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Abstract

This paper presents a novel algorithm for generating a surface word order for a sentence given
its dependency tree using a two-stage process. Using dependency-based word embeddings and a
Graph Neural Network, the algorithm first learns how to rewrite a dependency tree as a partially
ordered set (poset) with edge-weights representing dependency distance. The subsequent topo-
logical sort of this poset reflects a surface word order. The algorithm is evaluated against a naive
baseline of average dependency distances across 14 languages, performing well in terms of rank
correlation and resulting rate of projectivity based on Universal Dependencies corpora.

1 Introduction

In a tradition dating at least back to Tesnière (1959), the words in a phrase or sentence can be thought of as
a set of heads and dependents. Each word save the root is a dependent of another word, its head, and heads
and dependents exist in a one-to-many relationship (Polguère and Mel’čuk, 2009). This arrangement of
heads and their dependents forms a tree, or more formally an unordered directed acyclic graph (DAG), in
which words are nodes and edges are the dependency relations. A sentence is one possible linearization
or surface order of the DAG.

This paper describes a method for learning how to generate a valid1 surface order from a dependency
tree. Determining the underlying dependency tree from a surface order is the rather extensively studied
task of parsing; this paper concerns the opposite task.

The key insight of the paper is that rather than learning to directly convert a dependency tree to surface
order, the target is instead an edge-weighted partially ordered set (poset). The poset’s edge direction
represents linear precedence in the surface order, while edge weight represents dependency distance, the
number of words intervening between dependent and head in the surface order. The topological sort or
linear extension of this poset—performed such that nodes connected by edges with smaller weights are
placed closest to each other—reflects the surface order of the dependency tree.

For example, Figure 1 shows (a) the dependency tree, (b) edge-weighted poset, and (c) surface order
of the sentence Personally I recommend you take your money elsewhere. Rather than attempting to
learn how to convert (a) directly into (c), the approach outlined here rewrites (a) to (b) by learning edge
directions and weights, then rewrites (b) to (c) via topological sort. Given examples of dependency
trees and their corpus-attested surface orders, a neural network can learn to convert previously unseen
dependency trees into surface orders by way of a weighted poset.

Implemented as a Graph Neural Network, the machine-learning algorithm treats inputs, targets,
and outputs as directed graphs. Further, by representing words with their dependency-based embed-
dings—that is, embeddings trained on syntactic rather than linear contexts—the model generates a lin-
earized surface order as the final step only, performing all other analysis within a graph framework. In
this way surface order is treated as an emergent consequence of topologically sorting an edge-weighted
poset, the weights of which represent learned dependency distances.

1Validity here should be taken neither grammatically nor prescriptively, but rather as a stand-in for attested in a corpus. That
is, the model developed herein learns to order the words in a dependency tree based on the structural regularities of a corpus,
not intuitive or prescribed grammaticality judgments.
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(c) surface order
personally I recommend you take your money elsewhere

Figure 1: Three graph-theoretic representations of a sentence. (a) A dependency tree as an unordered
directed acyclic graph (DAG). (b) A poset in which edge weight indicates dependency distance in the
surface order. (c) A surface order generated by a topological sort of the poset in (b).

2 Background literature

2.1 Related linguistic work
Word order is one of the oldest and most prominent areas in the field of linguistics, and as such a wide
variety of models have been advanced seeking to describe and understand word-order variation (Song,
2012). It has been approached from generalist perspectives, as in Behaghel’s “what belongs together
semantically is also placed close together” (1932, p. 4) or Uniform Information Density (Jaeger and R.
Levy, 2006), as well as from specific constituent types, such as the ordering of adpositions and adver-
bials by manner, place and time (Boisson, 1981); demonstratives, numerals, and descriptive adjectives
(Greenberg, 1963; Dryer, 2009); or adjectives by size, shape, and so on (Scott, 2002).

