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Introduction

Welcome to the 1st Workshop on Discourse Structure in Neural NLG, a workshop held in conjunction
with INLG 2019, the International Conference on Natural Language Generation, in Tokyo, Japan.

Neural methods for natural language generation (NNLG) arrived with much fanfare a few years ago and
became the dominant method employed in the E2E NLG Challenge. While neural methods promise
flexible, end-to-end trainable models, recent studies have revealed their inability to produce satisfactory
output for longer or more complex texts as well as how the black-box nature of these models makes them
difficult to control, in contrast to traditional NLG architectures that make use of explicit representations of
discourse structure and/or sentence planning operations. As such, several papers have recently appeared
that explore how to incorporate intermediate structures into NNLG or otherwise improve coherence and
cohesion.

This workshop aims to encourage further research on enhancing quality in NNLG in terms of discourse
coherence and cohesion along with ways to make NNLG models easier to control. Topics covered will
include the limits of current end-to-end NNLG with respect to sentence planning and discourse structure;
methods for improving discourse coherence and cohesion in NNLG, for example by making better use
of discourse connectives, or by avoiding unnecessary repetition; methods for control and interpretability
of NNLG, for example by providing more explicit guidance or structure in the input; and better methods
for evaluating discourse coherence and cohesion in NNLG.

These proceedings include a total of four papers, chosen from seven submitted papers, each reviewed by
three members of the program committee. In addition to presentation of papers, the workshop will host
four invited talks by Thiago Castro Ferreira, Angela Fan, Behnam Hedayatnia and Lu Wang, as well as
three non-archival presentations, and a panel on remaining challenges.

We would like to thank everyone who contributed to the success of this workshop, especially the authors,
the program committee members, the organizers of the INLG 2019 conference and the INLG 2019
workshop chairs, and our sponsors, Saarland University and The Ohio State University.

—The Organizers
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Invited Talk

Data-to-text Natural Language Generation:
Traditional, Novel and Future Methods

Thiago Castro Ferreira
Tilburg center for Cognition and Communication (TiCC), Tilburg University

Department of Linguistics, Federal University of Minas Gerais

Data-to-text Natural Language Generation (NLG) is a consolidated field of research which normally
combines Computational Linguistics, Software Engineering and Artificial Intelligence methods to gen-
erate natural language from non-linguistic representations. Traditionally, most data-to-text applications
have been designed using a modular pipeline architecture, in which the non-linguistic input data is con-
verted into natural language through several intermediate transformations. In contrast, influenced by the
phenomenon of deep learning, recent neural models for data-to-text generation have been proposed as
end-to-end approaches, where the non-linguistic input is rendered in natural language with much less ex-
plicit intermediate representations in-between. Theoretically, we know that pipeline approaches are more
transparent and their modules can be reused across applications, whereas neural end-to-end approaches
may demand less manual labor and has registered state-of-the-art results in other text generation tasks,
such as Machine Translation. Although we know these pros and cons in theory, the question about which
kind of model empirically generates the most fluent and semantic texts from non-linguistic representa-
tions still remains unanswered. This lack of an empirical comparison is partially caused by the fact that
traditional benchmarks for the task only consist of raw non-linguistic representations in parallel with
their textual realizations, benefiting the evaluation of end-to-end approaches but not of pipeline ones,
since explicit intermediate representations are missing for the study of particular modules of the latter
architecture. In this presentation, I will introduce an annotation framework to enrich popular benchmarks
with explicit intermediate representations, which will help the development and evaluation of particular
pipeline modules as Discourse Ordering, Aggregation, Lexicalization, Referring Expressions Genera-
tion and Textual Realization. Based on a version of a popular data-to-text benchmark enriched with our
framework, I will also present the results of a comparison between pipeline and end-to-end approaches.
Finally, based on the findings of this project, I will project future challenges in the research of data-to-text
NLG in terms of data, applications and evaluation.
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Invited Talk

Convince Me If You Can:
Argument Generation with Content Planning and Style Specification

Lu Wang
CCIS, Northeastern University

Understanding, evaluating, and generating arguments are crucial elements of the decision-making and
reasoning process. A multitude of arguments and counter-arguments are constructed on a daily basis
to persuade and inform us on a wide range of issues. However, constructing persuasive arguments is
a challenging task for both human and computers, as it requires credible evidence, rigorous logical
reasoning, and sometimes emotional appeals.

In this talk, I will introduce our neural network-based argument generation model. It consists of a pow-
erful retrieval system and a novel two-step generation model, where a text planning decoder first decides
on the main talking points and a proper language style for each sentence, then a content realization
component constructs an informative and fluent paragraph-level argument. We believe that the proposed
argument generation framework will enable many compelling applications, including providing unbi-
ased perspectives on complex issues, debate coaching, and essay writing tutoring. Our framework is
also generic and has been applied to other text generation problems, such as Wikipedia article paragraph
generation and scientific paper abstract writing.
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Invited Talk

Hierarchical Structure in Story Generation
Angela Fan
Facebook AI

We explore the task of story generation: creative systems that can build coherent and fluent passages
of text about a topic. Using a dataset of 300k human-written stories paired with writing prompts, we
investigate hierarchical story generation. Our models first generate a premise and then transform it into
a passage of text. We develop models that improve the relevance of the story to the premise using a
novel form of model fusion and present improvements to self-attention that better capture long-range
context. Then, we build upon this work by proposing a coarse to fine mechanism for story generation,
decomposing the task into several steps. We first explicitly generate logical verb sequences to model
action in stories, then form these into sentences, and finally fill-in character names. We show that such
decompositions improve the consistency and diversity of generated stories.
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Invited Talk

Topical Chat: On the Structure of Knowledge Grounded Conversations
Behnam Hedayatnia

Amazon Alexa AI

Conversational agents like Amazon Alexa, Google Assistant and Apple Siri have been exploding in pop-
ularity over the past few years. However, much work remains in the area of social conversation over
a broad range of domains and topics. To advance the state of the art in open domain dialog, Amazon
launched the Alexa Prize, a 2.5-million-dollar university competition where selected university teams
were challenged to build conversational agents, known as “socialbots”, to converse coherently and en-
gagingly with humans on popular topics such as Sports, Politics, Entertainment, Fashion and Technology
for 20 minutes. The Alexa Prize offers a unique opportunity to perform research and interact with real
user conversational data at scale. Over the past two years, we have learned that there are certain areas
that these bots could improve on such as topical depth, breadth and smooth topical transitions in order
to have deep and engaging conversations. Given this information, we formed a conversational dataset
where we can study how to create engaging conversations. We introduce Topical-Chat: a knowledge-
grounded human-human conversation dataset, where the underlying knowledge spans 8 broad topics.
Our dataset enables models to leverage world knowledge while conversing with humans leading to more
coherent and interesting conversations. We will present some modeling work using generative encoder-
decoder conversational models trained on Topical-Chat and perform automated and human evaluation
for benchmarking. Additionally we will present an analysis of Topical-Chat based on the knowledge
content selected and presented to humans as background knowledge.
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Maximizing Stylistic Control and Semantic Accuracy in NLG:
Personality Variation and Discourse Contrast

Vrindavan Harrison, Lena Reed, Shereen Oraby, Marilyn Walker
Natural Language and Dialogue Systems Lab

University of California Santa Cruz
Santa Cruz, CA, US

{vharriso, lireed, soraby, mawalker}@ucsc.edu

Abstract

Neural generation methods for task-oriented
dialogue typically generate from a mean-
ing representation that is populated using a
database of domain information, such as a ta-
ble of data describing a restaurant. While ear-
lier work focused solely on the semantic fi-
delity of outputs, recent work has started to ex-
plore methods for controlling the style of the
generated text while simultaneously achiev-
ing semantic accuracy. Here we experiment
with two stylistic benchmark tasks, generating
language that exhibits variation in personality,
and generating discourse contrast. We report a
huge performance improvement in both stylis-
tic control and semantic accuracy over the
state of the art on both of these benchmarks.
We test several different models and show that
putting stylistic conditioning in the decoder
and eliminating the semantic re-ranker used in
earlier models results in more than 15 points
higher BLEU for Personality, with a reduction
of semantic error to near zero. We also report
an improvement from .75 to .81 in controlling
contrast and a reduction in semantic error from
16% to 2%.

1 Introduction

Neural encoder-decoder models were originally
developed for machine translation (Sutskever
et al., 2014; Bahdanau et al., 2014a), but they have
also been shown to be successful in related natural
language generation (NLG) tasks such as realiz-
ing dialogue system utterances from meaning rep-
resentations (MRs) as shown for the restaurant do-
main in Table 1 (Dusek and Jurcı́cek, 2016). Re-
cent work in neural NLG has shown that stylistic
control is an important problem in its own right:
it is needed to address a well-known limitation of
such models, namely that they reduce the stylistic
variation seen in the input, and thus produce out-
puts that tend to be dull and repetitive (Li et al.,

Meaning Representation
name[Browns Cambridge], eatType[coffee shop],
food[Italian], customerRating[average], area[riverside],
familyFriendly[yes], near[Crowne Plaza Hotel]

E2E Dataset
Browns Cambridge is near Crowne Plaza Hotel.
Browns Cambridge has a three star rating. Browns
Cambridge is a family coffee shop.

Personality: Conscientious
Did you say Browns Cambridge? Well, i see, I think that
it is a coffee shop, also it has a decent rating, and it is
near Crowne Plaza Hotel kid friendly in riverside and
an Italian place.

Personality: Disagreeable
Come on, I am not sure. I mean Browns Cambridge is
an Italian place, also it has a damn average rating. It is
near Crowne Plaza Hotel.

Personality: Unconscientious
Oh God I don’t know! Browns Cambridge is a coffee
shop, also it is family friendly near Crowne Plaza Hotel,
also it is an Italian place in riverside, also it has like, a
decent rating.

Table 1: Sample meaning representation with a realiza-
tion from the E2E Challenge Dataset and three stylistic
personality realizations.

2016). Here we compare different methods for
directly controlling stylistic variation when gener-
ating from MRs, while simultaneously achieving
high semantic accuracy.

Tables 1 and 2 illustrate the two stylistic bench-
mark datasets that form the basis of our exper-
imental setup. Table 1 shows an example MR
with three surface realizations: the E2E realization
does not target a particular personality, while the
other two examples vary stylistically according to
linguistic profiles of personality type (Pennebaker
and King, 1999; Furnham, 1990; Mairesse and
Walker, 2011). Table 2 shows an example MR
with two surface realizations that vary stylistically
according to whether the discourse contrast rela-
tion is used (Nakatsu and White, 2006; Howcroft
et al., 2013). Both of these benchmarks provide
parallel data that supports experiments that hold
constant the underlying meaning of an utterance,
while varying the style of the output text. In

1



Meaning Representation
name[Brown’s Cambridge], food[Italian], customer-
Rating[3 out of 5], familyFriendly[no], price[moderate]

With Contrast Relation
Browns Cambridge is an Italian restaurant with aver-
age customer reviews and reasonable prices, but it is
not child-friendly.

