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Abstract 

This paper investigates which annotation scheme of dependency treebank is more congruent for 

the measurement of syntactic complexity and cognitive constraint of language materials. Two 

representatives of semantic- and syntactic-oriented annotation schemes, the Universal Depend-

encies (UD) and the Surface-Syntactic Universal Dependencies (SUD), are under discussion. 

The results show that, on the one hand, natural languages based on both annotation schemes 

follow the universal linguistic law of Dependency Distance Minimization (DDM); on the other 

hand, according to the metric of Mean Dependency Distances (MDDs), the SUD annotation 

scheme that accords with traditional dependency syntaxes are more expedient to measure syn-

tactic difficulty and cognitive demand.  

1 Background and Motivation 

Dependency grammar deals with the syntactically related words, i.e. the governor and the dependent, 

within sentence structure (Heringer, 1993; Hudson, 1995; Liu, 2009). It can be dated back to the seminal 

work of Eléments de Syntaxe Structurale by Tesnière (1959), and developed through different theories, 

including Word Grammar, Meaning-Text-Theory, Lexicase, etc. (e.g. Hudson,1984; Mel’čuk, 1988; 

Starosta, 1988; Eroms, 2000). Thus far, there are many representations of dependency grammar.  Figure 

1 displays two typical dependency representations of one sample sentence We walked along the lake.  

 
Figure 1. Dependency Representations of One English Sentence We walked along the lake Based on 

UD and SUD Annotation Schemes. 

 

The dependency representation based on the Universal Dependencies (UD1), as shown in Figure 1 (a), 

is one of the most eminent models by now under the framework of dependency grammar. It attempts at 

establishing a multilingual morphosyntactic scheme to annotate various languages in a consistent man-

ner (Nivre, 2015; Osborne and Gerdes, 2019). Thus, the UD annotation scheme holds a semantic over 
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syntactic criteria to put priorities to content words to maximize “crosslinguistic parallelism” (Nivre, 

2015; de Marneffe and Nivre, 2019). On the contrary, the Surface-Syntactic Universal Dependencies 

(SUD2) annotation scheme, as shown in Figure 1 (b), follows the syntactic criteria to define not only 

the dependency labels but also the dependency links. It aims to make the annotation scheme close to the 

dependency traditions, like Meaning-Text-Theory (MTT) (Mel’čuk, 1988), Word Grammar (Hudson, 

1984), etc. Hence, the SUD annotation scheme is a syntactic-oriented dependency representation that 

seeks to promote the syntactic motivations (Gerdes et al., 2018; Osborne and Gerdes, 2019). Therefore, 

the UD and SUD annotation schemes signify two typical preferences of dependency grammar, one is 

semantic-oriented, and the other is syntactic-oriented.  

As shown in Figure 1, the linear sentence in both representations can be divided into several words; 

and the labelled arcs, directed from the governors to the dependents, represent different dependency 

types indicating the syntactic relations between elements within the sentence. Hence, the dependency 

representations indicate both the functional role of each word as well as the syntactic relations between 

different elements. More importantly, based on dependency representations, linguists have proposed 

several measurements for linguistic analysis. For one thing, dependency distance is defined as the lin-

ear distance of the governor and the dependent (Hudson, 1995). For another, the linear order of the 

governor and the dependent of each dependency type is referred to as dependency direction (Liu, 2010). 

When a governor appears before a dependent, the dependency direction is governor-initial or negative. 

Otherwise, it is governor-final or positive. For instance, in Figure 1 (a), the arc above the dependent we 

and the governor walked forms a governor-final relation; and the dependency distance between these 

two elements is 2 – 1 = 1 (the number 2 and 1 in the subtraction represent the linear order of the governor 

and dependent, respectively). Detailed calculating method will be shown in Section 2. Therefore, the 

dependency representations and the measures of dependency relations are both explicit and clear-cut. 

This explains the reason why dependency treebanks, i.e. corpora with annotations (Abeillé, 2003), are 

widespread among linguists in big-data era. As a result, the variations and universals of human languages 

are explored and unveiled through statistical and mathematical tools (Hudson, 1995; Liu et al., 2017). 

