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Ondřej Bojar
Institute of Formal and Applied
Linguistics, Charles University,

Prague, Czech Republic
bojar@ufal.mff.cuni.cz

Abstract
Using data-driven models for solving text
summarization or similar tasks has become
very common in the last years. Yet most of
the studies report basic accuracy scores only,
and nothing is known about the ability of the
proposed models to improve when trained on
more data. In this paper, we define and pro-
pose three data efficiency metrics: data score
efficiency, data time deficiency and overall
data efficiency. We also propose a simple
scheme that uses those metrics and apply it
for a more comprehensive evaluation of pop-
ular methods on text summarization and title
generation tasks. For the latter task, we pro-
cess and release a huge collection of 35 million
abstract-title pairs from scientific articles. Our
results reveal that among the tested models, the
Transformer is the most efficient on both tasks.

1 Introduction

Text summarization is the process of distilling the
most noteworthy information in a document to
produce an abridged version of it. This task is
earning considerable interest, since shorter ver-
sions of long documents are easier to read and
save us time. There are two basic ways to sum-
marize texts. Extractive summarization selects the
most relevant parts of the source document and
combines them to generate the summary. In this
case, the summary contains exact copies of words
or phrases picked from the source. Abstractive
summarization, on the other hand, paraphrases the
information required for the summary instead of
copying it verbatim. This is usually better, but also
more complex and harder to achieve.

There has been a rapid progress in ATS (Ab-
stractive Text Summarization) over the last years.
The vanilla encoder-decoder with bidirectional
LSTMs (Hochreiter and Schmidhuber, 1997) is
now enhanced with advanced mechanisms like at-
tention (Bahdanau et al., 2014) which has been

widely embraced. It allows the model to focus
on various parts of the input during the gener-
ation phase and was successfully used by Rush
et al. (2015) to summarize news articles. Pointing
(copying) is another mechanism that helps to al-
leviate the problem of unknown words (Gulcehre
et al., 2016; Gu et al., 2016). Moreover, coverage
(Tu et al., 2016) and intra-attention (Paulus et al.,
2017) were proposed and utilized to avoid word
repetitions, producing more readable summaries.
RL (Reinforcement Learning) concepts like policy
gradient (Rennie et al., 2017) were recently com-
bined into the encoder-decoder architecture, alle-
viating other problems like train/test inconsistency
and exposure bias (Paulus et al., 2017; Chen and
Bansal, 2018).

All these developments helped to boost the ATS
ROUGE (Lin, 2004) scores from about 30 % in
Rush et al. (2015) to about 41 % in Paulus et al.
(2017). This is an increase of roughly 37 % in
the last three years. Yet all the studies evaluate
the methods using datasets of a fixed size. Do-
ing so they tell us nothing about the expected per-
formance1 of the models when trained with more
data. Moreover, training time is rarely reported.
We believe that this evaluation practice of data-
driven models is incomplete and data efficiency
metrics should be computed and reported.

In this paper, we propose three data efficiency
metrics, namely data score efficiency, data time
deficiency and overall data efficiency. The first
two represent the output quality gain and the train-
ing time delay of the model per additional data
samples. The third is the ratio between them and
reflects the overall efficiency of the models w.r.t
the training data. We also suggest a simple scheme
that considers several values for each of the above
metrics, together with the basic accuracy score, in-

1We use “performance” solely for the output quality, not
the time needed to train the model or obtain the output.
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stead of reporting only the latter. The proposed
scheme and the metrics can be used for a more de-
tailed evaluation of supervised learning models.

Using them, we examine various recently pro-
posed methods in two tasks: text summariza-
tion using the popular CNNDM (CNN/Daily Mail,
Nallapati et al., 2016) dataset and title genera-
tion of scientific articles using OAGS, a novel
dataset of abstract-title pairs that we processed
and released.2 According to our results, the best-
performing and fastest methods in the two datasets
are those of Paulus et al. (2017) and Chen and
Bansal (2018). Regarding score and time effi-
ciency, Transformer (Vaswani et al., 2017) is dis-
tinctly superior. In the future, we will examine the
Transformer model on more data with different pa-
rameter setups. Applying our evaluation scheme
to related tasks such as MT (Machine Translation)
could also be beneficial.