Without Contrast Relation
Browns Cambridge serves Italian food in moderate
price range. It is not kid friendly and the customer rat-
ing is 3 out of 5.

Table 2: A sample meaning representation with con-
trastive and non-contrastive surface realizations.

contrast, other tasks that have been used to ex-
plore methods for stylistic control such as machine
translation or summarization (known as text-to-
text generation tasks) do not allow for such a clean
separation of meaning from style because the in-
puts are themselves surface forms.

We describe three methods of incorporat-
ing stylistic information as side constraints into
an RNN encoder-decoder model, and test each
method on both the personality and contrast stylis-
tic benchmarks. We perform a detailed compara-
tive analysis of the strengths and weaknesses of
each method. We measure both semantic fidelity
and stylistic accuracy and quantify the tradeoffs
between them. We show that putting stylistic con-
ditioning in the decoder, instead of in the encoder
as in previous work, and eliminating the seman-
tic re-ranker used in earlier models results in more
than 15 points higher BLEU for Personality, with
a reduction of semantic error to near zero. We
also report an improvement from .75 to .81 in con-
trolling contrast and a reduction in semantic error
from 16% to 2%. To the best of our knowledge, no
prior work has conducted a systematic comparison
of these methods using such robust criteria specif-
ically geared towards controllable stylistic varia-
tion. We delay a detailed review of prior work to
Section 4 when we can compare it to our own.

2 Models and Variants

In the recent E2E NLG Challenge shared task,
models were tasked with generating surface forms
from structured meaning representations(Duek
et al., 2019). The top performing models were all
RNN encoder-decoder systems. Our model also
follows a standard RNN Encoder–Decoder model
(Sutskever et al., 2014; Bahdanau et al., 2014a)
that maps a source sequence (the input MR) to a
target sequence.

2.1 Model
Our model represents an MR as a sequence x =
(x1, x2, . . . xn) of slot-value pairs. The genera-
tor is tasked with generating a surface realization
which is represented as a sequence y of tokens
y1, y2, . . . ym. The generation system models the
conditional probability p(y|x) of generating the
surface realization y from some meaning repre-
sentation x. Thus, by predicting one word at a
time, the conditional probability can be decom-
posed into the conditional probability of the next
token in the output sequence:

p(y|x) =

m∏

t=1

p(yt|y1, y2, . . . yt−1, x) . (1)

We are interested in exercising greater control
over the characteristics of the output sequence
by incorporating side constraints into the model
(Sennrich et al., 2016). The side constraints c act
as an additional condition when predicting each
token in the sequence. In this case, the condi-
tional probability of the next token in the output
sequence is given by:

p(y|x, c) =

m∏

t=1

p(yt|y1, y2, . . . yt−1, x, c) . (2)

In Section 2.2 we describe three methods of com-
puting p(y|x, c) .

Encoder. The model reads in an MR as a se-
quence of slot-value pairs. Separate vocabularies
for slot-types and slot values are calculated in a
pre-processing step. Each slot type and slot value
are encoded as one-hot vectors which are accessed
through a table look-up operation at run-time.
Each slot-value pair is encoded by first concate-
nating the slot type encoding with the encoding of
its specified value. Then the slot-value pair is en-
coded with an RNN encoder. We use a multi-layer
bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997) to encode the input sequence of MR
slot-value pairs. The hidden state h̄i is represented
as the concatenation of the forward state

−→
hi and

backward state
←−
hi . Specifically, h̄i = (

−→
hi ,
←−
hi) .

Decoder. The decoder is a uni-directional
LSTM. Attention is implemented as in (Luong
et al., 2015). We use a global attention where the
attention scores between two vectors a and b are
calculated as aTW b, where W is a model param-
eter learned during training.

2



Figure 1: Attentional Encoder-Decoder architecture
with each of the three side constraint implementations
shown. The output sequence X, Y, Z is being gener-
ated from an MR represented as an input sequence of
attribute value pairs.

2.2 Side Constraints

Recent work has begun to explore methods for
stylistic control in neural language generation, but
there has been no systematic attempt to contrast
different methods on the same benchmark tasks
and thereby gain a deeper understanding of which
methods work best and why. Here, we compare
and contrast three alternative methods for imple-
menting side constraints in a standard encoder-
decoder architecture. The first method involves
adding slot-value pairs to the input MR, and the
second involves extending the slot-value encod-
ing through a concatenation operation. In the third
method, side constraints are incorporated into the
model by modifying the decoder inputs. The
three side constraint implementation methods are
shown simultaneously in Figure 1. The orange
area refers to Method 1, the yellow areas corre-
sponds to Method 2, and the red areas corresponds
to Method 3.

Method 1: Token Supervision. This method
provides the simplest way of encoding stylistic
information by inserting an additional token that
encodes the side constraint into the sequence of
tokens that constitute the MR (Sennrich et al.,
2016). We add a new slot type representing
side-constraint to the vocabulary of slot-
types, and new entries for each of the possible side

Figure 2: Slot-value encoding extended with constraint.

constraint values to the vocabulary of slot values.

Method 2: Token Features. This method incor-
porates side constraints through use of a slot-value
pair feature. First we construct a vector represen-
tation c that contains the side constraint informa-
tion. Normally the individual slot-value pair en-
codings are built by concatenating the slot-type
with the slot-value as with Method 1. We mod-
ify each slot-value pair encoding of the MR by ex-
tending it with c, as seen in Figure 2.

Method 3: Decoder Conditioning. This
method incorporates side constraint information
into the generation process by adding additional
inputs to the LSTM decoder. Traditionally, at the
t-th time step a LSTM decoder takes two inputs.
One input is the previous ground truth token’s
embedding wt−1, and the other is a context vector
dt which is an attention-weighted average of the
encoder hidden states. A vector c containing
side constraint information is provided to the
decoder as a third input. Thus at each time step
the decoder’s hidden state h̃i is calculated as

h̃i = LSTM([wt−1; dt; c]) . (3)

3 Experiments: Varying Personality and
Discourse Structure

We perform two sets of experiments using two
stylistic benchmark datasets: one for personality,
and one for discourse structure, i.e., contrast. In
both cases, our aim is to generate stylized text
from meaning representations (MRs). In the per-
sonality experiments, the generator’s goal is to
vary the personality style of the output and accu-
rately realize the MR. The personality type is the
side constraint that conditions model outputs, and
is represented using a 1-hot encoding for the mod-
els that use side constraint Methods 2 and 3. For
the sake of comparison, we also train a model that
does not use conditioning (NOCON). In the dis-
course contrast experiments, the generator’s goal
is to control whether the output utterance uses the
discourse contrast relation. The side constraint is

3



Personality Realization

Meaning Repre-
sentation

name[The Eagle], eatType[coffee shop], food[English], priceRange[cheap], customer rat-
ing[average], area[riverside], familyFriendly[yes], near[Burger King]

Agreeable You want to know more about The Eagle? Yeah, ok it has an average rating, it is a coffee shop
and it is an English restaurant in riverside, quite cheap near Burger King and family friendly.

Disagreeable Oh god I mean, I thought everybody knew that The Eagle is cheap with an average rating, it’s
near Burger King, it is an English place, it is a coffee shop and The Eagle is in riverside, also it
is family friendly.

Conscientious I think that The Eagle is a coffee shop, it has an average rating and it is somewhat cheap in
riverside and an English restaurant near Burger King. It is rather kid friendly.

Unconscientious Yeah, I don’t know. Mmhm ... The Eagle is a coffee shop, The Eagle is cheap, it’s kind of in
riverside, it is an English place and The Eagle has an average rating. It is kind of near Burger
King.

Extravert The Eagle is a coffee shop, you know, it is an English place, family friendly in riverside and
cheap near Burger King and The Eagle has an average rating friend!

Table 3: Model outputs for each personality style for a fixed Meaning Representation (MR). The model was trained
using control Method 3.

a simple boolean: contrast, or no contrast. The
model is tasked with learning 1) which category of
items can potentially be contrasted (e.g., price and
rating can appear in a contrast relation but name
can not), and 2) which values are appropriate to
contrast (i.e., items with polar opposite values).

All models are implemented using PyTorch
and OpenNMT-py1(Klein et al., 2017). We use
Dropout (Srivastava et al., 2014) of 0.1 between
RNN layers. Model parameters are initialized us-
ing Glorot initialization (Glorot and Bengio, 2010)
and are optimized using stochastic gradient de-
scent with mini-batches of size 128. Beam search
with three beams is used during inference. We
implement multiple models for each experiment
using the methods for stylistic control discussed
in Section 2.2. We tune model hyper-parameters
on a development dataset and select the model
of lowest perplexity to evaluate on a test dataset.
All models are trained using lower-cased and de-
lexicalized reference texts. The sample model
outputs we present have been re-capitalized and
re-lexicalized using a simple rule based script.
Further details on model implementation, hyper-
parameter tuning, and data processing are pro-
vided as supplementary material.

3.1 Benchmark Datasets and Experiments

Personality Benchmark. This dataset provides
multiple reference outputs for each MR, where
the style of the output varies by personality type
(Oraby et al., 2018b).2 The styles belong to the
Big Five personality traits: agreeable, disagree-

1github.com/OpenNMT/OpenNMT-py
2nlds.soe.ucsc.edu/

stylistic-variation-nlg

able, conscientious, un-conscientious, and extro-
vert, each with a stylistically distinct linguistic
profile (Mairesse and Walker, 2010a; Furnham,
1990). Example model outputs for each person-
ality on a fixed MR are in Table 3.

The dataset consists of 88,855 train examples
and 1,390 test examples that are evenly distributed
across the five personality types. Each example
consists of a (MR, personality-label, reference-
text) tuple. The dataset was created using the
MRs from the E2E Dataset (Novikova et al., 2017)
and reference texts synthesized by PERSONAGE
(Mairesse and Walker, 2010b), a statistical lan-
guage generator capable of generating utterances
that vary in style according to psycho-linguistic
models of personality. The statistical generator
is configured using 36 binary parameters that tar-
get particular linguistic constructions associated
with different personality types. These are split
into aggregation operations that combine individ-
ual propositions into larger sentences, and prag-
matic markers which typically modify some ex-
pression within a sentence, e.g. tag questions or
in-group markers. A subset of these are illustrated
in Table 4: see Oraby et al. (2018b) for more de-
tail.

We conduct experiments using two control con-
figurations that differ in the granularity of control
that they provide. We call the first configuration
course-grained control, and the model is condi-
tioned using a single constraint: the personality la-
bel. The second configuration, called fine-grained
control, conditions the model using the personal-
ity label and Personage’s 36 binary control param-
eters as illustrated by Table 4, which provide fine-
grained information on the desired style of the out-
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Attribute Example
AGGREGATION OPERATIONS

”WITH” CUE X is in Y, with Z.
CONJUNCTION X is Y and it is Z. & X is Y, it is Z.
”ALSO” CUE X has Y, also it has Z.