What is noteworthy is that previous studies have shown that dependency distance is an important indi-

cator in demonstrating the notion of syntactic complexity and cognitive demand (Hudson, 1995; Gibson, 

2000; Liu, 2008).  

Under the framework of dependency grammar, Hudson (1995) characterized the definition of depend-

ency distance based on the theories of memory decaying and short-term memory (e.g. Brown, 1958; 

Levy et al., 2013). The notion of syntactic difficulty and cognitive demand have been subsequently 

related to the linear distance between the governors and the dependents in cognitive science (Gibson, 

1998; Hawkins, 2004). Based on a Romanian dependency treebank, Ferrer-i-Cancho (2004) hypothe-

sized and proved that the mean distance of a sentence is minimized and constrained. These paved the 

way for Liu’s (2008) empirical study on dependency distance which provides a viable treebank-based 

approach towards the metric of syntactic complexity and cognitive constraint. Afterwards, series of stud-

ies exploring the relationship between dependency distance and syntactic and cognitive benchmarks 

have been conducted (e.g. Jiang and Liu, 2015; Wang and Liu, 2017; Liu et al., 2017). These studies 

share some similarities. First, it is well-corroborated that the frequency of dependency distance de-

creases with the increase of the dependency distance, viz., the distribution of dependency distance fol-

lows the linguistic law of the Least Effort Principle (LEP) or Dependency Distance Minimization 

(DDM) (Zipf, 1965; Liu et al., 2017). Second, it is believed that the greater the dependency distance is, 

the more difficult the sentence structure (Gibson, 1998; Hiranuma, 1999; Liu et al., 2017). Thus, the 

arithmetic average of all dependency distances of one sentence or a treebank or the mean dependency 

distances (MDDs) (Liu, 2008) has been an important index of memory burden, demonstrating the syn-

tactic complexity and cognitive demand of the language concerned (Hudson, 1995; Liu et al., 2017).  

Previous studies have shown that there are several factors that have effects on the measurement of 

dependency distance of a sentence, including sentence length, genre, chunking, language type, grammar, 

annotation scheme and so forth (e.g. Jiang and Liu, 2015; Wang and Liu, 2017; Lu et al., 2016; Hiran-

uma, 1999; Liu and Xu, 2012; Gildea and Temperley, 2010). Most of these factors have been well-

investigated, however, the factor of annotation scheme has rarely been studied. Liu et al. (2009), for 

instance, investigated Chinese syntactic and typological properties based on five different Chinese 
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treebanks with different genres and annotation schemes, yet the treebanks adopted with different anno-

tation schemes were used to avoid the corpus influences to ensure a reliable conclusion. Hence, the 

question as to the effects of annotation scheme on the distribution of dependency distance and MDD 

remains open.  

Moreover, investigations into the benchmark of syntactic complexity and cognitive demand intro-

duced above were primarily based on traditionally syntactic-oriented dependency models, for instance, 

the Stanford Typed Dependencies annotation scheme (de Marneffe and Manning, 2008) or other anno-

tation schemes that specifically designed for each individual language. Thus, there is no consistency 

among different treebanks. In addition, although there are some qualitative investigations on the distinc-

tions between the UD annotation scheme and various traditional syntactic-oriented annotation schemes 

(e.g. Osborne and Maxwell, 2015), and the existing studies also include some empirical studies focusing 

primarily on the consistently annotated UD scheme (e.g. Chen and Gerdes, 2017; 2018), it is still of our 

interest that, compared with those based on consistently annotated traditionally syntactic-oriented 

schemes, whether linguistic analysis based on the UD annotation scheme can still function as a metric 

of syntactic difficulty and cognitive demand, and if it can, what are the reasons for these distinctions? 

