation with human rat-
ings over the previous benchmark. We also es-
tablish the state of the art on the dataset of rel-
ative rankings from the E2E NLG Challenge
(Dusek et al., 2019), where synthetic data lead
to a 4% accuracy increase over the base model.

1 Introduction

While automatic output quality estimation (QE) is
an established field of research in other areas of
NLP, such as machine translation (MT) (Specia
etal., 2010, 2018), research on QE in natural lan-
guage generation (NLG) from structured meaning
representations (MR) such as dialogue acts is rel-
atively recent (Dusek et al., 2017; Ueffing et al.,
2018) and often focuses on output fluency only
(Tian et al., 2018; Kann et al., 2018). In con-
trast to traditional metrics, QE does not rely on
gold-standard human reference texts (Specia et al.,
2010), which are expensive to obtain, do not cover
the full output space, and are not accurate on the
level of individual outputs (Novikova et al., 2017;
Reiter, 2018). Automatic QE for NLG has several
possible use cases that can improve NLG quality
and reliability. For example, rating individual NLG
outputs allows to ensure a minimum output quality
and engage a backup, e.g., template-based NLG

system, if a certain threshold is not met. Relative

ranking of multiple NLG outputs can be used di-

rectly within a system to rerank n-best outputs or

to guide system development, selecting optimal
system parameters or comparing to state of the art.

In this paper, we present a novel model that
jointly learns to perform both tasks—rating individ-
ual outputs as well as pairwise ranking. We show
that this leads to performance improvements over

previously published results (Dusek et al., 2017).

Our model is portable, since we do not assume any

specific input schema and only rely on ratings of

the text output, which are relatively easy to obtain,

e.g. through crowdsourcing for a small number of

outputs of an initial NLG system. The model learns

to rank or rate according to any criterion annotated
in the data, such as adequacy, fluency, or overall
quality (see e.g., Wen et al., 2015; Manishina et al.,

2016; Novikova et al., 2017). Our main contribu-

tions are as follows:

e A novel, domain- and input representation-
agnostic, and conceptually simple model for
NLG QE, which jointly learns ratings and pair-
wise rankings. It is able to seamlessly switch
between the two and is directly applicable for
n-way ranking (see Section 3). Crucially, it does
not require human-authored references during
inference.

e An original methodology for synthetically gen-
erating training instances for pairwise ranking
based on introducing errors (see Section 4).

e A significant, 12% relative improvement in Pear-
son correlation with human ratings over results
previously published on the dataset of Novikova
et al. (2017), as well as the first pairwise ranking
results for NLG QE on the E2E ranking dataset
of Dusek et al. (2019), with significant improve-
ments over the baseline due to synthetic training
instance generation (see Sections 5 and 6).
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Both datasets are freely available, and we release
our experimental code on GitHub.!

2 The Task(s)

The task of NLG QE for ratings is to assign a nu-
merical score to a single NLG output, given its
input MR, such as a dialogue act (consisting of the
main intent, attributes and values). The score can
be e.g. on a Likert scale in the 1-6 range (Novikova
et al., 2017). In a pairwise ranking task, the QE
system is given two outputs of different NLG sys-
tems for the same MR, and decides which one has
better quality (see Figure 1).

As opposed to automatic word-overlap-based
metrics, such as BLEU (Papineni et al., 2002) or
METEOR (Lavie and Agarwal, 2007), no human
reference texts for the given MR are required. This
widens the scope of possible applications — QE
systems can be used for previously unseen MRs.

3 Model

Our model is a direct extension of the freely avail-
able RatPred system (Dusek et al., 2017). The
original RatPred model assigns numerical ratings
to single outputs and is a dual-encoder (Lu et al.,
2017), consisting of two GRU-based recurrent neu-
ral networks (Cho et al., 2014) encoding the MR
and the system output, followed by fully connected
layers and a final linear layer providing the score.
The system is trained using squared error loss, and
it uses dropout over embeddings (Hinton et al.,
2012).

We make RatPred’s encoders bidirectional and
add a novel extension to allow pairwise ranking—a
second copy of the system output encoder plus the
fully connected layers and linear layer (Figure 2).
All network parameters are shared among the two
copies. This way, the network is able to rate two
NLG outputs at once. We add a simple difference
operator on top of this; the pairwise rank is com-
puted as the difference between the two predicted
scores. In addition to the squared loss for rating,
we incur pairwise hinge loss for ranking. The final
loss function looks as follows:

L=0-1) - (y)?+ T -max(0,1— (§—¢))

!The datasets can be downloaded under the following
links: https://github.com/jeknov/EMNLP_
17_submission, http://www.macs.hw.ac.uk/
InteractionLab/E2E/. Our code is available at
https://github.com/tuetschek/ratpred.