Overall, this work brings the following main
contributions: (i) We define and propose three data
efficiency metrics and a simple evaluation scheme
that uses them for a more comprehensive evalua-
tion of data-driven learning methods. (ii) We use
the scheme and metrics to benchmark some of the
most recently proposed ATS methods and discuss
their training times, ROUGE, and data efficiency
scores. (iii) Finally, a huge collection of about 35
million scientific paper abstracts and titles is pre-
pared and released to the community. To our best
knowledge, this is the largest data collection pre-
pared for title generation experiments.

2 Data Efficiency Metrics

2.1 Related Work
Training data efficiency of the data-driven learn-
ing models is little considered in the literature. An
early work is that of Lawrence et al. (1998) who
investigate the generalization ability of neural net-
works with respect to the complexity of the ap-
proximation function, the size of the network and
the degree of noise in the training data. In the
case of latter factor, they vary the size of the train-
ing data and the levels of Gaussian noise added
to those data concluding that ensemble techniques
are more immune to the increased noise levels.
Performance variations w.r.t the training data sizes
are not considered, though.

Al-Jarrah et al. (2015) review the research lit-
erature focusing in the computational and energy

2http://hdl.handle.net/11234/1-3043

efficiency of the data-driven methods. They par-
ticularly consider data-intensive application areas
(e.g., big data computing) and how sustainable
data models can help for a maximal learning ac-
curacy with minimal computational cost and effi-
cient processing of large volumes of data.

Boom et al. (2016) examine a character-level
RNN (Recurrent Neural Network) used to predict
the next character of a text given the previous in-
put characters. They assess the evolution of the
network performance (in terms of perplexity) in
four train and prediction scenarios as a function of
the training time and input training sequences. Ac-
cording to their results, the efficiency of the model
is considerably influenced by the chosen scenario.

A similar experiment is conducted by Riou et al.
(2019) who explore reinforcement learning con-
cepts on the task of neural language generation.
They compare different implementations reporting
not only performance scores, but also their evolu-
tion as a function of the cumulated learning cost
and the training data size.

The most relevant work we found is the one by
Hlynsson. et al. (2019) who propose an experi-
mental protocol for comparing the data efficiency
of a CNN (Convolution Neural Network) with that
of HiGSFA (Hierarchical information-preserving
Graph-based Slow Feature Analysis). They give
an informal definition of data efficiency consid-
ering it as performance as a function of training
set size. Three character recognition challenges
are defined and the two methods are trained on
increasing amounts of data samples reporting the
corresponding accuracy scores.

2.2 Proposed Data Efficiency Metrics

Despite the experimental results and insights they
bring, the above studies are still task and method
specific. Moreover, their computation schemes are
not generic or transferable and no formalization of
the data efficiency is given. In this section, we de-
fine three novel and useful data efficiency metrics.

Suppose we train a data-driven method M on
dataset D to solve task T and we test it based
on performance score S. We also assume that the
quality of the data samples in different intervals
of D is homogeneous. In practice, this could be
achieved by shuffling D before starting the exper-
iments. For a certain training data size d, it takes
t seconds to train the model md until convergence
(i.e. until no further gains are observed with more

http://hdl.handle.net/11234/1-3043
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training time) and the score obtained by testing it
on a standard and independent test dataset of a
fixed size is s. We expect that for a certain in-
crease ∆d of training samples fed to M, it will re-
quire an extra time ∆t to converge, and the result-
ing model md+∆d will attain an extra ∆s score.
We can thus define and compute data score effi-
ciency (score gain per additional data samples) Σ
of method M as:

Σ = ∆s / ∆d (1)

It is a measure of how smartly or effectively M in-
terprets the extra data samples, or how well its per-
formance score scales w.r.t the training data. Simi-
larly, data time deficiency (the inverse of data time
efficiency) Θ of M will be:

Θ = ∆t / ∆d (2)

This measures how slowly or lazily M interprets
the additional samples.3 Given two train and test
runs (original and enlarged datasets) characterized
by the above measures (training data: d, d + ∆d;
training times: t, t + ∆t; achieved scores: s, s +
∆s), we define the overall data efficiency E as:

E = Σ / Θ = ∆s / ∆t (3)

It is a measure of how smartly and quickly the
models of M utilizes the data of D on task T.