Building on principles such as Head Proximity (Rijkhoff, 1986), Early Immediate Constituents
(Hawkins, 1994), Dependency Locality Theory (Gibson, 2000), and Minimize Domains (Hawkins,
2004), a recent approach to word order holds that the dependency distance2—the number of words inter-
vening between a dependent and its head—should be minimized and long-distance dependencies should
be avoided (Hudson, 1995; H. Liu et al., 2017). Dependency Distance Minimization (DDM) proposes
that a surface order with a smaller cumulative or mean dependency distance is generally favored over
alternatives, a tendency that may be universal (Futrell et al., 2015).

However, DDM alone cannot fully explain word order: it does not distinguish between total mirror
orders—the dependency distances of the cat purrs are presumably the same as purrs cat the—or, more
plausibly, partial mirror orders such as the swapped adjectives in big red barn or red big barn. Methods
for extending DDM include employing phonemes or syllables as the unit of distance (Ferrer-i-Cancho,
2017), or exploring the relationship between dependents and heads in information-theoretic terms (Dyer,
2018; Hahn et al., 2018). Another avenue is some sort of linear principle that could operate to differen-
tiate mirror surface orders, such as “old concepts come before new ones” (Behaghel, 1932, p. 4), or the
possibly contradictory “provide the most important information first” (Gundel, 1988, p. 229).

One way to conceive of surface order is as the result of rewriting a dependency graph by modifying its
edge directions to reflect linear order. This process represents an intermediate stage between syntactic
structure and surface order in which the linear order of certain word pairs is expressed as a series of
precedence relations (Gerdes and Kahane, 2001; Kahane and Lareau, 2016). These precedence relations
form a partially ordered set (poset) which can be topologically sorted into a non-unique linearization.

2Dependency distance is also referred to as dependency length in the literature.



2.2 Related NLG work
The field of natural language generation (NLG) seeks to model word order in the service of generating
accurate natural language. Contra Harris (1954)3, language is often seen within NLG as a bag of words
in which the task of realizing surface order is based on an n-gram language model (Filippova and Strube,
2009). A common implementation follows the bottom-up insights from dependency parsing (Y. Liu et
al., 2015), and features such as syntactic category or dependency relations can improve algorithms for
linearizing a bag of words (Zhang and Clark, 2015).

The First Multilingual Surface Realisation Shared Task (SR ‘18) brought together nine submissions
in a shallow track requiring teams to determine word order and inflections of shuffled and lemmatized
Universal Dependencies (UD) data, evaluated by both statistical and human assessment (Mille et al.,
2018). For the linearization subtask, of the four submissions with the highest BLEU4 scores in at least one
of the 10 supported languages: Puzikov and Gurevych (2018) use a bigram language model with binary
neural-net classification; Elder and Hokamp (2018) treat the task as a machine-translation problem, using
sequence-to-sequence models augmented with synthetic and outside data; Castro Ferreira et al. (2018)
sort dependents into preceding and following groups which are then sorted by syntactic category or
with a maximum entropy classifier; and King and White (2018) use features such as syntactic category,
projectivity, and dependency distance to build a language model to incrementally linearize words.

It has long been noted that a reliance on statistical n-gram metrics like BLEU for measuring generated
language is problematic given their inability to generalize seemingly unimportant word order variation
or synonymy (Pastra and Saggion, 2003; Turian et al., 2006), as well as their lack of correlation with
human assessment (Novikova et al., 2017). BLEU specifically has been criticized given its understudied
technological biases, a sufficient reason to avoid using it alone to report scientific evidence (Reiter,
2018, p. 399). Further, while the target or reference of generated language is not necessarily a single
sentence—there may be more than one semantically and syntactically valid surface realization of a given
set of words, with context determining appropriateness—limited resources often result in a single human-
produced reference being used, usually in the guise of an attested sentence in a corpus.

