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Abstract 

This present pilot study investigates the relationship between dependency distance and fre-
quency based on the analysis of an English dependency treebank. The preliminary result shows 
that there is a non-linear relation between dependency distance and frequency. This relation 
between them can be further formalized as a power law function which can be used to predict 
the distribution of dependency distance in a treebank. 

1 Introduction 

As a well-discussed norm (Hudson, 1995; Temperley, 2007; Futrell et al., 2015; Liu et al., 2017), de-
pendency distance shows several attractive features for quantitative studies. First, its definition is rather 
clear. It is the linear distance between a word and its head.1 Second, it is very easy to quantify. We can 
simply compute dependency distance as the difference of the word ID and its head’s ID in a CoNLL 
style treebank (Buchholz & Marsi, 2006). These features together with the emergence of large-scale 
dependency treebanks made dependency distance one of the popular topics in quantitative syntactic 
studies. 
    Among various interesting discussions, the most striking finding is probably the dependency distance 
minimization phenomena. After empirically examining the dependency distance distributions of differ-
ent human languages and comparing the results with different random baselines, Liu (2008, 2010) found 
that there is a universal trend of minimizing the dependency distance in human languages. Futrell et al. 
(2015) conducted a similar study which widened the language range and added one more random base- 
line. Their results are coherent with Liu’s finding. Both Liu (2008) and Futrell et al. (2015) connect this 
phenomenon with the short-term memory (or working memory) storage of human beings and the least 
effort principle (Zipf, 1949). Since long dependencies, which have longer distance, occupy more short-
term memory storage, they are more difficult or inefficient to process. Therefore, for lowering the pro-
cessing difficulty and boosting the efficiency of communications, short dependencies are preferable ac-
cording to the least effort principle. 
    Initially, the least effort principle was brought up by Zipf for explaining the observed power-law dis-
tributions of word frequencies. Later on, similar power-law frequency distributions have been repeatedly 
observed in various linguistic units, such as letters, phoneme, word length, and etc. (Altmann & Gerlach, 
2016). The power law distribution, therefore, has been considered as a universal linguistic law. After 
investigating the relationships between different word features (such as length vs frequency, frequency 
vs polysemy, and etc.), people found out an interesting phenomenon. The relations between two highly 
correlated word features are usually non-linear and can be formulated as a power law function (Köhler, 
2002). Kohler (1993) further proposed a word synergetic framework to model the interactions between 
different word features. This model has proved quite successful also then adapted to syntax features. 
The first studies mainly focused on the analysis of phrase structure treebanks (Köhler, 2012), which 
naturally are limited in language types since phrase structure grammar is less suitable for describing free 
word order languages (Mel’čuk, 1988). As the dependency treebanks are getting dominant, studies based 
on dependency grammar start to take lead. We can find recent studies discussing the relations between 
sentence lengths, tree heights, tree widths, and mean dependency distances (Jing & Liu, 2017; Zhang & 
Liu, 2018; Jiang & Liu, 2015). 

 
1Hudson’s original measures takes two adjacent words to have distance zero. We prefer the alternative definition where  
x = y ⟺ d (x, y) = 0, i.e. a word has distance zero with itself, making the measure a metric in the mathematical sense. 



Knowing that short dependencies are preferable by languages due to the least effort principle and that 
syntax features behavior similar to word features, we can easily draw our hypotheses: 

• The relation between dependency distance and frequency can be formulated as a non-linear 
function (probably also a power law function).  

    Contrary to above-mentioned studies, our study here is not focusing on mean dependency distances 
but the distribution of the distance of every single dependency. In the dependency minimization studies 
or synergetic syntax studies, the observed feature is mean dependency distance per sentence. In a way, 
these observed dependency distances are treated as a dependent feature of dependency trees. This is a 
very reasonable choice since the dependency distance is defined as the linear distance between two 
words in the same sentence. In particular, when the studies discuss other tree-related features such as 
tree heights and widths, mean dependency distance is a more easily comparable feature than a group of 
individual dependency distances. However, we believe the value of individual dependency distances is 
neglected. Individual dependency distances (Liu, 2010; Chen & Gerdes, 2017, 2018) provide more de-
tails of the fluctuation than the average which would level-up differences of dependencies in a sentence 
and it should be given the same attention as the mean dependency distance. Therefore, our study here is 
trying to pick up the missing detail of previous studies by investigating the relations between individual 
dependency distances and their frequencies.  
    The paper is structured as follows. Section 2 describes the data set, the Parallel Universal Dependen-
cies (PUD) English treebank of Universal Dependencies treebanks, and introduces our computing 
method for dependency distance and frequency. Section 3 presents the empirical results and discussions. 
Finally, Section 4 presents our conclusions.  