In practice, using the absolute increments
∆s, ∆t, and ∆d may produce small values of Σ
which are hard to interpret and work with. Further-
more, Θ andE use training times which depend on
the computing conditions (e.g., hardware setups).
As a result, they are hardly reproducible across
different computing environments. To overcome
these limitations, we can instead use the relative
increments ∆s/s, ∆t/t and ∆d/d, computing the
corresponding relative data efficiency metrics as:

σ =
∆s / s

∆d / d
(4)

θ =
∆t / t

∆d / d
(5)

ε =
σ

θ
=

∆s / s

∆t / t
(6)

3Our data time efficiency (∆d / ∆t) should not be con-
fused with the training throughput as defined by Popel and
Bojar (2018) for machine translation which reflects the time
required for one model update given the additional data. Our
∆t is the increase in the overall training time till convergence
on the enlarged dataset in comparison with the original one.

These relative metrics and their values are practi-
cally easier to interpret and work with. Further-
more, they are transferable or reproducible in dif-
ferent computing setups which is important for
cross-interpretation of the experimental results.
We can express σ and θ values in percent and ε
values as their ratio.

2.3 Assorted Remarks

The metrics presented above can be used to evalu-
ate different data-driven methods or compare sev-
eral parameter configurations of the same basic
method (algorithm, neural network, etc.) and help
us find the optimal one. In this sense, they are
generic and task-independent. However, it is im-
portant to note that they do not represent “univer-
sal” or global attributes of method M. They are in-
stead linear approximations that can give us local
characterizations of M in certain intervals of D. In
other words, high Σ (or σ) values of M in some
intervals of D do not necessarily assure a decent
generalization of M.

It is also important not to confuse the data effi-
ciency with performance or quality. In our daily
intuition, we often tend to consider highly effi-
cient machines, techniques or methods as well-
performing ones. Instead, according to the above
definitions, a model can perform poorly but still
be highly efficient w.r.t the training data. This
happens if its performance scores on increasing
training data cuts are all very low, but grow very
quickly from one assessment to the next. A model
can also yield high scores which grow very slowly
on increasing data sizes (thus relatively small Σ
and σ values). In this case it is a well-performing
(maybe even the best) model on those data, but not
a data efficient one.

From the data efficiency viewpoint, the best
models would obviously be those of higher data
score efficiency and lower data time deficiency, or
higher overall data efficiency. In practice, perfor-
mance is generally the most desired characteristic.
As a result, data score efficiency values (Σ, σ or
both) should be more important and worthy to re-
port in most of the cases. Since models are trained
only once, θ and ε should be less relevant. Nev-
ertheless, they might be useful from a technical or
theoretical perspective. They can be used for com-
paring different methods, comparing different pa-
rameter configurations of a method, or for trying
run time optimizations.
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3 A Comprehensive Evaluation Scheme

Since the sizes of the predictive models and the
utilized datasets are consistently growing, it be-
comes more difficult and costly to use human ex-
pertise for the evaluation. The typical approach is
to test automatically by means of standard datasets
and scoring metrics which are popular. For ex-
ample, in the case of text summarization task, it
is very common to find evaluations of proposed
methods using the full set of CNNDM only (Ta-
ble 1 in Paulus et al., Table 3 in Lin et al., Table 1
in See et al., and more).

We believe there are serious shortcomings in
this evaluation practice. Testing only one model
of a method trained on a fixed-size data split does
not reveal anything about its score trend when fed
with more data. It thus becomes hard to discern
the overall best method (out of a few that are com-
pared) in a fair and objective way, especially if
the achieved scores are similar. Moreover, train-
ing time is rarely reported and nothing is known
about the time efficiency of the models.

To overcome the above limitations, we propose
a more detailed evaluation scheme that considers
accuracy scores together with the data efficiency
metrics defined in Section 2.2. Again, suppose we
have a dataset D of size dwith homogeneous train-
ing samples, a standard performance score S and
two methods A and B that we want to compare.
The typical practice trains two single models a and
b from A and B on entire d and reports accuracy
scores sa and sb from the standard test set.