2.3 Projectivity
Projectivity refers to the constraint that a head and its dependents must occur in a contiguous sequence
in the surface order (Marcus, 1965). Violations of projectivity—often referred to as discontinuities in
the linguistics literature—are instances when a word occurring between a head h and dependent d is not
dominated by h in the dependency tree. In the oft-cited non-projective sentence The hearing is scheduled
on the issue today, both is and scheduled occur between hearing → issue5, but are not dominated by
hearing. A projective order would be The hearing on the issue is scheduled today.

It seems that all natural languages contain some amount of non-projective dependency relations,
though calculating exact rates of non-projectivity is difficult given design decisions in the original parsing
to create corpora. That is, some annotation schemes presuppose projectivity, and as a result corpora pro-
duced following those schemes will not exhibit discontinuities (Ferrer-i-Cancho and Gómez-Rodríguez,
2016). Observed percentages of non-projectivity range from single digits to the mid-teens depending on
language, though sources disagree, likely due to differences in corpora, genre, and annotation scheme.

Non-projectivity must be accounted for in any model of word order. Parsers have been developed
which allow pseudo-projective (Nivre and Nilsson, 2005), non-projective (Nivre, 2009), and mildly non-
projective dependencies (cf. Gómez-Rodríguez, 2016). Similarly, the submissions to SR ‘18 vary with
regard to projectivity: of the eight, three explicitly exclude non-projective arcs due to algorithmic design
(Basile and Mazzei, 2018; Puzikov and Gurevych, 2018; Sobrevilla Cabezudo and Pardo, 2018), while
one follows the tendency toward limited non-projectivity by “encourag[ing] the model to learn that most
choices should yield continuous phrases” (King and White, 2018, p. 42).

3“[L]anguage is not merely a bag of words but a tool with particular properties which have been fashioned in the course of
use” (p. 156).

4BLEU, for bilingual evaluation understudy (Papineni et al., 2002), is “the geometric mean of the n-gram precisions between
generated text and reference texts and adds a brevity penalty for shorter sentences” (Mille et al., 2018, p. 4).

5Following the UD convention of adpositions depending on nouns, we have hearing→ issue and issue→ on.



The causal relationship between Dependency Distance Minimization and projectivity is unsettled.
Ninio (2017) concludes that “projectivity appears to be not so much a side-effect of DDM as a mathe-
matical requisite for a method to encode a two-dimensional tree in a one-dimensional sentence-string in a
way that makes reconstruction possible” (p. 216), appealing to other linguistic structures such as catenae
(Osborne et al., 2012) to explain discontinuities. This traditional view—that projectivity exists as a prin-
ciple independent of DDM—is largely disproven by an analysis which positively correlates dependency
distance and the number of crossing dependencies across a variety of multilingual corpora (Ferrer-i-
Cancho and Gómez-Rodríguez, 2016). Park and R. Levy (2009) note that an avoidance of long-distance
dependencies can result in non-projective surface orders.

2.4 Syntactic word embeddings

The relationship between words has long been thought of distributionally; as Firth (1957) memorably
puts it: “you shall know a word by the company it keeps” (p. 11). The company or context of a word
is often conceived in terms of the linear neighbors that commonly occur around that word, a context
that can be quantified with a dense vector or series of numbers called an embedding. Algorithms have
been developed to learn a word’s embedding in a corpus, such as skip-grams (Mikolov et al., 2013). O.
Levy and Goldberg (2014) extend the notion of context beyond linear neighbors in their word2vecf to
use dependency relations in learning syntactic embeddings: a word’s context is based on the heads and
dependents it takes in a corpus.

The number of dimensions necessary for a given task is an understudied problem. It is widely accepted
that larger dimensions are better, up to a point of diminishing returns; for example, O. Levy and Goldberg
(2014) use 300 in their evaluation, mentioning that 600 produces similar results. However, Spirling and
Rodriguez (2019) note that very large dimensions relative to corpus size result in greater instability
of embeddings, where instability refers to the rate at which the cosine-similar nearest neighbors differ
between models (Wendlandt et al., 2018). Patel and Bhattacharyya (2017) explore the lower bound
of embedding dimensions, below which performance suffers, providing a rather complicated method
for calculating the minimum based on the maximum clique of a cosine-similarity matrix of word co-
occurrence. An industry rule-of-thumb6 is to use the fourth root of vocabulary size.