I indicates if the current instance is a ranking-based
one (value of 1 for ranking and O for rating, effec-
tively a mask to only incur the correct loss). y
denotes the true score for a NLG output, ¢ and ¢’
denote scores assigned by the model for (up to)
two NLG outputs.? Note that 7/ is ignored in rating
instances, while a true score y is ignored for rank-
ing. This way, the same network performs ranking
and rating jointly, and it can be exposed to training
instances of both types in any order. Our model is
also directly applicable to n-way rankings—using
it to score a group of NLG outputs and comparing
the scores is equivalent to comparing the pairwise
ranking.

Jointly learning to rank and rate was first intro-
duced by Sculley (2010) for support vector ma-
chines and similar approaches have been applied
for image classification (Park et al., 2017; Liu et al.,
2018) as well as audio classification (Lee et al.,
2016), However, we argue that the application for
text classification/QE is novel, as is the implemen-
tation as a single neural network with two parts that
share parameters, capable of training from mixed
ranking/rating instances with masking to incur the
proper loss.

4 Synthetic Training Data Generation

We use RatPred’s code to generate synthetic rat-
ing instances from both NLG outputs and human-
authored texts by distorting the text and lowering
its score (i.e., randomly removing or adding words;
cf. Dusek et al. (2017) and Figure 3 for details).
We also create synthetic training pairs by using
the same NLG output/human-authored text under
two different levels of distortion (e.g., one vs. two
artificially introduced errors). The system is then
trained to rank higher the version of the text with
fewer errors (see Figure 3 for an example). This
novel approach can be used to generate synthetic
training data for both ranking and rating tasks—in
a rating task, the generated ranking instances are
simply mixed among the original training instances
for rating, and the model uses both kinds for train-
ing. Note that synthetic data are never used for
validation or testing in any of our setups.

%Since the ranking result is a difference of two scores as-
signed by copies of the same network, we can assume without
loss of generality that §j ranks higher than §’.
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Instance Rating/Rank
MR inform_only_match(name="hotel drisco’, area="pacific heights’) 4
RNNLG output the only match i have for you is the hotel drisco in the pacific heights area.
inform(name="‘The Cricketers’, eat_type="‘coftee shop’, rating=high,
MR . . P
family friendly=yes, near=‘Café Sicilia’)
ZHANG output The Cricketers is a children friendly coffee shop near Café Sicilia with a high better

customer rating .

TR2 output

The Cricketers can be found near the Café Sicilia. Customers give this coffee
shop a high rating. It’s family friendly.

worse

Figure 1: Examples for NLG output quality rating (top, from the NEM dataset) and ranking (bottom, from the E2E
rankings dataset); RNNLG, ZHANG and TR2 are NLG systems. See Section 5.1 for details on the datasets.
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Figure 2: Schematic of our NLG QE model. Compo-
nents sharing weights are shaded with the same colour.

S Experimental Setup

5.1 Datasets

We experiment on the following two datasets, both
in the restaurant/hotel information domain:

e NEM? (Novikova et al., 2017) — Likert-scale
rated outputs (scores 1-6) of 3 NLG systems
over 3 datasets, totalling 2,460 instances.

e E2F system rankings (DusSek et al., 2019) — out-
puts of 21 systems on a single NLG dataset with
2,979 5-way relative rankings.

We choose these two datasets because they contain
human-assessed outputs from a variety of NLG
systems. Another candidate is the WebNLG corpus
(Gardent et al., 2017), which we leave for future
work due to MR format differences.

Although both selected datasets contain ratings
for multiple criteria (informativeness, naturalness
and quality for NEM and the latter two for E2E), we
follow Dusek et al. (2017) and focus on the overall
quality criterion in our experiments as it takes both
semantic accuracy and fluency into account.

3While the dataset authors did not give it a name, we use
“NEM” as an acronym for “New Evaluation Metrics”, which
comes from the title of the paper.
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We use RatPred’s preprocessing, synthetic data
generation, and 5-way cross-validation split on the
NEM dataset. In addition, we generate synthetic
training pairs as described in Section 4. We convert
the 5-way rankings from the E2E set to pairwise
rankings (Sakaguchi et al., 2014) (leaving out ties),
which produces 15,001 instances. We split the
data into training, development and test sections in
an 8:1:1 ratio, ensuring that each section contains
NLG outputs for different MRs (Lampouras and
Vlachos, 2016).* In addition to the human-assessed
NLG outputs themselves, human-authored training
data for the NLG systems are also available and are
used for synthetic instances. We use a partial delex-
icalisation (replacing names with placeholders).