Instead, we suggest to split d in n equal parts of
size d/n and form n intervals d1, d2, . . . , dn of
increasing sizes d/n, 2d/n, . . . , (n− 1)d/n, d.
This way we can train 2n models a1, a2, . . . , an
and b1, b2, . . . , bn on d1, d2, . . . , dn
and compute their scores sa1, s

a
2, . . . , san and

sb1, s
b
2, . . . , sbn from the same test set. From

Equation 4, we also compute σa1 , σ
a
2 , . . . , σ

a
n−1

using each two scores sai and sai+1 of models ai
and ai+1, together with σb1, σ

b
2, . . . , σ

b
n−1 from

the B models.
We can now report up to 2n score values and

2(n− 1) relative data score efficiency values. For
conciseness, we can limit in san and sbn of the two
biggest models. Also, given the local nature of the
efficiency metrics, it make sense to report values
from dispersed data intervals like the leftmost (σa1
and σb1), the middle (σan/2 and σbn/2) and the right-
most (σan−1 and σbn−1) σ. The rightmost values

Figure 1: Illustration of the schema application

are probably more relevant for predicting the score
trend on bigger training sizes. We can also com-
pute and report the respective Σ values or even the
θ and ε values in a similar fashion using the other
equations of Section 2.2.

Getting back to A vs. B, we can first check san
and sbn. If one of them is distinctly higher than
the other, comparing the σ values may not be es-
sential. The real worth comes when san ≈ sbn, by
contrasting the rightmost corresponding σ values
(σan−1 vs. σbn−1). A significant difference of one
against the other could suggest which of them will
reach higher scores on a bigger training set.

To illustrate, we can see in Figure 1 two hy-
pothetical graphs that approximate the variations
of sa and sb over D. We have n = 5, training
size d = d5 and very similar performance scores
(sa5 ≈ sb5). Obviously, sb grows faster than sa

till d2, but then the situation is reversed, since
σa3 > σb3 and σa4 > σb4. We can thus expect sa > sb

for d > d5 which is what actually happens in this
example (sa6 > sb6).

Using the traditional practice (computing sa5
and sb5 only) our verdict would be: A and B per-
form (almost) the same on D. Instead, using the
above scheme we can conclude that: A and B per-
form (almost) the same on D, but A will probably
perform better than B if trained on more data. The
scheme can be used to evaluate data-driven meth-
ods with different scores, on different tasks. In
Section 5 we show the results we obtained by ap-
plying it to assess several advanced ATS methods.

4 Text Summarization Datasets

The tendency towards data-driven methods based
on neural networks has encouraged experiments
with large text collections for various tasks. In the
case of ATS, one of the first big datasets was the
annotated English Gigaword (Napoles et al., 2012;
Rush et al., 2015) with over nine million news ar-
ticles and headlines processed using CoreNLP of
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Split Rec SrcL TgtL Voc Used

C
N

N
D

M
Train1 96K 784 54 380K 49K
Train2 192K 780 57 555K 49K
Train3 287K 786 55 690K 49K
Valid 13K 769 61 – –
Test 11K 787 58 – –

O
A

G
S

Train1 500K 183 9 1.2M 98K
Train2 1M 205 10 2.1M 98K
Train3 1.5M 211 11 2.8M 98K
Valid 10K 231 13 – –
Test 10K 237 12 – –

Table 1: Statistics of used datasets. For each split, it
shows the number of records (Rec), average length of
source and target texts in tokens (SrcL, TgtL), total vo-
cabulary size (Voc), and the number of most frequent
words that were used (Used).

Manning et al. (2014). Each headline was paired
with the first sentence of the corresponding arti-
cle to create the training base for the experiments.
DUC-2004 is another dataset4, mostly used as an
evaluation baseline, given its small size. It con-
sists of 500 document-summary pairs curated by
human experts. Newsroom is a recent and hetero-
geneous bundle of about 1.3 million news articles
(Grusky et al., 2018).

CNNDM has become the most popular dataset
for text summarization (Nallapati et al., 2016). It
provides a large set of news articles and the cor-
responding multi-sentence summaries, unlike the
three above that contain one-sentence summaries
only. It is thus more suitable for training and test-
ing summarization models of longer texts.