2.5 Graph neural networks

While machine-learning algorithms, deep or otherwise, have traditionally operated on data represented
in Euclidean space—for example, image data can be represented as a regular grid of pixel values—graph
neural networks (GNN) allow the complexity of graph structures to be analyzed (Wu et al., 2019). The
Graph Nets (GN) framework relies on a graph-to-graph model called a GN block “which takes a graph
as input, performs computations over the structure, and returns a graph as output” (Battaglia et al., 2018,
p. 11). In this framework, a graph is composed of nodes and their attributes, edges and their attributes,
and a set of global attributes. Input and target graphs may contain different node and edge configurations;
only the attributes for nodes and the attributes for edges must be of a consistent form. It is these sets of
attributes which form the learned parameters of the neural network.

GN blocks also support message-passing neural networks (MPNN) (Gilmer et al., 2017), a method by
which a graph’s node and edge attributes undergo spatial-based graph convolutions and pooling (Wu et
al., 2019, p. 8). In this manner a graph’s connected nodes influence each other’s node and edge attributes,
passing information along directed edges.

3 Methodology

The approach described in the current study rests on the notion that adding dependency distances as
positive or negative edge weights to a dependency tree allows the DAG to be rewritten as a poset whose
topological sort reflects a surface order. Edge weights are therefore the number of words intervening
between a dependent and its head, where negative weights indicate a dependent that precedes its head
and positive a dependent following its head. Learning these edge weights is the core goal of the model.

6https://developers.googleblog.com/2017/11/introducing-tensorflow-feature-columns.html
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Figure 2: Overview of methodology. (a) A CoNLL-U file is parsed by word2vecf to produce (b) a
list of syntactic word embeddings for each wordform|POS|relation, POS|relation, and POS. These
embeddings form the node attributes for (c) a directed graph of a dependency tree. The graph’s edge
attribute is a single-element vector which will contain the learned distance between dependent and head.
Note that edge direction is reversed from conventional dependency directions to enable more effective
message passing. (d) An output graph isomorphic to (c) with learned node and edge attributes. (e) A
poset with edge weights representing the distance between words in the eventual surface order, built from
the learned directions and distances in (d). Note the flipped edge direction between trip and Canada in
the DAG (d) versus the poset (e). (f) The unique surface order resulting from a topological sort of (e).

There are three tasks to be undertaken to convert a dependency tree into a surface order: (1) encode
words to generalize from training to testing; (2) for a given dependency tree, learn whether each depen-
dent precedes or follows its head in the surface order, and by how many words, in order to produce an
edge-weighted poset; and (3) perform a topological sort of the poset based on edge weight. The first task
is accomplished with word2vecf, the second with a graph neural network and message passing, and
the third with a custom algorithm which rewrites a weighted poset to a linear graph such that nodes are
connected in ascending order of edge weight. An overview of this process is shown in Figure 2.

3.1 Syntactic embeddings

Word2vecf7 (O. Levy and Goldberg, 2014) is used to generate syntactic word embeddings from a
Universal Dependencies CoNLL-U8 file. Embeddings are created for each word|POS|relation,
POS|relation, and POS in order to minimize polysemy and homography effects and to enable words
unseen during training to be analyzed based on their syntactic category and/or dependency relation. The
dimension of the embedding vector is determined by corpus size: in order to avoid the instability seen in
both too-small and too-large dimensions, the industry rule-of-thumb of the fourth root of vocabulary size
is used, multiplied by two. These dimensions were found during algorithm design to offer a reasonable
balance between performance and generalizability.