Therefore, the deficiency of investigations into annotation scheme of treebanks leads to the inquiry 

of current study. We attempt at making comparisons of dependency distances based on two different 

annotation schemes, UD and SUD. Aimed to address the issues mentioned above, the following ques-

tions are under discussion based on UD and SUD treebanks: 

 

(1) Will the probability distribution of dependency distances of natural texts change when they are based 

on different annotation schemes? Do they still follow the linguistic law of DDM?  

(2) Based on MDDs, which annotation scheme is more congruent for the measurement of syntactic 

complexity and cognitive demand?  

(3) Which dependency types account most for the distinctions between UD and SUD annotation 

schemes?  

 

2 Materials and Methods 

Taking English language as an example, we adopt the Georgetown University Multilayer Corpus (GUM) 

(Zeldes, 2017) in UD 2.2 and SUD 2.2 projects. Both versions of the treebank are consisted of seven 

genres, viz. academic writing, biographies, fiction, interviews, news stories, travel guides and how-to 

guides. Since the treebanks are balanced in term of genres, it would better demonstrate the general fea-

tures of the probability distribution of dependency distance when we adopt different annotation schemes. 

To measure the effectiveness of MDDs as a metric of syntactic difficulty and cognitive demand in a 

broad sense, the testing sets of 20 languages with two versions of annotations were drawn from the UD 

2.2 and SUD 2.2 to form 20 corresponding treebanks. There 20 languages are Arabic (ara), Bulgarian 

(bul), Catalan (cat), Chinese (chi), Czech (cze), Danish (dan), Dutch (dut), Greek (ell), English (eng), 

Basque (eus), German (ger), Hungarian (hun), Italian (ita), Japanese (jpn), Portuguese (por), Roma-

nian (rum), Slovenian (slv), Spanish(sp), Swedish (swe) and Turkish (tur). These 20 treebank-pairs 

would help to demonstrate the features and distinctions of syntactic- and semantic-oriented annotation 

schemes in measuring syntactic complexity and cognitive constraint.  

As for the calculation of dependency distance, we adopted Jiang and Liu’ (2015) approach. Formally, 

let W1...Wi...Wn be a word string. For any dependency relation between the words Wx and Wy (x ≥ 1, y 

≤ n), if Wx is a head and Wy is its dependent, then the dependency distance between them is defined as 

the difference x – y; by this measure, the dependency distance of adjacent words is 1.  

The MDD of the entire sentence can be defined as: 

MDD (sentence) = 
1

𝑛−1
∑ |𝑛−1

𝑖=1 DD𝑖|   (1) 

In this formula, n is the number of words in the sentence and DDi is the dependency distance of the i-th 

syntactic relation of the sentence. Usually in a sentence there is one word (the root verb) without a head, 

whose DD is defined as zero. 



The MDD of a treebank can be defined as: 

MDD (treebank) = 
1

𝑛−𝑠
∑ |𝑛−𝑠

𝑖=1 DD𝑖|    (2) 

Here, n is the total number of words in the sample, s is the total number of sentences in the sample and 

DDi is the dependency distance of the i-th syntactic link of the sample. 

When it comes to the MDD for a specific type of dependency relation in a sample, the formula can 

be shown as follows: 

MDD (dependency type) = 
1

𝑛
∑ DD𝑖

𝑛
𝑖=1     (3) 

In this case, n is the number of examples of that relation in the sample. DDi is the dependency distance 

of the i-th dependency type. 

For both UD and SUD annotations, the formats of their representations are CoNll-X (de Marneffe & 

Manning, 2008). Table 1 is a simplified CoNll-X version of the sample sentence with UD annotation 

scheme.  

 

Dependent Head Relation 

Order Word Lemma POS Feature Order Dependency Type 

1 We we PRON PRP 2 nsubj 

2 walked walk VERB VBP 0 root 

3 along along ADP IN 5 case 

4 the the DET DT 5 det 

5 lake lake NOUN NN 2 obl 

Table 1. Simplified Annotation of We walked along the lake in UD Treebank. 