PRAGMATIC MARKERS
ACK JUSTIFICATION I see, well
ACK YEAH yeah
CONFIRMATION let’s see ....., did you say X?
DOWN KIND OF kind of
DOWN LIKE like
EXCLAIM !
GENERAL SOFTENER sort of, somewhat, quite, rather
EMPHASIZER really, basically, actually, just
TAG QUESTION alright?, you see? ok?

Table 4: Example Aggregation and Pragmatic Opera-
tions

put text. The stylistic control parameters are not
updated during training. When operating under
fine-grained control, for side constraint Methods
2 and 3, the 1-hot vector that encodes personality
are extended with dimensions for each of the 36
control parameters. For Method 1 we insert 36 to-
kens, one for each parameter, to the beginning of
each input sequence, in addition to the single to-
ken that represents personality label.

Contrast Benchmark. This dataset provides ref-
erence outputs for 1000 MRs, where the style of
the output varies by whether or not it uses the dis-
course contrast relation.3 Contrast training set ex-
amples are shown in Table 2.

The contrast dataset is based on 15,000 exam-
ples from the E2E generation challenge, which
consists of 2,919 contrastive examples and 12,079
examples without contrast.4 We split the dataset
into train and development subsets using a 90/10
split ratio. The test data is composed of a set of
500 MRs that contain attributes that can be con-
trasted, whose reference outputs use discourse-
contrast (Reed et al., 2018). The test set also con-
tains a set of 500 MRs that were selected from the
E2E development set that do not use discourse-
contrast. We crowd-sourced human-generated ref-
erences for the contrastive test set, and used the
references from the E2E dataset for the noncon-
trastive test set.5

3nlds.soe.ucsc.edu/
sentence-planning-NLG

4www.macs.hw.ac.uk/InteractionLab/E2E/
5We will make our test and partitions of training data

available to the research community if this paper is accepted.

3.2 Results

For both types of stylistic variation, we evaluate
model outputs using automatic metrics targeting
semantic quality, diversity of the outputs, and the
type of stylistic variation the model is attempting
to achieve. We also conduct two human evalu-
ations. In the tables and discussion that follow,
we refer to the models that employ each of the
side constraint methods, e.g., Methods 1, 2, and
3, described in Section 2.2, using the monikers
M{1,2,3}. The model denoted NoCon refers to
a model that uses no side constraint information.
Sample model outputs from the personality ex-
periments are shown in Table 3. The outputs are
from the M3 model when operating under the fine
grained control setting. Outputs from model M2
of the contrast experiment are shown in Table 8.

3.2.1 Semantic Quality

Model BLEU SER H AGG PRAG
Oraby et al. (2018b)

NoCon 27.74 - 7.87 .56 .08
coarse 34.64 - 8.47 .64 .48
fine 37.66 - 8.58 .71 .55

This Work
Train - - 9.34 - -
NoCon 38.45 0 7.70 .44 .14

coarse control
M1 49.04 0.000 8.49 .57 .51
M2 48.10 0.002 8.52 .62 .50
M3 49.06 0.009 8.50 .60 .50

fine control
M1 55.30 0.004 8.77 .82 .94
M2 52.29 0.103 8.80 .84 .93
M3 55.98 0.014 8.74 .84 .93

Table 5: Automatic evaluation on Personality test set.
course and fine refer to the specificity of the control
configuration.

First, we measure general similarity between
model outputs and gold standard reference texts
using BLEU, calculated with the same evaluation
script6 as Oraby et al. (2018b). For the person-
ality experiment, the scores for each conditioning
method and each control granularity are shown in
Table 5, along with the results reported by Oraby
et al. (2018b). For the contrast experiment, the
scores for each conditioning method are shown in
Table 6, where we refer to the model and results of
Reed et al. (2018) as M-Reed. Reed et al. (2018)
do not report BLEU or Entropy (H) measures.

We first discuss the baselines from previous
work on the same benchmarks. Interestingly, for

6github.com/tuetschek/e2e-metrics
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Personality, our NOCON model gets a huge per-
formance improvement of more than 11 points in
BLEU (27.74 → 38.45) over results reported by
Oraby et al. (2018a). We note that while the un-
derlying architecture behind our experiments is
similar to the baseline described by Oraby et al.
(2018a), we experiment with different parameters
and attention mechanisms. Reed et al. (2018) and
Oraby et al. (2018b) also use an LSTM encoder-
decoder model with attention, but they both im-
plement their models using the TGen7(Dušek and
Jurcicek, 2016) framework with its default model
architecture. TGen uses an early version of Ten-
sorFlow with different initialization methods, and
dropout implementation. Moreover, we use a dif-
ferent one-hot encoding of slots and their val-
ues, and we implement attention as in Luong
et al. (2015), whereas TGen uses Bahdanau et al.
(2014b) attention by default. Side constraints are
incorporated into the TGen models in two ways:
1) using a new dialogue act type to indicate the
side constraints, and 2) a feed-forward layer pro-
cesses the constraints and, during decoding, atten-
tion is computed over the encoder hidden states
and the hidden state produced by the feed-forward
layer. The TGen system uses beam-search and an
additional output re-ranking module.

We now compare the performance of our own
model results in Table 5. As would be expected,
NoCon has the lowest performance overall of all
models, with a BLEU of 38.45. With both coarse
control and fine-grained control, M3 and M2 are
the highest and lowest performers, respectively.
For the contrast experiment, M2 and M3 have very
similar values for all rows of Table 6. M2 has the
highest BLEU score of 17.32 and M3 has 17.09.
M1 is consistently outperformed by both M2 and
M3. All side constraint models outperform No-
Con. We note that the contrast task achieves much
lower scores on BLEU. This maybe due to the rel-
atively small number of contrast examples in the
training set, but it is also possible that this indi-
cates the large variety of ways that contrast can be
expressed, rather than poor model performance.
We show in a human evaluation in Section 3.2.2
that the contrast examples are fluent and stylisti-
cally interesting.

A comparison of our results versus those re-
ported by Oraby et al. (2018b) are also shown in
Table 5. Note that our model has an over 14 point

7github.com/UFAL-DSG/tgen

margin of improvement in BLEU score when us-
ing coarse control and a more than 18 point im-
provement when using fine-grained control. Our
models can clearly use the conditioning informa-
tion more effectively than earlier work.

Model BLEU SER H
Train - 10.68

Contrast Data
M-Reed - .16 -
NoCon 15.80 .053 8.09

M1 16.58 .055 8.08
M2 17.32 .058 8.03
M3 17.09 .058 7.93

Non Contrast Data
NoCon 26.58 .025 7.67

M1 26.58 .023 7.56
M2 26.35 .017 7.68
M3 26.04 .035 7.40

Table 6: Automatic evaluation on Contrast test set.

Slot Error Rate. While the n-gram overlap met-
rics are able to measure general similarity between
gold references and model outputs, they often do
not do a good job at measuring semantic accuracy.
Slot error rate (SER)(Wen et al., 2015; Reed et al.,
2018) is a metric similar to word error rate that
measures how close a given realization adheres to
its MR. SER8 is calculated using the slot aligner
released9 by Juraska et al. (2018) to count the
number of attributes (slots) and their values that
correctly (and incorrectly) occur in a given surface
realization. Please refer to Supplementary Materi-
als, Section A.1 for the definition of SER.

We evaluate each model using SER with results
in Tables 5 and 6. We first note that all the SERs
for both tasks are extremely low and that only M2
under fine control performs worse with an SER of
.10. The models are clearly learning to realize the
intended MRs. M1 has the best SER scores in all
experiment conditions. In the contrast experiment,
M2 and M3 are practically equivalent.

Model Acc Contrast Attempts
M-Reed .75 422
M1 .74 437
M2 .79 485
M3 .81 474

Table 7: Contrast accuracy out of 500 examples.

8A formal definition of SER is provided in the supplemen-
tary materials.

9github.com/jjuraska/slug2slug
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Meaning Representation Realization

name[Aromi], eatType[restaurant], rating[low], fami-
lyFriendly[yes]

Aromi is a family friendly restaurant but the customer rating
is low.

name[Fitzbillies], cuisine[English], price[more than
$30], eatType[pub], familyFriendly[yes]

Fitzbillies is a pub that serves English food, is children friendly,
but the price range is more than $30.

name[Clowns], price[more than $30], rating[high],
familyFriendly[no], near[Clare Hall]

Clowns is near Clare Hall. It has a high customer rating but is
not child friendly.

name[Cotto], cuisine[English], location[riverside],
price[high], eatType[coffee shop], rating[5 out of 5],
near[The Portland Arms]

Cotto is a English coffee shop near The Portland Arms in the
riverside. It has a high price range but a customer rating of 5
out of 5.

Table 8: Sample outputs from model M2 with contrast relation in bold.

3.2.2 Quality in Variation

In the previous section we tested the ability of the
side constraint models to produce semantically ac-
curate outputs. In this section we evaluate the ex-
tent to which the side constraint models produce
stylistically varied texts. We evaluate variation us-
ing two measures: 1) Entropy, and 2) counts on
model outputs for particular stylistic targets.
Entropy. Our goal is NLG models that produce
stylistically rich, diverse outputs, but we expect
that variation in the training data will be aver-
aged out during model training. We quantify the
amount of variation in the training set, and also in
the output references from the test set MRs using
Entropy10, H , where a larger entropy value indi-
cates a larger amount of linguistic variation pre-
served in the test outputs.

The results are shown in the H column of Ta-
bles 5 and 6. For the personality experiment, the
training corpus has 9.34 entropy and none of the
models are able to match its variability. When
using fine-grained control M2 does the best with
8.52 but all side constraint models are within 0.03.
When using coarse control M2 has the highest en-
tropy with 8.80. Our models with fine control out-
perform Oraby et al. (2018b) in terms of entropy.
For the contrast experiment, NoCon has the high-
est entropy at 8.09, but the differences are small.
Counts of Stylistic Constructions. Entropy mea-
sures variation in the corpus as a whole, but we
can also examine the model’s ability to vary its
outputs in agreement with the stylistic control pa-
rameters. Contrast accuracy measures the ratio of
valid contrast realizations to the number of con-
trasts attempted by the model. We determine valid
contrasts using the presence of polar opposite val-
ues in the MR and then inspecting realization of
those values in the model output.

10A formal definition of our Entropy calculation is pro-
vided with the supplementary materials.

Table 7 shows the results. The row labeled M-
Reed refers to the results reported by Reed et al.
(2018). NoCon rarely attempts contrast because
there is no way to motivate it to do so, and it there-
fore produces no contrast. Contrast attempts are
out of 500 and M2 has the most at 485. In terms
of contrast accuracy M3 is the best with 81%.

When comparing our model performance to M-
Reed, models M{1,2,3} make more contrast at-
tempts. M1 and M-Reed have similar contrast
accuracy with 74% and 75%, respectively. The
higher performance of our models is particularly
impressive since the M-Reed models see roughly
7k contrast examples during training, which is
twice the amount that our models see.