Title generation task, on the other hand, requires
data samples of shorter texts and one-sentence ti-
tles. Collections of abstracts and titles from scien-
tific articles are well suited for exploring it. KP20k
is a collection of 20K records of scientific paper
metadata (title, abstract and keywords) presented
by Meng et al. (2017). The metadata belong to ar-
ticles of computer science from ACM Digital Li-
brary, ScienceDirect, and Web of Science.

The demand for more and more data has mo-
tivated initiatives that mine research articles from
academic networks. One of them is ArnetMiner,
a system that extracts researcher profiles from the
Web and integrates the data into a unified network
(Tang et al., 2008). A byproduct of that work is the
OAG (Open Academic Graph) collection (Sinha
et al., 2015).

To produce a big title generation dataset for our
experiments, we started from OAG. First, abstract,

4https://duc.nist.gov/duc2004/

title, and language fields were extracted from each
record where they were available. In many cases,
abstract language did not match the language field.
We ignored the latter and used a language identi-
fier to remove records that were not in English.
Duplicates were dropped and the texts were low-
ercased. Finally, Stanford CoreNLP tokenizer was
used to split title and abstract texts. The result-
ing dataset (OAGS, released with this paper) con-
tains about 35 million abstract-title pairs and can
be used for title generation experiments.

We had a quick look at the content of OAGS
and observed that most of the papers are from
medicine. There are also many papers about so-
cial sciences, psychology, economics or engineer-
ing disciplines. Given its huge size and the top-
ical richness, the value of OAGS is twofold: (i)
It can be used to supplement existing datasets on
title generation tasks when more training data are
needed. (ii) It can be used for creating byproducts
of specific scientific disciplines or domains.

5 Text Summarization Evaluation

In this section, we apply the relative metrics of
Section 2.2 and the evaluation scheme of Section 3
to benchmark several advanced methods on text
summarization of news articles and title genera-
tion of scientific papers. We first introduce the
methods and their parameters, together with the
experimental data. Later, we present and discuss
the achieved accuracy and data efficiency scores.

5.1 Tested Summarization Methods

The ability of recurrent neural networks to rep-
resent and process variable-length sequences has
created a tradition of applying them on sequence-
to-sequence tasks such as ATS or MT. In the case
of ATS, the goal is to process the source text pro-
ducing a target text that is shorter but still mean-
ingful and easy to read.

Rush et al. (2015) were probably the first to im-
plement attention in a network dedicated to ATS.
Their model (ABS in the following) uses an en-
coder that learns a soft alignment (attention) be-
tween the source and the target sequences produc-
ing the context vector. In the decoding phase, it
uses a beam-search decoder (Dahlmeier and Ng,
2012) with a window of 10 candidate words in
each target position. There are 256 and 128 di-
mensions in the hidden layer and word embedding
layer respectively. The authors reported state-of-

https://duc.nist.gov/duc2004/
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the-art results in the DUC-2004 testing dataset.

See et al. (2017) proposed Pointer-Generator
(PCOV), a model that implements an attention-
based encoder for producing the context vector.
The decoder is extended with a pointing/copying
mechanism (Gulcehre et al., 2016; Gu et al., 2016)
that is used in each step to compute a generation
probability pgen from the context vector, the de-
coder states, and the decoder output in that step.
This generation probability is used as a switch
to decide if the next word should be predicted
or copied from the input. Another extension is
the coverage mechanism (keeping track of decoder
outputs) for avoiding word repetitions in the sum-
mary, a chronic problem of encoder-decoder sum-
marizers (Tu et al., 2016). The method was imple-
mented with word embeddings and hidden layer of
sizes 128 and 256 respectively.

Lin et al. (2018) tried a partial use of convo-
lutions in their model (GLOBEN) to avoid word
repetitions and semantic irrelevance in the sum-
maries. They couple the encoder with a convolu-
tional gated unit which performs global encoding
of the source context and uses it to filter certain n-
gram features and refine the output of the encoder
in each time step. GLOBEN is a very big network
(about 68M parameters on CNNDM) with three
layers in the encoder and other three in the de-
coder, each of 512 dimensions.