7https://bitbucket.org/yoavgo/word2vecf
8https://universaldependencies.org/format.html



3.2 Graph neural network implementation

The machine-learning algorithm is implemented using Graph Nets and Sonnet, two DeepMind libraries9

for building graph neural networks using Google’s Tensorflow (Abadi et al., 2015). The network’s layers
contain 18 neurons each and follow an ‘encode-process-decode’ model common to many Graph Nets
implementations. Because learned edge weights in the GNN can be positive or negative, loss is calculated
as the absolute difference between target and output. An Adam optimizer with a learning rate of 1−3 is
used, there are 6 message-passing steps, and the network is run through 10,000 iterations.

The input is a series of networkx10 directed graphs, one for each sentence in the training and testing
sets. In order to effectively utilize message passing, edges are constructed as dependent→ head, opposite
the usual syntactic dependency-parsing edge direction. Each node has an attribute which is the vector
produced by word2vecf’s syntactic embedding. In the GNN, edge weights are used to track dependency
distance, both negative and positive. A negative edge weight indicates that a head precedes its dependent,
and a positive weight that a dependent precedes its head. Target edge weights are calculated as the
difference between the dependent and head location in the original surface order, normalized to [-1,1] by
dividing each distance by the maximum dependency distance of a given sentence.

For example, Figure 2 (c) and (d) show the input and output for the phrase for your trip to Canada. The
input to the GNN is the dependency tree, where each node’s attribute is the word’s syntactic embedding.
The output is the same dependency tree with learned edge attributes reflecting the distance between
dependent and head.

3.3 Weighted topological sort

Performing a topological sort of an edge-weighted poset such that connected nodes are placed in ascend-
ing order of edge weight is conceptually quite simple, but implementation is more complicated than it
may appear. A straightforward approach of simply merging nodes with the smallest weights before those
with larger weights does not properly order the nodes, since the weight of arcs crossing the merged nodes
are not necessarily updated to reflect the merge. Instead, as outlined in Algorithm 1, each edge (u,v) from
the poset can be added to a new directed graph order such that the edge’s weight is maintained, even
though u and v may not be adjacent in order.

When inserting edge (u,v) with weight wuv into order, if u is already in order, then traverse the
successor nodes of u until the total distance from u—a value maintained by wsum—exceeds wuv. At that
point, insert v and update the weights of v’s neighbors. This process is shown in lines 5-16. Similarly,
as shown in lines 17-28, if v is already in order, traverse the predecessor nodes of v until wsum exceeds
wuv, insert u, and update u’s neighbors’ weights. Finally, if neither u nor v are in order, add edge (u,v)
with weight wuv to order, as shown in line 30. When all edges from poset have been added to order,
the topological sort of order is returned as the surface realization. Each edge in poset must be added
to order, and in the worst-case scenario the weight of each existing edge in order must be examined.
Therefore Algorithm 1 runs in O(n log n) time, where n is the number of edges in poset.

3.4 Baseline (AVG)

Rather than generating syntactic word embeddings and running the GNN, a naive approach to deter-
mining dependency distances is to average the distance between any two words in the training set for
use on the testing set. Similar to the set of word embeddings (§3.1), in order to generalize to unseen
words in the test set, average distances are created for each pair dependent pair of word|POS|relation,
POS|relation, and POS. For example, if the|DET|det has an average dependency distance of 1.2 from
horse|NOUN|nsubj, and brown|ADJ|amod has an average of 0.9 from horse|NOUN|subj, then using
those two average distances as weights in a poset would result in a surface order of the brown horse. If
red|ADJ|amod was unseen during training, then the average of all instances of ADJ|amod dependent on
horse|NOUN|subj would be used—if that average distance were 1.3, then this naive approach would
return red the horse.

9https://github.com/deepmind/
10https://networkx.github.io/



Algorithm 1: Given an edge-weighted poset, construct a total order such that nodes with smallest weights are adjacent.