For personality, we examine each model’s abil-
ity to vary its outputs in agreement with the stylis-
tic control parameters by measuring correlations
between model outputs and test reference texts in
the use of the aggregation operations and prag-
matic markers, two types of linguistic construc-
tions illustrated in Table 4, and associated with
each personality type. The results for these lin-
guistic constructions over all personality types are
shown in the last two columns (Agg, Prag) of Ta-
ble 5. The supplementary material provides de-
tails for each personality. Our results demon-
strate a very large increase in the correlation of
these markers between model outputs and refer-
ence texts compared to previous work, and also
further demonstates the benefits of fine-grained
control, where we achieve correlations to the ref-
erence texts as high as .94 for pragmatic markers
and as high as .84 for aggregation operations.

Methods Comparison. The results in Tables 5
and 7 reveal a general trend where model perfor-
mance in terms of BLEU and entropy increases
as more information is given to the model as side
constraints. At the same time, the slot error rates
are somewhat higher, indicating the difficulty of
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simultaneously achieving both high semantic and
stylistic fidelity. Our conclusion is that Method
3 performs the best at controlling text style, but
only when it has access to a large training dataset,
and Method 2 performs better in situations where
training data is limited.
Human evaluation. We perform human evalua-
tion of the quality of outputs for the M3 model
with a random sample of 50 surface realizations
for each personality, and 50 each for contrast and
non-contrast outputs for a total of 350 examples.
Three annotators on Mechanical Turk rate each
output for both interestingness and fluency (ac-
counting for both grammaticality and naturalness)
using a 1-5 Likert scale.

Human evaluation results are shown in Table 9
for the personality experiment and Table 10 for
contrast. The tables show average annotator rat-
ing in each category. For the personality outputs,
each personality has similar fluency ratings with
Conscientious slightly higher. The model outputs
for the contrast relation have higher average rat-
ings for Fluency than the non-contrastive realiza-
tions. For interestingness, we compare both the
personality styles and the contrastive style to the
basic style without contrast. The results show that
non-contrast (3.07), the vanilla style, is judged as
significantly less interesting than the personality
styles (ranging from 3.39 to 3.51) or the use of dis-
course contrast (3.45) (p-values all less than .01).

Con. Dis. Agr. Ext. Unc. avg
Fluent 3.77 3.38 3.53 3.38 3.35 3.48
Interest 3.39 3.40 3.51 3.46 3.45 3.44

Table 9: Human evaluation results for personality.

Non-contrast Contrast

Fluent 4.21 4.38
Interest 3.07 3.45

Table 10: Human evaluation results for discourse con-
trast.

4 Related Work

Stylistic control is important as a way to address a
well-known limitation of vanilla neural NLG mod-
els, namely that they reduce the stylistic variation
seen in the input, and thus produce outputs that
tend to be dull and repetitive (Li et al., 2016).
The majority of other work on stylistic control
has been done in a text-to-text setting where MRs
and corpora with fixed meaning and varying style

are not available (Fan et al., 2017; Iyyer et al.,
2018; Wiseman et al., 2018; Ficler and Goldberg,
2017). Sometimes variation is evaluated in terms
of model performance in some other task, such
as machine translation or summarization. Herzig
et al. (2017) also control personality in the con-
text of text-2-text generation in customer care di-
alogues. Kikuchi et al. (2016) control output se-
quence length by adding a remaining-length en-
coding as extra input to the decoder. Sennrich
et al. (2016) control linguistic honorifics in the tar-
get language by adding a special social formality
token to the end of the source text. Hu et al. (2017)
control sentiment and tense (past, present, future)
in text2text generation of movie reviews. Ficler
and Goldberg (2017) describe a conditioned lan-
guage model that controls variation in the stylistic
properties of generated movie reviews.

Our work builds directly on the approach and
benchmark datasets of Reed et al. (2018) and
Oraby et al. (2018b). Here we compare directly
to the results of Oraby et al. (2018b), who were
the first to show show that a sequence-to-sequence
model can generate utterances from MRs that
manifest a personality type. Reed et al. (2018) also
develop a neural model for a controllable sentence
planning task and run an experiment similar to our
contrast experiment. Here, we experiment exten-
sively with different control methods and present
large performance improvements on both tasks.

5 Conclusion

We present three different models for stylistic
control of an attentional encoder-decoder model
that generates restaurant descriptions from struc-
tured semantic representations using two stylis-
tic benchmark datasets: one for personality vari-
ation and the other for variation in discourse con-
trast. We show that the best models can simultane-
ously control the variation in style while maintain-
ing semantic fidelity to a meaning representation.
Our experiments suggest that overall, incorporat-
ing style information into the decoder performs
best and we report a large performance improve-
ment on both benchmark tasks, over a large range
of metrics specifically designed to measure se-
mantic fidelity along with stylistic variation. A hu-
man evaluation shows that the outputs of the best
models are judged as fluent and coherent and that
the stylistically controlled outputs are rated signif-
icantly more interesting than more vanilla outputs.
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A Supplementary Materials:
Maximizing Stylistic Control and
Semantic Accuracy in Dialogue
Generation: Conditional Decoding for
Personality Variation and Discourse
Contrast

A.1 Calculating Slot Error Rate
Multiple methods of measuring SER have been
proposed (Wen et al., 2015; Reed et al., 2018).
In this work we use a method similar to the one
described by Reed et al. (2018). First, we define
the following types of errors: substitutions (realiz-
ing an attribute with an incorrect value), deletions
(failing to mention an attribute), repeats, and hal-
lucinations (mentioning an attribute that does not
appear in the MR).

The SER score for a given (MR, text realiza-
tion) pair is calculated by first calculating S, D,
R, and H̃ , which are the amounts of substitu-
tions, deletions, repeats, and hallucinations, re-
spectively. The SER formula is then given as:

SER =
S + D + R + H̃

N
(4)

where N is the number of slots in the MR. Note
that using this method can result in SER values
greater than one, since it is possible for there to be
more errors than slots in the MR.

A.2 Calculating Entropy
To calculate Shannon Text Entropy H , we first
construct the corpus vocabulary V of all unigrams,
bigrams, and trigrams. Then H is given by the
equation

H = −
∑

a∈V

ka
N
· log2(

ka
N

) (5)

where N is the sum total of occurrences for all
terms in V , and ka is the number of occurrences
for the term a.

A.3 Model Implementation Details
Model Implementation. All models are imple-
mented using PyTorchand OpenNMT-py11 (Klein
et al., 2017). We use Dropout (Srivastava et al.,
2014) of 0.1 between RNN layers. Model pa-
rameters are initialized using Glorot initialization
(Glorot and Bengio, 2010) and are optimized us-
ing stochastic gradient descent with mini-batches

11github.com/OpenNMT/OpenNMT-py

of size 128. Beam search with three beams is
used during inference. We implement multiple
models for each experiment using the methods for
stylistic control discussed in Section 2.2. We tune
model hyper-parameters on a development dataset
and select the model of lowest perplexity to eval-
uate on a test dataset. All models are trained us-
ing lower-cased and de-lexicalized reference texts.
The sample model outputs we present have been
re-capitalized and re-lexicalized using a simple
rule based script.

Hyper Parameter Tuning. Hyper parameters
are tuned using a grid search over the following
parameter space:

• RNN layers over the range [1, 2]

• RNN size over the range [150, 200, 250, 300]

We tune the number RNN layers and RNN size by
training a model for each combination of layers
and RNN size (8 models). We use the model of
lowest development dataset perplexity to evaluate
on the test dataset.

This parameter tuning process is performed for
each of the side constraint methods and style pa-
rameter configuration (fine control, coarse con-
trol). The resulting hyper parameter values are
shown in Table 11

Model RNN layers RNN size
NoCon 2 150

coarse control
M1 1 200
M2 1 200
M3 2 150

fine control
M1 1 200
M2 2 200
M3 1 200

Table 11: Model hyper-parameter values.

A.4 Data Processing
The data is pre-processed using Stanford
CoreNLP (Manning et al., 2014).

A.5 Linguistic constructions: Pragmatic
Markers and Aggregation Operations

Psycholinguistic studies have shown these mark-
ers to be indicative of the language of people with
different personality traits (Pennebaker and King,
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1999; Furnham, 1990). For example, the use of
pragmatic markers has been shown to effect per-
ceptions of personality traits such as politeness,
friendliness, extraversion, and enthusiasm (Ober-
lander and Gill, 2004; Levinson et al., 1987; De-
waele and Furnham, 1999). Using a method sim-
ilar to Oraby et al. (2018b), we count the occur-
rences of pragmatic markers and aggregation oper-
ations in the model outputs. Then we average the
counts within each personality category and cal-
culate the Pearson correlation between the model
output averages and the gold reference text aver-
ages.

The Pearson correlation r for pragmatic mark-
ers can be seen in Table 12. All values of r are sig-
nificant with p-values less than 0.01. The model
with no side constraints has r ≤ 0.17 for all per-
sonalities except for conscientious with r = 0.81.
This suggests that the un-constrained model picks
one personality to optimize – conscientious in this
case. For both control granularities each of the
side constraint models have similar performance.
Table 12 also shows the correlation results re-
ported by Oraby et al. (2018b) where we observe a
marked improvement in the pragmatic marker cor-
relations of our models compared to theirs.

Pearson correlations for aggregation operations
are shown in Table 13. Again, the test for corre-
lation results in p-values less than 0.01 for each
personality type. Here, the Token model of Oraby
et al. (2018b) outperforms all three of our models
when conditioning on only the personality label
(coarse control).

Model AGR CON DIS EXT UNC avg
Oraby et al

NoSup 0.05 0.59 -0.07 -0.06 -0.11 .08
Token 0.35 0.66 0.31 0.57 0.53 .48
Context 0.28 0.67 0.40 0.76 0.63 .55

This Work - coarse control
NoCon .17 .81 -.08 -.08 -.11 .14
M1 .44 .81 .17 .79 .32 .51
M2 .44 .81 .17 .83 .27 .50
M3 .40 .81 .14 .83 .31 .50

This Work - fine control
M1 .87 .94 .98 .99 .90 .94
M2 .87 .94 .98 .99 .88 .93
M3 .87 .93 .97 .99 .90 .93

Table 12: Correlations between test examples and
model outputs for pragmatic markers.

Model AGR CON DIS EXT UNC avg
Oraby et al

NoSup 0.78 0.80 0.13 0.42 0.69 .56
Token 0.74 0.74 0.57 0.56 0.60 .64
Context 0.83 0.83 0.55 0.66 0.70 .71

This Work - coarse control
NoCon 0.70 0.73 -0.19 0.35 0.60 .44
M1 0.67 0.70 0.58 0.56 0.36 .57
M2 0.61 0.70 0.58 0.60 0.60 .62
M3 0.64 0.68 0.58 0.59 0.49 .60

This Work - fine control
M1 0.84 0.91 0.78 0.81 0.78 .82
M2 0.89 0.92 0.78 0.79 0.84 .84
M3 0.86 0.91 0.79 0.82 0.81 .84

Table 13: Correlations between test examples and
model outputs for aggregation operations.
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Abstract

Previous work on visual storytelling mainly
focused on exploring image sequence as evi-
dence for storytelling and neglected textual ev-
idence for guiding story generation. Motivated
by human storytelling process which recalls
stories for familiar images, we exploit textual
evidence from similar images to help gener-
ate coherent and meaningful stories. To pick
the images which may provide textual experi-
ence, we propose a two-step ranking method
based on image object recognition techniques.
To utilize textual information, we design an
extended Seq2Seq model with two-channel
encoder and attention. Experiments on the
VIST dataset show that our method outper-
forms state-of-the-art baseline models without
heavy engineering.