 

Take the first line in Table 1 for example. It shows that the second word walked in the sentence has a 

dependent we, which is the first word of the sentence. The type of this dependency is nsubj, or nominal 

subject. As for the second line, it indicates that the root of the sentence is walked, signifying the head of 

the whole sentence rather than demonstrating a dependency relation; hence it is removed during com-

putation. Regarding the sample sentence above, the DD of nsubj (line one) is 2 – 1 = 1; case (line three) 

is 5 – 3 = 2; det (line four) is 5 – 4 = 1; obl (line five) is 2 – 5 = – 3. Hence, following formula (1), the 

MDD of the sentence can be obtained as follows: (|1|+|2|+|1|+|– 3|)/4=1.75. Similarly, the MDD of the 

sample sentence based on SUD annotation scheme in Figure 1 (b) is (|1|+|– 1|+1+|– 2|)/4=1.25. 

 

3 Results and Discussion 

Taking English language as an example, we would first focus on the probability distribution of depend-

ency distance to investigate whether it follows the linguistic law of DDM when we adopt two distinctive 

annotation schemes. Following what Liu (2008) did, we would then calculate MDDs of 20 languages 

based on two annotation schemes to demonstrate which annotation is more effective to measure syntactic 

difficulty and cognitive demand. Finally, specific dependency types in the treebank of GUM would be 

under investigation to display the possible underlying explanation beneath the distinctions between these 

two annotation schemes. 

3.1 Annotation Scheme and Probability Distribution of Dependency Distance 

It is believed that dependency distance is cognitively restrained by human working memory (Liu et al., 

2017). Therefore, human beings tend to minimize the dependency distances while interpreting or pro-

ducing languages. Hence, based on different syntactic-oriented annotation schemes, it has been found 

that the probability distribution of dependency distances of natural languages follows similar distribu-

tional patterns, including right truncated zeta (Jiang and Liu, 2015; Wang and Liu, 2017; Liu et al., 2017) 

and right truncated waring (Jiang and Liu, 2015; Lu and Liu, 2016; Wang and Liu, 2017).  



Following these researches, we fitted dependency distances of all 95 texts of GUM to these two prob-

ability distributions by the fitting program of probability distributions, Altmann-Fitter3. Since the deter-

mination coefficient R2 can indicate the goodness-of-fit (Wang and Liu, 2017; Wang and Yan, 2018), 

the mean values of the determination coefficient R2 in all seven genres were calculated. Conventionally, 

the excellent, good, acceptable and not acceptable goodness-of-fit for determination coefficient R2 are 

0.90, 0.80, 0.75 and less than 0.75, respectively.   

It was found that the mean determination coefficient R2 in the model fitting of right truncated waring 

and right truncated zeta based on both UD and SUD are larger than 0.80, indicating that the fitting results 

are good. In other words, the frequencies of dependency distances based on both UD and SUD treebanks 

can well capture the models of right truncated waring and right truncated zeta with a good coefficients 

of determination R2.  

To conclude, the probability distributions of dependency distances of natural texts based on both UD 

and SUD annotation schemes share similar power law distribution, viz. the frequency of dependency 

distance decreases with the increase of the dependency distance. The results reveal that dependency 

distance distributions of all texts based on both UD and SUD follow the same regularity, supporting the 

Least Effort Principle (LEP) (Zipf, 1965) or the linguistic law of DDM (Liu, 2008; Futrell et al., 2015; 

Liu et al., 2017). 

3.2 Annotation Scheme and Mean Dependency Distance  

Except the probability distribution of dependency distance, the syntactic and cognitive parameter of 

MDDs is also of our interest. Hence, the MDDs of all 20 corresponding treebanks based on UD and 

SUD were calculated in accordance with formula (2). Our results show that although these two annota-

tion schemes are divergent from each other, what is in common is that the MDDs of all 20 languages 

based on both annotation schemes are within 4 (Cowan, 2001), showing that the syntactic complexity 

of human languages is constrained by human cognitive limitation or LEP rather than annotation scheme 

itself. This is consistent with what we’ve discovered in Section 3.1. Moreover, what is noteworthy is 

that MDDs based on 20 UD treebanks are always larger than those based on SUD for each individual 

language. This means that language materials based on UD annotation scheme lead to the interpretation 

of larger MDDs. Theoretically, it is believed that annotation schemes that lead to shorter MDDs is more 

linguistically applicable (Osborne and Gerdes, 2019). Hence, the SUD annotation scheme seems to be 

more suitable for reflecting the human cognitive demand and the syntactic complexity of the language 

under processing.  