A taxonomy of the above (and more) sequence-
to-sequence methods and added mechanisms can
be found in Shi et al. (2018). Authors present a
detailed review of problems and proposed solu-
tions based on network structures, training strate-
gies, and generation algorithms. Furthermore,
they develop and release a library (NATS) that im-
plements combinations of mechanisms like atten-
tion, pointing, and coverage, analyzing their ef-
fects in text summarization quality. NATS was im-
plemented with the same network parameters as
PCOV. Intra-decoder attention and weight sharing
of embeddings were added in the decoder.

The introduction of the Transformer (TRANS)
architecture that removes all recurrent or convo-
lutional structures reduced computation cost and
training time (Vaswani et al., 2017). Totally based
on attention mechanism and primarily designed
for MT, Transformer can also work for text sum-
marization, since all it needs to do is to learn the
alignments between the input (source) texts and
the output (target) summaries. Positional encod-

ing is added to word embeddings to preserve the
order of the input and output sequences. TRANS

is the biggest model we tried, with four layers in
both encoder and decoder, 512 dimensions in each
layer, including the embedding layers, 200K train-
ing steps and 8000 warm-up steps.

Two observed problems in the encoder-decoder
framework are the exposure bias and train/test in-
consistency (Keneshloo et al., 2018). To overcome
them, RL ideas have been recently applied. Paulus
et al. (2017) use intra-attention to focus on differ-
ent parts of the encoded sequence. This way it
is less likely for their model (PGRL) to attend to
the same parts of input in different decoding steps,
and thus fewer word repetitions should appear in
the summaries. To optimize for ROUGE or similar
discrete evaluation metrics, they implement self-
critical policy gradient training with reward func-
tion, a RL mechanism introduced by Rennie et al.
(2017). PGRL was used with encoder and decoder
of 256 dimensions and word embeddings of 128
dimensions.

Aiming for speed, Chen and Bansal (2018) de-
veloped an extractive-abstractive text summarizer
(FASTRL) with policy-based reinforcement. It
first uses an extractor agent to pick the most salient
sentences or phrases, instead of encoding the en-
tire input sequence which can be long. It then uses
an encoder-decoder abstractor to rewrite (com-
press) the sentences in parallel. Actor-Critic pol-
icy gradient with reward function (Bahdanau et al.,
2016) joins together the extractor and abstractor
networks. Same as most models above, FASTRL

uses 256 and 128 dimensions for the recurrent
layer and the word embeddings.

In every experiment, no pretraining of word
embeddings was performed. They were learned
during the training of each model. Adam op-
timizer (Kingma and Ba, 2014) was used with
α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8.
We chose mini-batches of size 16 in most of the
cases (8 for GLOBEN and TRANS to avoid mem-
ory errors). All experiments were conducted on
two NVIDIA GTX 1080Ti GPUs.

5.2 Used Data

To cope with limited computing resources, we
used up to 1.5M records in our OAGS experi-
ments. We also picked n = 3 for the scheme of
Section 3 and created three splits of 500K, 1M
and 1.5M samples each, together with the three
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CNNDM OAGS
Authors Model P R1 R2 RL Tt P R1 R2 RL Tt

Rush et al.
ABS1 15M 26.66 8.81 24.46 135032 22M 24.75 10.05 21.84 48595
ABS2 15M 28.56 10.42 25.57 185549 22M 26.6 11.5 23.33 61729
ABS3 15M 29.64 11.55 26.32 243549 22M 27.86 12.15 24.48 73038

See et al.
PCOV1 14M 36.97 15.19 33.84 113110 21M 34.4 17.67 27.55 30551
PCOV2 14M 38.56 16.03 35.09 138175 21M 35.18 18.06 28.83 42723
PCOV3 14M 39.41 16.77 36.31 163744 21M 35.86 18.51 29.42 56538

Shi et al.
NATS1 15M 36.92 14.56 32.88 98791 – – – – –
NATS2 15M 38.25 15.89 34.02 179689 – – – – –
NATS3 15M 39.11 17.2 35.66 261794 – – – – –

Lin et al.
GLOBEN1 68M 36.53 14.9 34.11 658924 – – – – –
GLOBEN2 68M 37.82 16.13 35.46 785622 – – – – –
GLOBEN3 68M 38.67 16.94 36.25 875817 – – – – –