1 Introduction

Multi-image visual storytelling is extended from a
long trend of research in image captioning and has
attracted considerable attention in recent years.

To generate the stories, previous work em-
ployed a Seq2Seq framework, using image en-
coder to encode the image sequences and sentence
decoder to generate stories from encoded image
sequences. Most of the researches (Smilevski
et al., 2018; Kim et al., 2018; Gonzalez-Rico and
Pineda, 2018; Wang et al., 2018b; Huang et al.,
2018; Yu et al., 2017) focused on improving the
decoder, and took simple concatenation or an
LSTM as encoder. With such design, only images
are utilized as input in generating the stories.

However, through our observations, the images
alone are inadequate for visual storytelling. Sto-
rytelling is creative and diversified, so background
knowledge is often required to convert a few im-
ages to a complete story. However, extracting such
background knowledge is very difficult, especially
with limited data.

To alleviate such drawback, it is important to
take previous experience of story-writing into ac-
count. Imagining when a person starts to tell sto-
ries from images, he/she may not understand the
implications in those images and fail to write a
proper story. However, if he/she had heard others
telling stories, he/she may be able to tell a story
from the stories of similar image sequences he/she
previously heard. Motivated by such process, we
propose to utilize the large corpus as an inventory
and improve the visual storytelling model by in-
cluding stories from similar image sequences in
corpus as input to strengthen the encoder design.

On building such models, two major problems
need to be solved: (1) how to measure the related-
ness of stories from the image sequence pair; (2)
how to incorporate the textual information into the
model so as to fully exploit it for storytelling.

To handle the first problem of picking the most
relevant stories, we propose a two-step ranking
method for their image sequences. We first fil-
ter out the ’dissimilar’ images with object co-
occurrence, and then sort the remaining candidates
with feature vectors. For the second problem of in-
corporating textual information, we design an en-
hanced Seq2Seq model with two-channel encoder,
one for visual input and the other for textual input.

We conduct experiments on the VIST dataset
(Huang et al., 2016), a widely used multi-image
visual storytelling dataset. We show that with tex-
tual evidence, our model outperforms our base-
lines and state-of-the-art models.

2 Method

Our method is based on the Seq2Seq framework,
composed of a two-channel encoder and a RNN-
based decoder. The whole architecture of our
method is shown in Figure 1.

In the two-channel encoder, one channel en-
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Figure 1: Overall architecture of our proposed method.

codes visual evidence from the image sequence
and the other encodes textual evidence from rel-
evant stories. In the decoder, we adopt another
RNN model to generate stories from the two en-
coder outputs. To integrate the two types of infor-
mation, we use Luong attention (2015) to dynam-
ically attend to the stories. There are also other
modifications, as further explained in 2.1.

To collect the textual evidence for encoder in-
put, we design a selection method described in
Section 2.2 to get stories from the most similar
images.

2.1 Visual Storytelling Framework

Most previous works on visual storytelling fol-
lowed the Seq2Seq framework, taking image
recognition models such as ResNet (He et al.,
2015) or Inception (Szegedy et al., 2016) to ex-
tract image features, feeding them into a story-
level RNN encoder, bringing encoder output to the
sentence-level decoder throughout the generation
of the corresponding sentence.

We base our model on this framework with two
key modifications: first, we design a text encoder
to model the most similar stories which may pro-
vide evidence for story generation; second, we
adopt the Luong attention Luong et al. (2015)
mechanism on the textual side of encoded input
to better utilize its information.

Text Encoder We use an RNN encoder to model
the textual inputs. For each story, we feed its 5
sentences into the RNN one by one, retaining the
hidden state across sentences. We take the RNN
output of every step through the fully connected
layers as encoder output.

Joint Decoder Different from previous meth-
ods, our decoder depend on both image and text
encoder. The incorporation of the two encoders is
the key problem. Here we adopt two approaches
to solve this problem. First, we use the concatena-
tion of the image encoder output, the embedding
of last word and the last hidden states of sentence
encoder as the input of the decoder. Second, we
design a Luong attention layer in decoder to at-
tend to sentence encoder outputs. Formally, the
concatenation decoder can be denoted as:

sit = DEC(sit−1, [emb
i
t−1, sent

i
lensenti

, imgi])

(1)

and the downstream attention mechanism can be
denoted as:

weightst = sit · senti (2)

Ct = Softmax(weightt) · senti (3)

πβ(w
i
t|wi1:t−1) = softmax(Wc · [Ct, sit] + bc)

(4)

where DEC is decoder RNN, sit is RNN output
for image i at step t, emb is word embedding, img
and sent are image and sentence encoder output,
Wc and bc are appended linear matrix and bias.

To be noticed, in our model, both decoder RNN
and image encoder are generic and not limited to
one particular design. The image encoder can be
of arbitrary architecture as long as it generates a
vector for each image, and the decoder RNN can
also be designed flexibly as long as it takes a vec-
tor as input and outputs another vector at each step.

Specifically, we implemented these modifica-
tions on two popular systems: GLACNet (2018),
the group with best human evaluation scores in Vi-
sual Storytelling Challenge NAACL 2018, wwho
use residual encoder to generate GLOCAL vec-
tors; XE-ss, a baseline model of Wang et al.
(2018b), who proposed to improve performance
with reinforcement model (AREL). We call our
two models GLAC-TG and XE-TG. (see section
3.1 for details).

2.2 Textual Evidence Selection
To provide strong textual evidence for story gener-
ation, we aim to select stories which are most sim-
ilar to the expected story for the given sequence of
images.

With the assumption that similar images usually
have similar stories, we take stories of similar im-
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ages as similar stories. While it’s most straight-
forward to choose the image with the most similar
feature vector, it’s shown through experiments 2
that comparing each pair of feature vectors for a
large image corpus would be computationally ex-
pensive and suffer severely from false positives.
Therefore, we propose to employ a two-step filter-
and-sort method to pick out the most similar sto-
ries.

2.2.1 Filter
In the filter step, we use object co-occurrence
to discriminate ’roughly similar’ image sequences
from ’dissimilar’ ones. Here we filter by image ob-
ject information because it conforms with the intu-
ition that images with similar objects describe rel-
evant events. It is also because object information
has been widely used in image captioning as help-
ful information on images. (Mishra and Liwicki,
2019; Liu et al., 2018; Jiang et al., 2018; Anderson
et al., 2017; Yin and Ordonez, 2017; Wang et al.,
2018a).

We first get the types and numbers of objects
in each image using an object recognition model,
and then we measure image similarity with a cat-
egorical criterion and a numerical criterion. For-
mally, Oa and Ob are the set of objects present in
image a and b respectively, ckx is the count of oc-
currence for object k in image x. The categorical
criterion concerns the types of common objects,
namely scorecat =

|Oa∩Ob|√
|Oa||Ob|

; the numerical cri-

terion concerns the differences in times of occur-
rence, namely scorenum = |Oa||Ob|

|Σk∈(Oa∪Ob)
(cka−ckb )2| .

Additionally, we set similarity scores to 0 when
no objects are recognized in either image.

As mentioned above, we compare images in se-
quences. We measure the similarity between the
sequences as the average score of its images. By
filtering on the corpus and keeping only the image
sequences scored on the top, we narrow down our
candidate sequences to a modest size.

2.2.2 Sort
After obtaining a small set of roughly similar im-
age sequences, we use feature vectors to rank sim-
ilarity more precisely. Here we experiment on two
approaches: a simple cosine similarity measure
and a Bi-Linear model with Meteor score as gold
annotation inspired by Cao et al. (2018). Empir-
ically we find that Bi-Linear model shows no ad-
vantage against cosine similarity. Thus, we sim-

ply sort the roughly similar sequences with cosine
similarity for downstream models.

3 Experiments

3.1 Experiment Setup

Our experiment is built on VIST (Huang et al.,
2016) dataset, which is organized in 5-image se-
quences annotated with 5-sentence complete sto-
ries. The dataset size is 40098 for train, 4988 for
validation and 5050 for test.

In GLAC-TG, we use LSTM RNN model with
hidden size 1024, embedding size 256 and learn-
ing rate 1 × 10−3; in XE-TG. We use GRU RNN
model with hidden size 512, embedding size 512
and learning rate 4× 10−4.

In both models, we use ResNet152 (He et al.,
2015) pre-trained on ImageNet (Krizhevsky et al.,
2012) as image features, and we use Bi-LSTM and
Bidirectional GRU respectively for image encoder.

In both models, we keep the hyper-parameters
from their baseline models unmodified. For loss
function, we use cross-entropy averaged on the
sentence lengths.

On textual evidence selection, we use all stories
and image sequences in train and validation set
as reference corpus, and a Fast RCNN (He et al.,
2017; Abdulla, 2017) model pre-trained on COCO
dataset (Lin et al., 2014) to detect objects from
each image. Roughly similar stories are filtered
with numerical criterion at 500 candidate size as it
shows the best performance.

3.2 Results

Methods R / C / M

Huang et al. (2016) - - 31.4
Yu et al. (2017) 29.5 7.5 34.1
Gonzalez-Rico and Pineda (2018) 29.2 5.1 34.4
Huang et al. (2018) 30.8 10.7 35.2

GLACNet(2018) (re-trained) 26.3 2.2 33.0
GLAC-TG-top1(ours) 26.5 2.0 33.4

XE-ss(2018b) 29.7 8.7 34.8
AREL(2018b) 29.9 8.4 35.2
XE-TG-top1(ours) 30.0 8.7 35.5
XE-TG-top3(ours) 29.6 8.3 35.4
XE-TG-top1-attn(ours) 29.9 9.2 35.2
XE-TG-top3-attn(ours) 29.4 9.2 35.0
XE-TG-only 29.1 7.7 34.8

Table 1: Performance of our method compared to ex-
isting visual storytelling models, R is ROUGE-L, C is
CIDEr, M is METEOR (models we re-trained in same
setting as original are listed in (re-trained) rows)
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Figure 2: An example sequence of visual storytelling.