2 Material and Methods 

Universal Dependencies (UD) is a project of developing a cross-linguistically consistent treebank anno-
tation scheme for many languages, with the goal of facilitating multilingual parser development, cross-
lingual learning, and parsing research from a language typology perspective. The annotation scheme is 
based on an evolution of Stanford dependencies (De Marneffe et al., 2014), Google universal part-of- 
speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008). 
The general philosophy is to provide a universal inventory of categories and guidelines to facilitate 
consistent annotation of similar constructions across languages while allowing language-specific exten-
sions when necessary. UD is also an open resource which allows for easy replication and validation of 
the experiments (all Treebank data on its page is fully open and accessible to everyone). For the present 
paper, we used the PUD English Treebank from the UD 2.3 dataset for our study since English is a rather 
reasonable choice for a pilot study. Furthermore, PUD is a parallel treebank with a wide range of lan-
guages, namely Arabic, Chinese, Czech, English, Finnish, French, German, Hindi, Indonesian, Italian, 
Japanese, Korean, Portuguese, Russian, Spanish, Swedish, Thai, and Turkish. This makes PUD a good 
choice for future studies which would further test whether our finding here can be generalized into dif-
ferent human languages. We use the Surface-syntactic UD version of the treebank (Gerdes et al., 2018), 
which is more suitable for studies in distributional dependency syntax as it corrects the artificially long 
dependency distances of UD into a more standard syntactic analysis based on distributional criteria (Os-
borne & Gerdes, 2019). 

We first compute the dependency distance for every single dependency in the treebank except the root 
relation. The dependency distance is computed as the absolute difference between the word ID and its 
head’s word ID. For instance, in Figure 1, there are 4 dependencies. We would take three of them into 
account except the root dependency. The dependency distances of these three dependencies are: abs (1- 
2) =1 (for subj), abs (4-2) =2 (for comp), and abs (3-4) =1 (for det). 

 



 
Figure 1: Example dependency tree in SUD analysis.  

 
After computing all the dependency distances of the treebank, we then count the frequencies of each 

dependency distance, i.e. we count how many dependencies with dependency distance 1 occurred in the 
treebank, how many dependencies with distance 2 occurred, and so on. We then try to formulate the 
relation into a non-linear function. We will test different non-linear functions to see which one can pre-
dict the empirical data best. In other words, we try to see whether our data can be fitted by the power 
law function. This result can then either confirm or reject our hypothesis.  

We also introduce two random baselines to see whether we can observe similar phenomenon in ran-
dom dependency trees. Based on the PUD English treebank, we generate two random tree-banks. For 
the random treebank RT, we just randomly reorder the words of each sentence. For the random treebank 
PRT, we randomly reorder the words in a way that keeps the sentence’s dependencies projective (non-
crossing).  

3 Results and Discussion 

The PUD English treebank is part of the Parallel Universal Dependencies (PUD) treebanks created for 
the CoNLL 2017 shared task on multilingual parsing (Zeman et al., 2017). There are 1000 sentences in 
each language. The sentences are taken from the news domain and from Wikipedia. The PUD English 
treebank contains 21,176 tokens. See Appendix for the frequencies of dependency distances in the tree-
bank. 

The scatter plot Figure 2 shows that the relationship between dependency distance and frequency is 
indeed non-linear. 

 
Figure 2: Scatter plot of dependency distance and frequency of PUD English treebank.  

 
Since the observed data points scatter as a L-ish shape, we tried to fit the data to four non-linear 

functions, namely quadratic, exponent, logarithm, and power law functions. Although there are different 
ways of measuring the goodness-of-fit (Mačutek & Wimmer, 2013), we choose to use the most common 
Pearson chi-square goodness-of-fit test to evaluate the fitting results in this study. The formula of the 
test is defined as 
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with fi being the observed frequency of the value i, Pi being the expected probability of the value i, n 
being the number of different data values and N being the sample size. The obtained results of R-squared 
is presented in Table 2.2  
 

Non-linear Model  Function  R2 
Quadratic  y=2963.44-206x+3.1x2  0.34  
Exponent   log(y)=7.11-0.16x  0.92  
Logarithm  y=4100.8-1262log(x)  0.49  
Power Law  log(y)=10.71-2.56log(x)  0.91  

Table 1: R2 of four non-linear models.  