This was followed by a dependent-samples t test. The result shows that MDDs based on UD (M = 

2.86, SD = .32) are significantly longer than MDDs that based on SUD (M = 2.52, SD = .39), t (19) = 

11.10, p < .05, d4 = 2.48. The p-value of .000 is less than .05, the null hypothesis that the means of MDD 

based on different annotation schemes are equal is rejected. Moreover, according to Cohen’s conven-

tions, the effect size of 2.48 corresponds to a large effect in practice and indicates that the MDDs based 

on UD was rated 2.48 standard deviations longer in distance than was SUD. Hence, with the distinction 

of annotation schemes, natural language texts based on UD annotation scheme tend to have longer MDD 

than that based on SUD.  

In addition, the results of MDDs based on SUD are closer to those of Liu (2008: 174). This might be 

due to the fact that both the SUD annotation scheme and what Liu (2008) based on belong to the category 

of syntactic-oriented annotation schemes.  Although some languages have larger MDDs (e.g. Hungarian 

(hun) and Chinese (chi)) and the other have smaller ones (e.g. Turkish (tur) and Japanese (jpn)) in Liu 

(2008) than those based on SUD, this might be attributed to that the annotation schemes of Liu (2008) 

are not consistently annotated across languages. Hence, when it comes to the relationship between an-

notation scheme and MDD, although still within a threshold of 4, MDD of language materials based on 

UD annotation scheme tends to be longer than that based on SUD, and the difference is significant. 

Moreover, the MDDs based on SUD share great similarities with those based on Liu (2008). Thus, to 

some extent, it can be summarized that the syntactic-oriented SUD is comparatively more expedient 

annotation scheme to researches concerning syntactic complexity and cognitive demand.  
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3.3 Annotation Scheme and Annotating Preference 

In Section 3.1 and Section 3.2, we investigated the universal inclination of DDM for natural languages 

and MDD as an indicator of syntactic complexity as well as cognitive demand based on two different 

annotation schemes. In Section 3.3, the reasons for the similarities as well as distinctions are of our 

interest. Since it is impossible to make detailed analysis based on all 20 corresponding treebanks, the 

English treebank of GUM is under investigation as a representative.  

Since the SUD annotation scheme is near-isomorphic to the UD initiative (Gerdes et al., 2018), tree-

banks based on UD and SUD are very similar to a large extent. The greatest difference between UD and 

SUD treebanks is the direction of the dependency types used to indicate the relations between function 

words and content words. In this case, UD’s aux, cop, mark and case dependencies indicate dependency 

relations pointed from content words to function words (e.g. the case relation between lake and along 

as shown in Figure 1 (a)), while their directions are inverted in SUD and renamed as comp as shown in 

Table 2 (e.g. the comp relation between along and lake in Figure 1 (b)) (Gerdes et al., 2018: 71). Mean-

while, other subordinate dependency relations remain intact.  

 

UD Dependency Corresponding SUD Dependency 

aux, cop, mark, case, xcomp, 

ccomp, obj, iobj, obl:arg 
comp 

Table 2. General Corresponding Dependency Relations in UD and SUD Annotation Schemes. 

 

As Table 2 shows, the comp relation in SUD is consisted of more than four UD types (i.e. aux, cop, 

mark and case). Hence, according to Gerdes et al. (2018: 72), we nailed down the actual 4 corresponding 

pairs that differentiate the UD and SUD annotation schemes in Table 3. They are aux and comp:aux, 

aux:pass and comp:pass, cop and comp:cop, and finally, mark & case and comp.  