In Table 1, we compare our models with sev-
eral strong baselines on three automatic evalua-
tion metrics, ROUGE-L, CIDEr and METEOR. In
the top block of Table 1, we present 4 previous
baselines: 1) a standard Seq2Seq baseline model
developed by Huang et al. (2016); 2) a hierarchi-
cally attentive model designed by Yu et al. (2017);
3) the Seq2Seq model with sentence-wise separate
decoders by Gonzalez-Rico and Pineda (2018); 4)
reinforcement learning with topic guided decoders
by Huang et al. (2018). In the middle block, we
present the GLACNet model Kim et al. (2018)
and our improved GLAC-TG model. In the bot-
tom block, we present our XE-TG models which
are improved based on the XE-ss model in AREL
framework (Wang et al., 2018b). For fair compar-
ison, we evaluate all models with the open source
evaluation code1 (Yu et al., 2017).

Result shows that both our models outper-
form their corresponding baselines. Even us-
ing textual evidence only, our XE-TG-only model
shows competitive performance compared to the
baselines. Moreover, our XE-TG models using
cross entropy loss outperformed state-of-the-art
baselines with reinforcement learning techniques
(Wang et al., 2018b; Huang et al., 2018). By using
simple cross entropy loss, our models are also less
costly to train, easier to tune and more stable when
re-trained.

We conduct a qualitative analysis on XE-TG-
top1 model in Figure 2 as an example. It
shows that the selected similar story shares the

1https://github.com/lichengunc/vist_
eval

same topic of wilderness adventure with similar
story-flows. The generated story also catches the
essence of the image sequence, with basic details
closely relevant. It shows that our textual evidence
selection method is capable of selecting proper
textual evidence, and our storytelling framework
is capable of capturing the provided information
and telling fluent and coherent stories.

3.3 Analysis on Textual Evidence Selection

In this section, we further explore the effective-
ness of similar stories. We experimented on filter-
ing candidate size 50, 100 and 500 with both cate-
gorical and numerical criteria, using sorting on the
entire reference corpus for comparison and ME-
TEOR score as a metric of actual story similar-
ity. In Table 2, we show that for all methods, the
selected stories are significantly more similar to
gold stories than randomly selected ones, and sto-
ries with higher rankings are generally better than
those with lower rankings. Moreover, for both cri-
teria, candidate size poses negligible effect.

On the other hand, neither sorting on full corpus
nor sorting by bi-linear model shows competitive
results compared to our approach.

M
categorical numerical

50 100 500 50 100 500

1 24.8 24.8 25.0 24.9 24.7 24.5
2 24.9 24.8 24.7 24.4 24.5 24.6
3 24.6 24.5 24.6 24.6 24.6 24.5
4 24.5 24.9 24.8 24.5 24.5 24.3
5 24.8 24.6 24.6 24.5 24.5 24.5

rand 23.8
full 23.28 (average on top 5)
B-L 23.62 (average on top 5)

Table 2: METEOR scores for top 1 to 5 similar stories
regarding two criteria, B-L refers to Bi-Linear

4 Conclusion

In this paper, we show that textual evidence from
similar image sequences contains rich informa-
tion for visual storytelling, therefore it’s capable
of boosting storytelling performance. We propose
a feasible two-step approach to extract textual ev-
idence from a large corpus. We also design a two-
channel encoder to incorporate textual and visual
evidence into the Seq2Seq visual storytelling mod-
els and achieve state-of-the-art performance with-
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out heavy engineering.
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Abstract

The move from pipeline Natural Language
Generation (NLG) approaches to neural end-
to-end approaches led to a loss of control
in sentence planning operations owing to
the conflation of intermediary micro-planning
stages into a single model. Such control
is highly necessary when the text should be
tailored to respect some constraints such as
which entity to be mentioned first, the entity
position, the complexity of sentences, etc. In
this paper, we introduce fine-grained control of
sentence planning in neural data-to-text gener-
ation models at two levels - realization of input
entities in desired sentences and realization of
the input entities in the desired position among
individual sentences. We show that by aug-
menting the input with explicit position identi-
fiers, the neural model can achieve a great con-
trol over the output structure while keeping the
naturalness of the generated text intact. Since
sentence level metrics are not entirely suitable
to evaluate this task, we used a metric spe-
cific to our task that accounts for the model’s
ability to achieve control. The results demon-
strate that the position identifiers do constraint
the neural model to respect the intended out-
put structure which can be useful in a variety
of domains that require the generated text to
be in a certain structure.

1 Introduction

Typical NLG models are characterized by a
pipeline of stages (Walker et al., 2007; Barzilay
and Lapata, 2006; Walker et al., 2002; Stent, 2002;
Barzilay and Lee, 2002; Langkilde and Knight,
1998; Reiter and Dale, 1997). This approach can
be conceptually divided into solving two ques-
tions: what to say? aka content determination and
planning, and how to say it? aka text realization
(Gatt and Krahmer, 2018). In contrast, end-to-
end NLG systems combine these stages in a single

end-to-end learning framework. Recently, there
has been a lot of interest in combining sentence
planning and realization stage into a single neural
model (Nayak et al., 2017; Dušek and Jurčı́ček,
2016; Lampouras and Vlachos, 2016; Wen et al.,
2015; Mei et al., 2015). Although this resulted
in some improvement at the grammatical level, in
neural natural language generation this led to a
loss of control that was otherwise possible in the
pipeline approaches.

Neural NLG systems struggle to produce a con-
sistent order of entities and are sometimes not
faithful to the input by either hallucinating, omit-
ting or repeating the entities (Moryossef et al.,
2019). They do not allow control over the out-
put structure and while they exhibit impressive
levels of fluency, they are less equipped to deal
with higher levels of text structuring in a consis-
tent manner. They are also unable to generalize
sentence planning operations beyond what is seen
in the training. It is therefore important to intro-
duce explicit control in neural NLG so that the
output is faithful to the input. In this way, the sys-
tem would be able to generate diverse realizations
making way for explicit control over the output
text structure.

By controlling the facts in the generated text,
different variations can be produced that empha-
size a particular fact which is more important than
others. For example, if the focus should be on “a
cheap italian place”, then “There is a cheap ital-
ian place called The Sorrento. It is located in the
city center.” will be more appropriate than “The
Sorrento is located in the city center. It is an Ital-
ian Restaurant. It is cheap too”. This is partic-
ularly helpful in different domains, for instance,
when generating hotel review summaries, it is im-
portant to put the elements important for the user
in front (e.g., family, bathroom etc), when generat-
ing company descriptions, it is important to put the
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(1) Alignment information “name[Blue Spice], eatType[coffee shop], area[city centre]”,
A coffee shop in the city centre area called Blue Spice.,(2: eattype) (21: area) (45: name)

(2) Annotated reference text a (eattype)coffee shop in the (area)city centre area called (name)blue spice.

(3) MR with sentence id. 1 name[ blue spice ], 1 eattype[ coffee shop ], 1 area[ city centre ]

(4) MR with sentence and slot id. 1 3 name[ blue spice ], 1 1 eattype[ coffee shop ], 1 2 area[ city centre ]

Table 1: Example of an MR augmented with sentence and slot position identifiers.

main company selling points in front, and when
generating messages for user with low literacy it is
important to break sentences in small pieces, etc.

Recently there has been some work on control-
ling outputs of neural NLG models. In (Reed et al.,
2018), authors use token supervision to reproduce
sentence planning and discourse operations where
a sentence scoping operation controls the number
of sentences in the generated output which is mea-
sured using the period operator. This method does
not provide any information about the word or-
der in a particular sentence. While in (Moryossef
et al., 2019) an explicit and symbolic text plan-
ner is proposed which determines the information
structure and expresses it in the form of ordered
trees. The plan structures in this work take the
form of ad-hoc explorations for specific tasks and
does not evolve into general-purpose plan struc-
tures. Moreover, this work is dataset dependent
and does not generalize to datasets other than
graph-based ones. To improve over the work in
the literature of controlling neural NLG systems,
in this paper, we propose an approach to explicitly
control the realization of input entities in the de-
sired sentences and in the desired position among
individual sentences.

2 Overview of the Approach

Our method focuses on the control of sentence
planning at two levels - 1) realization of input facts
in the desired sentences and 2) realization of in-
put facts in the desired position in the individual
sentences. The idea is to directly attach sentence
identifiers and slot identifiers to each slot, that in-
dicate the sentence number and the position of the
slot within that sentence respectively. The next
step is to feed the modified Meaning Representa-
tion (MR) as an input to the seq2seq model and
test if the model is able to learn to realize the slots
in the correct positions.

2.1 Data Preparation
We used the E2E dataset for the experiments
which provides information about restaurants and
consists of about 50k combinations of a dialogue-
act-based MR and 8.1 text references on an aver-
age. Each MR consists of up to 8 slots/attributes
and their corresponding values.

As the dataset does not already contain a sen-
tence plan, we modified it in a way that the
MRs contain sentence and slot position identifiers.
More specifically, given a reference text, two po-
sition identifiers were attached to each slot of the
MR representing the sentence number in which the
slot is found and the location of the slot in that
specific sentence. The alignment information is
extracted using a script1 provided by the authors
of Juraska et al. (2018). Table 1 provides an exam-
ple of different stages of aligning the reference text
with the MR. Initially, we annotate the reference
text to identify the beginning of each slot value in
the text (line 2), then using this annotation, we first
attach the sentence identifiers (line 3), and finally
the MRs are augmented with the position of each
slot within a sentence (line 4). Owing to faults in
the alignment information, in some cases the slot
values are not detected in the reference text despite
being present in the MR and for other cases the
sentences do not contain some slots present in the
MR. For such cases, a position token in the format
0 0 Slottype[ Slot value ] is attached.

Ideally, we expect a human to assign the posi-
tion identifiers to each slot in the MR based on
the desired output text. However, doing so for
4000 samples of the test set for validating our work
would be very exhaustive. Therefore, we experi-
ment with two different strategies to attach the po-
sition identifiers. Firstly, we directly use the test
set reference text to extract the position identifiers.
However, this will lead to biased results when
computing the automatic metrics scores. Second

1https://github.com/jjuraska/
slug2slug/tree/master/data/rest_e2e
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Figure 1: The three proposed approaches to automati-
cally assign position identifiers to an MR.

strategy is to predict the position identifiers auto-
matically. For this, we propose three different ap-
proaches as shown in Figure 1 and described in
detail below:

• Random: The position identifiers are ran-
domly chosen and assigned to the slots in the
MR by taking care of a few rules.

• Seq2seq: The position identifiers are learned
using a sequence-to-sequence (seq2seq)
model. The train set MR without the position
identifiers and the corresponding train set
MR with the position identifiers are fed
as training data to the model described in
the Section 3. The test set MR without the
position identifiers are then fed to the trained
model, which outputs the test set MR with
learned position identifiers.

• Top Frequent: The position identifiers for
the test set are obtained from the most fre-
quent combination of position identifiers in
the train set. For each entry in the test set, the
slot types (e.g., name) and slot values (e.g,
blue spice) are separated and then the train-
ing entries which have slots with the same
values are identified. Then, the most com-
monly occurring position identifier combina-
tion is picked for the test set entry.