The results show that the observed data can indeed be formulated as a power law function. However, 
it seems that the data also fits an exponent regression very well. This is a very common issue in quanti-
tative linguistic studies (Baixeries et al., 2013). In many situations, both exponent and power-law models 
can describe the data fluctuation reasonably well. One way to decide which model is better is by adding 
more observations from other languages. However, this is out of the scope of this pilot study. Another 
solution can be introducing baselines for comparison, which is our choice in this paper. By comparing 
the results in Table 1 with the results of two different random treebanks, we try to deliver the answer for 
this question, which model is better to represent the relation between dependency distance and fre-
quency, exponent or power law?  

For the two random English PUD treebank variations, RT and PRT, we replicate the same computation 
for the frequency and dependency distance, see Appendix. The scatter plots Figure 3 and 4 show that 
the relations between dependency distance and frequency in RT and PRT are both non-linear.  

 

 
 Figure 3: Scatter plot of RT.                              Figure 4: Scatter plot of PRT.  

Similarly, we fit the data points to four non-linear models, see Tables 2 and 3 for results. We can see 
from Table 2 that RT fits to all non-linear models very well except to the power law function, which is 
very different from the PUD English treebank who fits to power law very well but does not fit to quad-
ratic and exponent models. When we add the projectivity restriction, the fitting results of PRT seems 
more ‘human language’ like. Similar to the results of PUD in Table 1, PRT fits to exponent and power- 
law models better. However, the power law fitting result of PUD is clearly more satisfying than the result 
of PRT.  
 

Non-linear Model  Function  R2  
Quadratic   y=1883.88-106.28x+1.43x2  0.98  
Exponent   log(y)=8.42-0.17x  0.98  
Logarithm  y=2220.88-611.66log(x)  0.96  
Power Law  log(y)=11.23-2.37log(x)  0.74  

Table 2: R2 results of RT.  

 
 

2All parameter values in the models were obtained by R software. The same below. 



 
Non-linear Model  Function  R2  
Quadratic  y=2551.07-168.63x+2.49x2  0.62  
Exponent   log(y)=7.99-0.17x  0.97  
Logarithm  y=3258.25-972.05log(x)  0.75  
Power Law  log(y)=11.28-2.55log(x)  0.84  

Table 3: R2 results of PRT.  

Beyond considering the projectivity feature of dependency trees that deals with the crossing problem, 
we would also like to have a closer look at the role of syntax in this question. Our way of addressing 
this is to exclude less syntactic dependencies from the analysis. The UD/SUD annotation scheme in-
cludes predefined dependency structures for some constructions, in particular for MWE and punctua-
tion. The distance of relations such as fixed, compound, flat, and punct are not based on distributional 
criteria of the tokens involved. Therefore, we also tested the results when these dependencies are ex-
cluded from our analysis, taking into account only syntactic dependencies (subj, aux, cop, case, mark, 
cc, dislocated, vocative, expl, discourse, det, clf). See the Appendix for the details. We first tested these 
three data sets with a linear regression model, and the results are similar to the previous analysis (PUD 
R2=0.21, RT R2=0.77, PRT R2=0.34). We then repeated the same non-linear regression analysis on these 
three selected data sets and the results are presented in Table 4.  

 
Syntactic Data Set   Non-linear Model Function R2 
 Quadratic  y=1216.36-148.07x+3.82x2 0.44 
PUD English  Exponent  log(y)=5.84-0.25x 0.81 
 Logarithm  y=1380.2-523.3log(x)   0.56  
 Power Law  log(y)=8.45-2.53log(x)  0.97  
 Quadratic  y=434.78-25.62x+0.36x2 0.98 
RT  Exponent  log(y)=6.78-0.16x 0.97 
 Logarithm  y=510.91-142.85log(x)  0.95  
 Power Law  log(y)=9.1-2.07log(x)  0.74  
 Quadratic  y=656.17-50.02x+0.86x2 0.6 
PRT  Exponent  log(y)=6.27-0.16x 0.95 
 Logarithm  y=810.18-251.99log(x)   0.73  
 Power Law  log(y)=8.89-2.13log(x)   0.89  

Table 4: R2 results for syntactic dependencies.  

Very similar to the results of the previous analysis, PRT is closer to the PUD English results. However, 
the results with syntactic dependencies demonstrate more clearly that a power law model is the better 
choice for representing the relation between dependency distance and frequency. First, the original PUD 
data fits to the power law function best, whereas in the previous analysis we could not easily draw such 
a conclusion due to the very similar R2 values for both power law and exponent models. Secondly, the 
goodness of the power law model fitting somehow can distinguish the natural PUD data from random 
baselines.  

4 Conclusion 

Our results are coherent with our hypothesis that there is indeed a non-linear relation between depend-
ency distance and frequency. Furthermore, this relation can be formulated as a power law function.  