5.2 Model Settings

We evaluate our model in several configurations,
with increasing amounts of synthetic training data.
Note that even setups using training human ref-
erences (i.e. additional in-domain data) are still
“referenceless”—they do not use human references
for test MRs. Setups using human references
for validation and frest MRs (“reference-aided”;
marked with “*” in Table 1) are not referenceless
and are mainly shown for comparison with Dusek
etal. (2017).

We use the same network parameters for all se-
tups, selected based on a small-scale grid search on
the development data of both sets, taking train-
ing speed into consideration.® As a result, we
use a network with fewer parameters than Dusek
et al. (2017), which makes our base setup worse-
performing than the original base setup, despite our
use of bidirectional encoders (cf. Section 6). On

“We first split the data according to MRs, then assign
different MRs with all corresponding system outputs into
different sections.

5See Table 3 in the Supplementary for details.

8See Table 4 in the Supplementary for details.



MR inform(name="house of nanking’ ,food=chinese)
RNNLG output (0 errors) house of nanking serves chinese food .

1 error house of nanking restaurant chinese food .

2 errors house of nanking serves food chinese food cheaply .
3 errors food house of nanking house of nanking serves chinese chinese food .

Figure 3: Synthetic data generation example.

Synthesising errors: The original NLG output is distorted by introducing errors (underlined) of the following types:
Words in the texts are removed or duplicated at original or random positions, random words from a dictionary
learned from training data are used to replace current words or added at random positions. Other words are
preferred over articles and punctuation in making the changes (see DuSek et al., 2017 for details).

Rating instances: We use the same settings as DuSek et al. (2017) for synthetic individual rating instances —
generating up to 4 errors and lowering the target rating by 1 each time (lowering by 2 if the original value was 6).
We are able to generate more synthetic rating instances since DusSek et al. (2017) did not use all available NLG
system outputs due to a bug in their code (cf. Table 1).

Ranking Instances: Following our new method, pairs of outputs with a different number of errors (e.g., 0-1, 1-3)
are then sampled as synthetic training instances for ranking. In our setting, we introduce up to 4 errors and create
instances for all numbers of errors against the original (0-1 through 0-4), plus a set of 5 other, randomly chosen
instances (e.g. 1-3, 2-4). We use both rating and ranking synthetic instances for NEM data and only ranking

synthetic instances for E2E data.

the other hand, training runs several times faster.
We use Adam (Kingma and Ba, 2015) for training,
evaluating on the validation set after each epoch
and selecting the best-performing configuration.
Synthetic data are removed after 50 (out of 100)
epochs. Following Dusek et al. (2017), we run all
experiments with 5 different random initializations
of the networks and report averaged results.

5.3 Evaluation Metrics

On the NEM data, we follow Dusek et al. (2017) to
compare with their results. We use Pearson correla-
tion of system-provided ratings with human ratings
as our primary evaluation metric; we also measure
Spearman rank correlation, mean absolute error
(MAE) and root mean squared error (RMSE). On
the E2E data, we use pairwise ranking accuracy
(or Precision@1), a common ranking metric. We
also measure mean ranking loss, i.e., mean score
difference in wrongly rated instances.

6 Results and Discussion

The results on the NEM dataset in Table 1 show
that our improved synthetic data generation meth-
ods bring significant improvements in correlation.’
On the other hand, they worsen MAE and RMSE
scores slightly, probably due to missing supervision
on the exact rating in synthetic ranking instances.
Compared to Dusek et al. (2017), we get a 12%

"We used the Williams (1959) test to assess significant
differences in correlation, following Graham and Baldwin
(2014) and Kilickaya et al. (2017).
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increase in Pearson correlation on the best refer-
enceless configurations; our best referenceless sys-
tem method outperforms even Dusek et al. (2017)’s
reference-aided system. Note that the absolute cor-
relations, while still not ideal, are much higher than
those achieved by word-overlap-based metrics such
as BLEU, which stay well below 0.1.

Our reference-aided setup did not improve with
synthetic ranking pairs. Probably this is because
there are already enough training data for the do-
main. Furthermore, this system is more prone to
overfit the validation set (exploiting validation ref-
erences during training). The intra-class correlation
coefficient (ICC) of 0.45 measuring rater agree-
ment on the NEM data as reported by Novikova
et al. (2017) (‘moderate agreement’) also suggests
that a certain level of noise may hinder further im-
provements on this dataset.