Vaswani et al.
TRANS1 81M 32.38 10.47 29.43 518924 129M 30.29 13.1 24.34 251802
TRANS2 81M 36.76 14.54 33.82 579149 129M 34.17 17.49 28.46 269665
TRANS3 81M 38.24 16.33 35.28 611359 129M 37.06 19.44 30.51 278602

Chen et al.
FASTRL1 – 36.95 14.89 34.69 19601 – – – – –
FASTRL2 – 39.18 16.17 36.15 30485 – – – – –
FASTRL3 – 40.02 17.52 37.24 52775 – – – – –

Paulus et al.
PGRL1 – 38.16 14.17 36.24 68942 – 35.52 16.81 28.65 43726
PGRL2 – 39.88 15.31 37.89 81529 – 36.9 18.44 30.22 55324
PGRL3 – 40.83 15.68 38.73 107179 – 38.05 19.23 31.16 74983

Table 2: Parameters, ROUGE F1 scores and training times for each method on the splits of the two datasets
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Figure 2: R1 score trends of the three models of each method on CNNDM (left) and OAGS (right)

splits (one-third, two-thirds, and full) of CNNDM.
Some statistics of the experimental data are shown
in Table 1. Vocabulary sizes used in each experi-
ment are shown in its last column.

The higher vocabulary sizes of OAGS splits
cause a significant difference in parameters be-
tween the two corresponding models of each
method. As we can see (Table 2), Transformer
models grows from 81M in CNNDM to 129M in
OAGS. Another difference between the two sets of
experiments is in the maximal number of encod-
ing and decoding steps (words in source and target
texts). For CNNDM, we used 400 and 100 respec-
tively. For OAGS, we chose 200 and 50, since pa-

per abstracts and titles should not be longer.

5.3 Summarization Results

ROUGE scores and training times (in seconds)
on CNNDM experiments are shown in the mid-
dle part of Table 2. The most accurate models
are PGRL and FASTRL. They both implement
policy-based training and optimize w.r.t ROUGE
scores. The worst performer is ABS and the other
four fall somewhere in between, reaching similar
scores with each other.

The score differences between each third model
and first one are usually small for all methods. We
believe this has to do with the way ROUGE scores
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CNNDM
Authors Models σ1 σ2 σL θ ε1 ε2 εL

Rush et al. ABS12 7.13 18.27 4.54 37.41 0.19 0.45 0.12
ABS23 7.64 21.92 5.93 63.18 0.12 0.35 0.094

See et al. PCOV12 4.3 5.53 3.69 22.16 0.194 0.25 0.167
PCOV23 4.46 9.33 7.03 37.4 0.119 0.249 0.188

Shi et al. NATS12 3.6 9.13 3.47 81.89 0.044 0.112 0.042
NATS23 4.53 16.6 9.74 92.35 0.049 0.18 0.106

Lin et al. GLOBEN12 3.53 8.26 3.96 19.23 0.184 0.429 0.206
GLOBEN23 4.54 10.15 4.50 23.2 0.196 0.437 0.194

Vaswani et al. TRANS12 13.53 38.87 14.92 11.61 1.166 3.34 1.285
TRANS23 8.14 24.88 8.72 11.24 0.724 2.214 0.776

Chen et al. FASTRL12 6.04 8.6 4.21 55.53 0.109 0.155 0.067
FASTRL23 4.33 16.87 6.09 147.78 0.029 0.114 0.041

Paulus et al. PGRL12 4.51 8.05 4.55 18.26 0.247 0.441 0.249
PGRL23 4.81 4.88 4.48 63.58 0.076 0.077 0.07

Table 3: Data efficiency scores of the models on CNNDM experiments. σX is computed based on the correspond-
ingRX score. Similarly, εX is computed based on σX and θ.

OAGS
Authors Models σ1 σ2 σL θ ε1 ε2 εL

Rush et al. ABS12 7.47 14.43 6.82 27.03 0.277 0.534 0.252
ABS23 9.47 11.3 9.86 36.64 0.259 0.309 0.269

See et al. PCOV12 2.27 2.21 4.65 39.84 0.057 0.055 0.117
PCOV23 3.87 5.04 4.09 64.67 0.06 0.077 0.063

Vaswani et al. TRANS12 12.81 33.51 16.93 7.09 1.806 4.724 2.386
TRANS23 16.92 22.3 14.41 6.63 2.552 3.364 2.173

Paulus et al. PGRL12 3.89 9.7 5.48 26.52 0.146 0.366 0.207
PGRL23 6.23 8.57 6.22 71.07 0.088 0.121 0.088

Table 4: Data efficiency scores of the models on OAGS experiments. σX is computed based on the corresponding
RX score. Similarly, εX is computed based on σX and θ.

are computed. A graphical representation of the
R1 trends for each method is depicted in Figure 2
(left). R2 andRL (not shown) behave similarly.