However, the results in Table 1 show that the power-law model is not the only candidate for formu-
lating the relation, and we could also apply an exponential model to it. For figuring out which model is 
better for representing the relation, we introduce two random baselines. By randomly reordering the 
words in a sentence, while preserving the words’ dependencies, we generate random treebanks: PRT 
with and RT without the projectivity restriction, in which PRT possesses a more ‘natural’ structure re- 
producing more closely the rarity of non-projective relations. We replicate the same analysis on these 



two random treebanks and compare the results with the PUD results. We found that we can distinguish 
the PUD from RT and PRT by looking at the results of power-law fitting. Therefore, we would like to  

cautiously draw our conclusion here that the power law model is probably a better choice for repre-
senting the relation between dependency distance and frequency, a hypothesis that is further strength-
ened by the results on purely syntactic dependency relations.  

 
                              5a: All functions.                                                 5b: Syntactic functions only. 

Figure 5: Joint plot of the frequency of dependency distance on a logarithmic scale showing the 
greater linearity of PUD compared to the random treebanks. 

Another interesting phenomenon we can observe from our data is that the projective random data-set 
has almost as good a fit to a power law function as the syntactically parsed true treebank. Although we 
need more samples to conduct a statistical significance testing for the difference, it seems that if we 
compare the natural PUD and the control PRT on the most relevant “syntactic functions only”, for ex- 
ample in the logarithmic presentation of Figure 5b., there is practically no difference between the line- 
arity of PRT and PUD. This shows that projectivity has a major role as the responsible factor for the 
power-law function of dependency distance. Of course, our conclusion based on this pilot study needs 
to be tested with more languages in the future. This leads to the open question to actually pinpoint the 
additional syntactic constraint of PUD, compared to random treebanks, that results in the power law 
distribution.  

We believe the result presented here has several potential applications. We can use the power law 
model to predict the distribution of dependency distance in a treebank. Since natural language treebanks 
fit to power law model betters than random treebanks, we might even use it as an index for assessing 
the quality of parse results.  
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Appendix 
The table shows the complete dependency distance frequency data from the SUD version of the English 
PUD treebank. The first three frequency columns take into account all dependency relations of the tree- 
bank. The last three frequency columns only count syntactic relations that correspond to actual head- 
daughter relations, which are the following relations in SUD: appos, clf, comp, det, discourse, dislo- 
cated, expl, mod, subj, vocative.  
 
 
 



Distance PUD-all PRT-all RT-all PUD-syntactic PRT-syntactic RT-syntactic 
1 10,236  5,473  1,912  6,866  3,742  1,194  
2  4,157  3,438  1,768  3,148  2,285  1,140  
3  1,887  2,270  1,646  1,295  1,434  1,021  
4  924  1,662  1,532  538  1,050  997  
5  544  1,292  1,468  285  809  951  
6  412  955  1,335  162  566  829  
7  292  747  1,222  112  459  807  
8  209  613  1,113  63  360  719  
9  192  536  1,009  55  306  650  
10  177  462  975  53  255  613  
11  139  400  824  39  206  497  
12  133  299  741  24  171  454  
13  98  287  701  22  152  433  
14  96  233  561  15  122  356  
15  97  225  521  13  123  319  
16  72  162  422  7  91  248  
17  52  175  386  5  90  238  
18  71  152  312  8  78  203  
19  52  124  276  0  66  168  
20  47  110  258  3  58  165  
21  43  100  226  1  51  147  
22  50  79  159  6  46  107  
23  27  62  162  1  35  91  
24  18  55  122  0  36  66  
25  26  44  91  1  21  53  
26  24  31  78  1  16  50  
27  22  38  78  0  20  48  
28  11  29  53  1  15  35  
29  18  22  53  0  9  32  
30  12  17  34  0  10  20  
31  3  13  29  0  7  15  
32  5  9  18  0  2  14  
33  2  6  21  0  3  9  
34  5  7  14  0  3  6  
35  3  8  13  0  7  5  
36  5  9  10  0  6  4  
37  4  3  2  0  0  2  
38  2  5  6  0  1  4  
39  2  3  5  0  1  3  
40  1  2  2  0  2  1  
41  1  3  1  0  2  1  
42  0  0  3  0  0  2  
43  1  3  2  0  2  2  
44  0  3  2  0  1  1  
45  1  1  3  0  1  1  
46  0  0  2  0  0  1  
47  0  3  2  0  2  1  
48  0  2  0  0  1  0  
49  1  0  2  0  0  1  
50  0  1  0  0  0  0  
53  1  0  1  0  0  0  
55  0  1  0  0  0  0  
56  1  1  0  0  1  0  
57  0  1  0  0  0  0   

 