Table 2 shows our results on the E2E data.
Here, all configurations perform well above ran-
dom chance (i.e. accuracy of 0.5). Using the synthe-
sised ranking pairs brings a small but statistically
significant® improvement over the base model (3%
using only NLG system outputs, additional 1% if
also human references from NLG system training
data are used for synthetic pairs generation).

We also explored training the system using data
from both sets; however, this did not bring per-
formance improvements, probably due to different
text styles in the two datasets — the NEM data in-

8We used pairwise bootstrap resampling (Koehn, 2004) to
assess significance in ranking accuracy.



System Training insts Pearson Spearman MAE RMSE
Constant - - - 1.013 1.233
BLEU* (Papineni et al., 2002) - 0.074 0.061 2264 2731
METEOR* (Lavie and Agarwal, 2007) - 0.095 0.099 1.820  2.129
ROUGE-L* (Lin, 2004) - 0.079 0.072 1312 1.674
CIDEr* (Vedantam et al., 2015) - 0.061 0.058 2.606 2935
RatPred (Dusek et al., 2017) base system 1476 0273 0260 0.948  1.258
+ generated data based on training system outputs 3,937 0.283 0.268 0.948 1.273
+ generated data based on training human references 45,137 0.330 0.274 0.914 1.226
"+ generated data based on test human references* 80,522 0.354 0.287 0.909  1.208
Our base system 1,476 0.253 0.252 0.917 1.221
+ generated data based on training system outputs 8,856 0.332 0.308 0.924 1.241
+ generated pairs for ranking 22,140 0.347 0.320 0.936 1.261
+ generated data based on training human references 59,436 0.343 0.278 0.922 1.238
+ generated pairs for ranking 163,764 0.369 0.295 0.925 1.250
~+ generated data based on test human references* 85441 0344 0.265 0.925 1249
+ generated pairs for ranking* 236,578 0.345 0.256 0.944 1.277

Table 1: Results on the NEM ratings dataset; the number of training instances includes synthetic data (cf. Sections 4
and 5.1, Figure 3). Boldface denotes configurations of our system that are significantly better than all previous ones
according to the Williams (1959) test (p < 0.01). Values for baseline metrics and the original RatPred system are
taken over from Dusek et al. (2017). Configurations marked with “*” use human references for test instances (this

includes word-overlap-based metrics such as BLEU).

System

Training insts Accuracy Avg. loss

Our base system

+ generated pairs based on training system outputs
+ generated pairs based on training human references

11,921 0.708 0.173
50,324 0.7321 0.158
428,873 0.740 0.153

Table 2: Results on the E2E rankings dataset. Boldface denotes significant improvements over previous configura-
tions according to pairwise bootstrap resampling (Koehn, 2004) (p < 0.05; T = p < 0.01).

clude requests, confirmations, etc., while the E2E
data only contain informative statements.

7 Related Work

QE has been an active topic in many NLP tasks—
image captioning (Anderson et al., 2016), dialogue
response generation (Lowe et al., 2017), grammar
correction (Napoles et al., 2016) or text simplifi-
cation (Martin et al., 2018)—with MT being per-
haps the most prominent area (Specia et al., 2010;
Avramidis, 2012; Specia et al., 2018). QE for NLG
recently saw an increase of focus in various sub-
tasks, such as title generation (Ueffing et al., 2018;
Camargo de Souza et al., 2018) or content selection
and ordering (Wiseman et al., 2017). Furthermore,
several recent studies focus on predicting NLG
fluency only, e.g., (Tian et al., 2018; Kann et al.,
2018).

However, apart from our work, (Dusek et al.,
2017) is the only general NLG QE system to our
knowledge, which aims to predict the overall qual-
ity of a generated utterance, where quality includes
both fluency and semantic coverage of the MR.
Note that the correct semantic coverage of MRs
is a problem for many neural NLG approaches
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(Gehrmann et al., 2018; Dusek et al., 2019; Nie
et al., 2019). Compared to Dusek et al. (2017), our
model is able to jointly rate and rank NLG outputs
and includes better synthetic training data creation
methods.

Our approach to QE is similar to adversarial
evaluation—distinguishing between human- and
machine-generated outputs (Goodfellow et al.,
2014). This approach is employed in generators for
random text (Bowman et al., 2016) and dialogue re-
sponses (Kannan and Vinyals, 2016; Li et al., 2017;
Bruni and Fernandez, 2017). We argue that our
approach is more explainable with users being able
to reason with the ordinal output score.
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