Our random approach could be considered as a
very naive baseline as randomly assigned identi-
fiers might not even make sense in some cases. For
example, having only one single slot in the first
sentence (which never happens in the training set)
would not be enough to form a grammatically cor-
rect sentence. Thus, in such cases, the model will
fail to follow the assigned identifiers. The seq2seq
model should perform much better than the ran-
dom approach since it learns how to put position
identifiers directly from the training data. How-
ever, this model has to re-generate the whole se-
quence including the slot type, slot value, and the

newly added position identifiers. This means that
any errors introduced during the generation pro-
cess will significantly effect the text generated by
the NLG model. Lastly, the top frequent approach
is expected to perform better than the other two
approaches. It extracts the most common sentence
plan for some given values directly from the train-
ing set. Thus, the chosen sentence plan is among
the ones that the NLG model was most exposed to
during the training process.

2.2 Evaluation Metrics

In most NLG problems, sentence level metrics
such as BLEU, ROUGE and METEOR are used
to evaluate the results. However, these metrics are
not entirely suitable to evaluate slot positioning
since they measure performance at sentence level
and do not provide precision in terms of sentence
planning accuracy. In addition to using these au-
tomatic metrics to compare the results of the po-
sition augmented dataset with the original dataset,
we evaluate the sentence planning accuracy using
a modified version of the word error rate called the
Slot Error Rate (SER) which is computed as:

SER =
S +D + I

N
,

where S refers to number of substitutions, D
refers to number of deletions, I refers to number
of insertions and N refers to the total number of
slots in the input MR. If a slot is realized in the
wrong sentence it is counted as wrong-sentence
substitution whereas if a slot appears in the wrong
position but the correct sentence, it is counted as a
case of wrong-slot-position substitution. It is im-
portant to note that the slot error rate compares
two sequences of different nature (MR vs text).
The generated text is pre-processed to extract the
expressed slots and position of each slot using a
script with some heuristics that involves lots of
E2E dataset-specific handwritten rules. It is worth
mentioning that our definition of SER is slightly
different from the ones in the literature, particu-
larly (Reed et al., 2018). In our case we take into
account the exact position of each slot in the gener-
ated text, thus, the positioning of the realized slot
in the generated text plays has a huge impact on
the SER. Because of this difference, our metric
can also be interpreted as slot position error rate
in the realized text.
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MR: 1 1 name[ the cricketers ], 1 2 eattype[ restaurant ], 1 3 food[ chinese ], 1 4 pricerange[ 20-25 ], 4 1 customer
rating[ high ], 2 1 area[ riverside ], 0 0 familyfriendly[ no ], 3 1 near[ all bar one ]
Output: the cricketers is a restaurant providing chinese food in the 20-25 price range. it is located in the riverside. it is near all
bar one. its customer rating is high.
MR: 1 1 name[ the cricketers ], 1 3 eattype[ restaurant ], 1 2 food[ chinese ], 1 7 pricerange[ cheap ], 1 6 customer
rating[5 out of 5 ], 1 5 area[ city centre ], 1 8 familyfriendly[ yes ], 1 4 near[ all bar one ]
Output the cricketers is a chinese restaurant near all bar one in the city centre with a customer rating of 5 out of 5 and is cheap
and family friendly.

Table 2: Output examples: position identifiers added from text references.

Experiment Type SER

MR with sentence identifier 27%
MR with sentence and slot identifier 7%

Table 3: Results: SER on the test set prepared from test
set alignment information.

SER BLEU ROUGE METEOR

Random 32% 0.22 0.39 0.34
Seq2Seq 5% 0.20 0.40 0.27
Top Frequent 0.7% 0.30 0.49 0.35

Table 4: Results: SER and sentence-level metrics on
different versions of the test set with sentence and slot
identifiers

3 Model Architecture

We use a standard seq2seq model with atten-
tion (Bahdanau et al., 2014; Luong et al., 2015).
The seq2seq model consists of an encoder and
a decoder based on Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997).
The encoder reads the position augmented MR to-
kens one by one and feeds each token into an em-
bedding layer and then to an LSTM layer. Fi-
nally the LSTM-based decoder takes the last hid-
den state from the encoder and starts generating
output tokens one by one. Our decoder uses the
dot attention mechanism as described in (Luong
et al., 2015).

4 Experiments and Results

We begin by comparing the SER obtained using
the test set with only sentence identifier and the
test set with both sentence and slot identifiers. The
position identifiers are attached based on the align-
ment information obtained from the test set. Ta-
ble 3 shows that the SER for the model with both
sentence and slot identifiers is significantly lower.
This is probably because the model in this case has
more information to learn from and the slot iden-
tifier proves to be very important. In order to ana-

lyze the results better, in Table 2 some of the out-
put examples are shown. As it can be seen, even
though both examples have quite complex combi-
nation of position identifiers, all the slots are real-
ized in the correct position as indicated in the MR.

In the next part of the experiments, instead of
using the reference text of the test set, we used
3 other approaches listed in Section 2.1 to attach
the sentence and slot identifiers. The idea here is
to i) not rely on the reference text, since it will
bias the automatic metrics such as BLEU, ROUGE
and METEOR and ii) to try more complex po-
sition identifier combinations and test the robust-
ness of the model. Table 4 summarizes the BLEU,
ROUGE, METEOR, and SER results obtained on
the test set using the 3 approaches. It can be
seen that the sentence-level metrics scores for the
different versions of position augmented test set
are quite variable. Top frequent seems to signifi-
cantly outperform the other two approaches. This
can be attributed to the fact that top frequent uses
the most common sentence plans from the train
set which are the easiest for the model to gen-
erate. This also shows that the test set and the
training sets are extremely similar in their sen-
tences’ structures. Surprisingly the seq2seq ap-
proach performs significantly worse than the top
frequent one. As described earlier, this is mainly
because the seq2seq model introduces many errors
in the slot types and values during the generation
process which does not happen in the top frequent
approach. These errors are also propagated to the
NLG model, and hence, the performance is signif-
icantly impacted. It is important to note that these
sentence-level metrics are computed on a single
reference as opposed to the E2E challenge sys-
tems where multiple references where used, and
as a matter of fact, their results there were much
higher. The reason that we cannot use multiple
references is because in the case of the random
approach, each MR is changed and is assigned a
unique set of identifiers, thus, distinguishing all of
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the previously unique MRs. To make the results
consistent, we report single reference scores for
the other two approaches as well.

When it comes to SER, we can see that top
frequent again achieves the lowest score of 0.7%.
The seq2seq model was trained with the position
augmented train set that mostly consists of text
with just one sentence. As data with one sen-
tence is relatively easier than the data with multi-
ple sentences, the SER of 5% with seq2seq model
based test set is justifiable. The test set prepared
with random identifiers reports an SER of 32%,
which can be explained by the fact that the iden-
tifiers are attached without significant rules, and
hence, some of the MRs do not make a logical
sense if realized as text. Nevertheless, the model
still learns to produce logically and grammatically
correct sentences.

To better assess the faithfulness of the model,
we used human verification of the model’s output.
We randomly selected 50 generated outputs (from
samples of Table 3, line 2) and 4 annotators man-
ually annotated the MR to show deletion, inser-
tion, substitution and hallucination of slots where
hallucination refers to realization of a wrong slot
value. The original MR is compared with the
new annotated MR to obtain an SER. The different
scores obtained were averaged and the final SER
reported is 14.25%. This score is slightly higher
than the 7% reported in Table 3 since human sub-
jects were additionally annotating hallucinations
too. Excluding hallucinations will lead to a similar
score obtained using the SER metric. Thus we can
say that the human verification scores is consistent
with the scores obtained from the SER metric.

5 Conclusion

We presented an approach to explicitly control the
output text structure by incorporating control at
two levels of sentence planning- realization of in-
put entities in desired sentences and in the de-
sired position among individual sentences. We
created a new data set with position identifiers de-
signed specifically for controlling sentence plan-
ning operations and we investigated different ways
of preparing such sentence plans. Our results show
that the model learns from the extra position iden-
tifiers which provide the capability to control vari-
ation in the output and enables generalizing to un-
seen combinations without a significant loss of
performance in terms of sentence-level metrics.
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Abstract

Due to the absence of labeled data, discourse
parsing still remains challenging in some lan-
guages. In this paper, we present a simple
and efficient method to conduct zero-shot Chi-
nese text-level dependency parsing by leverag-
ing English discourse labeled data and parsing
techniques. We first construct the Chinese-
English mapping from the level of sentence
and elementary discourse unit (EDU), and
then exploit the parsing results of the corre-
sponding English translations to obtain the dis-
course trees for the Chinese text. This method
can automatically conduct Chinese discourse
parsing, with no need of a large scale of Chi-
nese labeled data.

1 Introduction

Discourse parsing aims to analyze the inner struc-
ture of texts, which is fundamental to many natural
language processing applications, such as ques-
tion answering and summarization. The construc-
tion of discourse corpora has promoted the devel-
opment of discourse parsing techniques. In En-
glish, the widely-used discourse corpora include
the Rhetorical Structure Theory Treebank (RST-
DT) (Carlson et al., 2001) and Penn Discourse
TreeBank (PDTB) (Prasad et al., 2008).

Recently, Li et al. (2014a) and Yoshida et al.
(2014) proposed the discourse dependency struc-
ture (DDS). DDS directly links the EDUs, so it
has fewer nodes and simpler structures compared
to RST and PDTB. In addition, it can easily rep-
resent non-projective structures, while hierarchi-
cal structures need other complex mechanisms to
do so. DDS is especially important for Chinese.
Kang et al. (2019) analyzes almost all the ex-
isting Chinese discourse treebanks and concludes
that DDS is the future direction due to its right
balance between expressiveness and practicality.
However, little research has been done on Chinese

DDS. On one hand, there have been no such DDS
treebanks in Chinese yet. Most of the existing
Chinese discourse corpora follow PDTB-style or
RST-style annotation (Zhou and Xue, 2012, 2015;
Ming, 2008). Building a high-quality DDS corpus
from scratch is labor-intensive and there are some
conversion problems in transforming an existing
corpus into DDS. On the other hand, a Chinese
discourse parser needs to explore efficient features
through trial and error based on the characteristics
of Chinese. For the above reasons, Chinese text-
level dependency parsing remains challenging.

To overcome these problems, we propose a sim-
ple and efficient method that conducts zero-shot
Chinese discourse dependency parsing by exploit-
ing the existing English discourse resources, with
no need for Chinese training data. This is moti-
vated by the observation of some Chinese-English
parallel sentences such as the examples in Fig.1,
whose dependency parsing trees are the same. It
can be seen from the figure that the logical orga-
nization of a text is similar at the macro discourse
level regardless of languages, in spite of lexical or
grammatical differences.