Results on OAGS are listed on the right side of
Table 2. We could not run some of the models
on OAGS data. The extractive part of FASTRL

could not be easily adapted to perform word-level
extraction of OAGS abstracts. Furthermore, NATS

and GLOBEN ran out of memory very frequently.
From the remaining four, PGRL is again the most
accurate. TRANS follows and ABS is the weakest.
R1 score trends are shown in the Figure 2 (right).

Regarding training speed, on CNNDM we can
see that FASTRL is absolutely the best, with a con-
siderable difference from the second (PGRL). The
slowest is GLOBEN with training times at least
17x higher than those of FASTRL. In fact, it took
more than ten days to train GLOBEN on the full
CNNDM data.

OAGS training times are lower than CNNDM
ones, although OAGS data splits are 5.2 times big-
ger in number of training samples. This happens

because OAGS source and target samples are actu-
ally much shorter. We see that PCOV is the fastest
and TRANS is the slowest.

5.4 Efficiency Results

Using Equations 4, 5 and 6 of Section 2.2 we
computed the relative efficiency metrics for every
method. The values for CNNDM experiments are
shown in Table 3. We see that TRANS is clearly the
most efficient, with highest σ, lowest θ and highest
ε. Its scores grow quickly (despite being relatively
low) and training times grow slowly (despite being
high) in both data intervals.

PCOV and GLOBEN manifest the slowest accu-
racy score gains (lowest σ), but GLOBEN comes
second in time efficiency. NATS on the other hand,
is very time inefficient, with highest θ and lowest
ε. OAGS scores of Table 4 reflect a similar situa-
tion. TRANS leads and PCOV is again the worst.
The values of the other two models appear some-
where in between.

It is not easy to explain the high score and time
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efficiency of TRANS. GLOBEN is also time effi-
cient but not score efficient. Both of them are the
biggest (highest number of parameters) and deep-
est (many layers) networks we tried. The exclu-
sive feature of TRANS is the lack of any recurrent
structure. GLOBEN and the other five make use
of at least one RNN in a certain phase. It is still
hasty to infer that recurrent networks hinder score
efficiency or that more attention boosts it.

An intuitive explanation could be the fact that
in general, performance of deeper networks scales
better with more data. It could also be that high-
capacity networks are faster in interpreting large
additions of training samples (thus low θ). In fact,
using more layers and bigger training datasets is
what has driven the progress of deep learning so-
lutions in many application areas.

We plan to investigate this issue further in the
future. One step could be to run more experiments
on even bigger data sizes and smaller data inter-
vals for checking at what point do accuracy scores
keep growing. Transformer implementations with
varying number of layers and other parameter se-
tups can be further examined.

Investigating data efficiency of similar solu-
tions to tasks like QA (Question Answering, Cor-
reia et al., 2018) with standard datasets such as
SQuAD (Rajpurkar et al., 2018) could also be
valuable.

6 Conclusions

In this paper, we defined three data efficiency met-
rics for a better evaluation of data-driven learning
models. We also proposed a simple scheme for
computing and reporting them, in addition to the
basic accuracy scores. Text summarization and ti-
tle generation tasks were chosen as a case study to
see what insights the proposed scheme and met-
rics could reveal. For title generation, we also pro-
cessed a dataset of about 35 million scientific titles
and abstracts, released with this paper.

We applied seven recent ATS methods on the
two tasks. According to our results, the two meth-
ods that mix RL concepts into the encoder-decoder
framework are the fastest and the most accurate. A
surprising result is the excellent efficiency of the
popular Transformer model. As future work, we
want to perform similar studies in analogous tasks
like MT or QA. We would also like to investigate
more in depth the Transformer model.
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