 

UD SUD 

Type Relation Type Relation 

aux auxiliary comp:aux complement: auxiliary 

aux:pass passive auxiliary comp:pass complement: passive auxiliary 

cop copula comp:cop complement: copula 

mark marker 

comp 

complement: subordinating conjunction 

case case marking complement: adposition 

Table 3. Detailed Corresponding Dependency Relations in UD and SUD Annotation Schemes. 

 

In Table 3, all the dependency relations in UD are head-final, and in SUD head-initial. In other words, 

nearly all comp:aux, comp:pass, comp:cop and comp in SUD designate the function words as heads 

over content words, hence the dependency directions are negative. Correspondingly, nearly all the aux, 

aux:pass, cop and mark & case in UD choose content words as head; hence the dependency directions 

are also altered. This shows that the underlying reason for the distinction between UD and SUD anno-

tation scheme is that the UD annotation scheme favours taking the content words as the head of function 

words while the SUD annotation scheme chooses the function words as heads over content words in 

dependency relations (Nivre, 2015; Gerdes et al., 2018; Osborne and Gerdes, 2019). To be specific, the 

UD treebanks first connect the content words and then the function words to emphasize the semantic 

similarities of all languages, while the SUD treebanks connect content words mediated by function 

words to complete the functional roles of function words. Consequently, the more the number of modi-

fiers before noun (between the apposition and the noun) is, the longer the dependency distance between 

the verb (root) and the noun. For instance, the distance between walked and lake in Figure 1 (a) would 



enlarge if there are more modifier before the noun lake. Hence, the longer MDDs in UD treebanks can 

be attributed to the emphasis on semantic relations within sentence structure. 

In fact, designating the head of linguistic structure has always been a focus of modern grammar, not 

only for dependency grammar but also for constituency-based frameworks (Jackendoff, 1977; Zwicky, 

1985; Pollard and Sag, 1994), especially when it comes to the function words within sentence structure 

(de Marneffe and Nivre, 2019). The design of the SUD representation that prioritizes function words as 

heads over content words is in line with most traditional syntaxes (Hudson, 1984; Mel’čuk, 1988; 

Starosta, 1988; Eroms, 2000). Moreover, under the framework of dependency grammar, the status of 

function words has also been discussed by many theoretical studies (e.g. Groß and Osborne, 2015; Os-

borne and Maxwell, 2015). However, most studies focus on one aspect of function words or emphasize 

the qualitative features of dependency relations that related to function words. The current section pro-

vides some empirical evidence of the status of function words in semantic-oriented UD and syntactic-

oriented SUD treebanks.  

4 Conclusions and Implications 

Through observation and calculation, it can be found that based on UD and SUD annotation schemes, 

natural English texts exhibit similar probability distribution. No matter what the genre of the text is, both 

share a power law distribution with a trend of minimizing dependency distance. This is also consistent 

with the well-exemplified DDM theory corroborated by Liu et al. (2017), showing the limitation of 

human working memory capacity. 

When 20 corresponding treebanks are under investigation, the MDDs of Liu (2008)’s study and our 

study based on SUD annotation scheme are similar with each other, and they are significantly shorter 

than those based on UD, showing the consistency of syntactic-oriented annotation schemes and the pos-

sibility of applying SUD to language materials to measure syntactic complexity and cognitive demand. 

Moreover, the reason underlying for the distinctions between UD and SUD annotation schemes is the 

dependency types indicating the relations between apposition and noun. The UD annotation scheme 

prefers a semantic orientation, while the SUD annotation scheme favours a syntactic orientation which 

holds a function-word priority. To be specific, the corresponding pairs, aux and comp:aux, aux:pass 

and comp:pass, cop and comp:cop, and mark & case and comp in UD and SUD annotation schemes 

lead to longer MDDs of UD treebanks.  

Therefore, the current study suggests that, to some extent, the consistently syntactic-oriented annota-

tion scheme (SUD) is better than the consistently semantic-oriented one (UD) in linguistic analysis of 

syntactic complexity and human cognitive demand. However, it is still worthwhile to spare more efforts 

to assess the effectiveness of consistently annotated syntactic-oriented representation to capture both the 

variations and universals of natural human languages.  
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