Based on this observation, we employ machine
translation (MT) and English discourse parsing
techniques to parse a Chinese text. Our proposed
method is simple but feasible, because English
discourse dependency parsing has made progress,
especially in parsing discourse tree structures (Liu
and Lapata, 2017; Kim et al., 2017), and Chinese-
to-English MT techniques are relatively mature
(Nikolov et al., 2018; Hadiwinoto and Ng, 2018).
Specifically, we first make use of MT techniques
to translate a Chinese text into English and then
adopt a transition-based English parser to analyze
the translated text. Finally, we map this English
parsing result to the Chinese text. During this pro-
cess, some modifications are made to MT and the
parsing result for performance improvement .
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Figure 1: Illustration of Our Parsing Method via a
Chinese-English Parallel Example

To evaluate our proposed method, we manually
construct a small dataset, on which our method
exhibits promising performance. This corpus will
be released soon. The experiment results demon-
strates that our method is potentially helpful in
building large-scale data for Chinese neural NLG
systems that make use of discourse structure. To
the best of our knowledge, we are the first to con-
duct discourse dependency parsing in Chinese.

2 Chinese Discourse Dependency Corpus
Construction

In this work, a small-scale Chinese discourse
dependency treebank is constructed for evalua-
tion. Here, we primarily follow the guideline of
building the English discourse dependency tree-
bank SciDTB (Yang and Li, 2018a) to explore the
specifics of labeling DDS in Chinese.

First, scientific abstracts are chosen as corpus
sources, because they are short texts with obvious
logic and within the same domain as the English
treebank (SciDTB) (Yang and Li, 2018a). Specif-
ically, 108 abstracts are selected from a Chinese
NLP journal JCIP 1.

Second, we manually separate these abstracts
into elementary discourse units (EDUs), the ba-
sic units of a parsing tree. Each segmented ab-
stract is checked at least twice to ensure segmen-
tation quality. Our EDU segmentation mainly re-
fer to the criteria of RST-DT (Carlson and Marcu,
2001) and make some modifications to the guide-
line based on the linguistic characteristics of Chi-
nese (Cao et al., 2017; Yang and Li, 2018b). Due

1http://jcip.cipsc.org.cn/CN/volumn/home.shtml

Relation Frequency Percentage/%
elab-addition 408 29.31

joint 236 16.95
enablement 138 9.91
bg-general 135 9.70
evaluation 85 6.10

Table 1: The Most Frequent Relation Types

to space limitation, we do not list these modifica-
tions, as EDU segmentation is not the main work
of this paper.

Third, for each abstract, we identify the head
of every EDU and the relation type between them,
which is the most labor-intensive of all steps. We
adopt the head and relation identification guide-
lines defined in Yang and Li (2018a). The rela-
tion categories include 17 coarse-grained and 26
fine-grained relation types. During the annotation
process, some relation types are hard to distin-
guish (e.g., the distinction between the relations
“manner-means” and “enablement” is vague). In
addition, relation pronouns (e.g., that) and con-
junctions (e.g., but) are used less frequently in
Chinese (Li et al., 2014b), adding to the difficulty
of relation labeling. The primary target of this
study is to automate this step, i.e., to build the
discourse tree with relation types between EDUs
identified for a Chinese text.

Two annotators first learned the annotating prin-
ciple before the annotation work. It takes the an-
notators 3 months to label the 108 abstracts, each
being labeled at least twice independently in order
to check annotation consistency and provide hu-
man performance as an upper bound. 30 abstracts
are used for validation and the rest for test. The
inter-annotator agreement is 0.780 and 0.673 with
respect to UAS and LAS. In total, there are 1,500
EDUs (including 108 artificial root EDUs) with an
average of 12.9 EDUs per abstract and 1,392 la-
beled discourse relations. On average, there are
2.91 EDUs per sentence and 22.17 characters per
EDU. Table 1 shows the five most frequent rela-
tion types, along with their frequencies.

3 Zero-shot Chinese Dependency Parsing

As stated above, our method aims to generate a
dependency parsing tree with relation types be-
tween EDUs identified for a Chinese text. It is
assumed that golden EDU segmentation has al-
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ready been conducted for the text. Formally, given
a Chinese text tC= (u1, u2, ..., uk) composed of k
EDUs, we translate each Chinese EDU ui directly
into u′i(i=1, 2, ..k), which can be seen as an En-
glish EDU. Translation performance is restrained
to a certain extent because some EDUs cannot
individually express their precise meaning when
taken out of context. Thus, we make some modi-
fications to the translation results before adopting
a transition-based parser to generate a discourse
dependency tree for the translated English EDUs.
Finally, this dependency tree is mapped onto the
EDU-segmented Chinese text. Fig.1 illustrates the
whole process of our method. The main idea is
simple. Only some technical issues in translation
and text parsing need addressing, which will be
introduced in the subsections.

3.1 Translation

We translate each Chinese EDU separately, in-
stead of processing the whole text at a time, in or-
der to obtain one-to-one correspondence between
translated English EDUs and their Chinese coun-
terparts , and to bypass EDU segmentation in En-
glish. But due to the absence of context informa-
tion, translation accuracy is sacrificed, which de-
grades parsing performance. Since our work does
not involve improving translation techniques, we
only modify some obvious translation problems.

First, in translation, Chinese EDUs with in-
complete meaning may be mistranslated into a
sentence ended with a period. As Zhou and
Xue (2015) point out, punctuation marks in Chi-
nese can serve as clues of discourse relations.
Most competitive Chiense discourse parsing mod-
els(Kang et al., 2016) use punctuation as one of
their features. Therefore, we stipulate that the
translated English EDUs can only be ended with a
period if its corresponding Chinese EDU is ended
with one. The other periods in the translation are
replaced with commas.

Second, we modify the EDU identification of
some relative pronouns because the position of
them is helpful information for judging specific
relation types (e.g.,“attribution”). Since we use
EDUs as translation units , the EDU identification
of some relation pronouns violates English EDU
segmentation criteria. Take u6 and u7 in Fig.1 as
example. Their translations are respectively: [Ex-
periments show that]ū′6, [the data augmentation
effectively mitigate the problem of insufficient re-

sources.]ū′7. Our modification is to move “that”
from ū′6 to ū′7, because a relative pronoun should
be with the clause it introduces, according to the
EDU segmentation criteria of RST-DT.

3.2 English Discourse Parsing

We follow the work of Yang and Li (2018a)
and implement a two-stage transition-based de-
pendency parser based on the idea of Wang et al.
(2017) to conduct English parsing. In the first
stage, the transition-based method for dependency
parsing (Nivre, 2003) is adopted to identify the
head for each EDU. We employ the action set of
arc-standard system (Nivre et al., 2004), and an
SVM classifier is designed to predict the most pos-
sible transition action. In the second stage, another
SVM classifier is trained to predict relation types.

Since this parser is trained with SciDTB, its per-
formance heavily relies on the features of the cor-
pus. By analyzing the parsing results on the val-
idation data, we find one obvious problem: the
parser identifies the topic EDU (whose head is the
root EDU, such as u4 in Fig.1) with an accuracy of
only 44.95%, while it reaches 85.06% on SciDTB.

To alleviate this problem, we first identify the
topic sentence (which includes the topic EDU) in
a rule-based way, because it usually begins with
certain words, such as “该文”(this paper). Next,
we split the passage into two parts with the topic
sentence being the beginning of the latter part. The
two parts are then parsed separately and joined to-
gether. In this way, the topic EDU identification
accuracy increases to 68.52%.

4 Experiment

4.1 Setup

In our work, we compared several ready-made
translation tools and chose to use Youdao Trans-
lator2. We referred to Yang and Li (2018a)’s work
and implemented a two-stage transition-based dis-
course dependency parser to parse the English
translated EDUs, with SciDTB as the training cor-
pus. For comparison, we adopted the metrics of
unlabeled and labeled attachment scores (UAS and
LAS). UAS measures the accuracy of labeling the
heads, while LAS measures the accuracy with re-
spect to both head and relation labeling.

2http://fanyi.youdao.com/
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UAS LAS
Random 0.188 0.013

Supervised(Chinese) 0.525 0.276
Zero-shot 0.643 0.384

Human(Chinese) 0.780 0.673
Supervised (English) 0.702 0.545

Human(English) 0.806 0.627

Table 2: Performance Comparison with Other Parsing
Models

4.2 Results

Since there is no previous research on Chinese
text-level dependency parsing, and our parsing
approach is mainly designed to help construct a
large-scale discourse dependency corpus in Chi-
nese, our major concern is what performance this
method (named Zero-shot in Table 2) can achieve
and how it compares to human performance. We
list several parsing results for comparison:

• Random is a transition-based dependency parser
which randomly chooses “shift” or “reduce” as
its next action and always uses the most frequent
relation type “elab-addition” as the relation la-
bel. We test it on our Chinese corpus.

• Supervised(Chinese) is a two-stage transition-
based dependency parser trained with 80 ab-
stracts of our Chinese corpus and tested with the
remaining 28 abstracts.

• Supervised(English) is a two-stage transition-
based dependency parser trained on the training
set of SciDTB and evaluated on its test set.

• Human(Chinese) and Human(English) are hu-
man performance on our Chinese discourse cor-
pus and SciDTB respectively.

Table 2 shows the UAS and LAS of different
parsing results. The top four rows are perfor-
mance tested on our Chinese corpus and the bot-
tom two on SciDTB. From Human(English) and
Human(Chinese), we can see that discourse label-
ing is a difficult task for both languages. Our Zero-
shot method significantly outperforms the Ran-
dom parser, meaning that parallel English and Chi-
nese texts have similar discourse structures, and
that our method effectively leverages such infor-
mation. Zero-shot also performs about 12% and
11% higher than the Supervised(Chinese) with re-
spect to the UAS and LAS metrics, because our
corpus is too small to support supervision well

Figure 2: Parsing Errors Caused by Wrong Translation

Ablation test UAS LAS
Direct parsing 0.500 0.312

+ Relative Pronoun Adjustment 0.527 0.333
+ Punctuation Modification 0.607 0.353

+ Two-part Parsing 0.643 0.384

Table 3: Ablation Study

enough. Compared with Supervised(English), the
performance of Zero-shot is acceptable in terms
of identifying the head EDU, but barely satisfac-
tory in labeling the relations, which might be ex-
plained by different statistical distributions of re-
lations types in Chinese and English..

To evaluate the contribution of each modifica-
tion mentioned in Section 3, we conduct ablation
experiments as shown in Table 3. The first line
displays the performance of direct parsing with-
out any modifications. The next three lines shows
the performance with the modification strategies
added in turn. As demonstrated in the table, these
subtle modifications all play a useful role in im-
proving performance.

Through error analysis, we find that many
wrong cases can be corrected if the parser is given
precise translation. Fig.2 provides an example
where the heads of some EDUs are wrongly la-
beled, but are correct if given right translation.
Translation precision can be improved with con-
sideration of a larger context than EDU, which
will be our future work.

5 Conclusions

In this paper, we present a simple and efficient
method to conduct zero-shot Chinese discourse
parsing, whose performance is close to the one of
the state-of-art English parsers. It opens the possi-
bilities for conducting dependency parsing on low-
resource languages via cross-lingual mapping, re-
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ducing human labor of corpus construction. In the
future, we will further improve our method and
test it in more languages and more domains.
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