1: function WEIGHTED_TOPO_SORT(poset)
2: order← /0 ◃ empty directed graph to hold totally ordered set
3: for (u,v,wuv) ∈ poset do
4: wsum← 0 ◃ a sum of traversed weights
5: if u ∈ order then
6: while wuv > wsum do ◃ traverse successors of u
7: s← order.u.successor
8: wus← order[u][s].weight
9: wsum← wsum +wus

10: if wuv < wsum then
11: u← s ◃ u becomes its successor s
12: end if
13: done
14: wvs← wsum−wuv ◃ wvs is how much wsum overshot wuv
15: order.UPDATE_EDGE(u,s,_)← ◃ change existing (u,s)...
16: [(u,v,wus−wvs),(v,s,wvs)] ◃ ... to (u,v) and (v,s) and update weights
17: else if v ∈ order then
18: while wuv > wsum do ◃ traverse predecessors of v
19: p← order.v.predecessor
20: wpv← order[p][v].weight
21: wsum← wsum +wpv
22: if wuv < wsum then
23: v← p ◃ v becomes its predecessor p
24: end if
25: done
26: wpu← wsum−wuv ◃ wpu is how much wsum overshot wuv
27: order.UPDATE_EDGE(p,v,_)← ◃ change existing (p,v)...
28: [(p,u,wpu),(u,v,wpv−wpu)] ◃ ... to (p,u) and (u,v) and update weights
29: else
30: order.ADD_EDGE(u,v,wuv)
31: end if
32: done
33: return TOPO_SORT(order) ◃ return topological sort of order graph
34: end function

3.5 Evaluation

To evaluate the performance of the GNN algorithm compared to the AVG baseline in an automated way
across various languages, we must unfortunately use a single target reference to compare the generated
sentences. Thus the reference for each sentence is the attested version in the source UD corpus; the
generated sentences from both AVG and GNN will be measured for similarity to the attested version.

The algorithm is attempting to order a set of words as closely as possible to their original surface
realization in the corpus. Because words may repeat in the sentence, each order is instead represented
by a list of integers, and it is these lists of integers which are compared. For example, assuming a target
reference order of [1,2,3] for the red horse, the generated order of red the horse would be [2,1,3].
An obvious way to quantify how similar these integer lists are is with the widely used Spearman’s rank
correlation coefficient (Spearman, 1904), also known as Spearman’s ρ (rho), which non-parametrically
measures the similarity of two rankings. It ranges from -1, indicating that one order is the reverse of the
other, to 1, for perfect correlation. The example of [1,2,3] [2,1,3] returns a ρ of 0.5, since in the
second order 1 and 2 both precede 3, but 1 does not precede 2. This measure tells us which approach,
AVG or GNN, generates orders closest to the attested UD order, as well as a loose gauge of overall
effectiveness for both the general approach as well as each algorithm.

Further, to address the question of projectivity, the percentage of projective dependency arcs gener-
ated by the AVG baseline, the GNN algorithm, and the attested sentences is evaluated. In each case,
projectivity is calculated as the number of instances in which a word appearing between a head h and
dependent d is not dominated by h. This measure allows us to explore how dependency distance might
result in known rates of projectivity in natural language.



SPEARMAN’S ρ [-1,1] PROJECTIVITY [0,1]

NTR NTE DV AVG GNN AVG GNN UD
Afrikaans AfriBooms 1315 425 18 0.707 0.773 0.530 0.650 0.939

Armenian ArmTDP 560 470 18 0.628 0.672 0.413 0.585 0.987

Czech CLTT 755 121 18 0.665 0.659 0.359 0.469 0.982

English ParTUT 1781 153 20 0.634 0.775 0.496 0.680 0.995

French ParTUT 803 110 18 0.677 0.729 0.531 0.669 0.998

Greek GDT 1632 450 22 0.731 0.754 0.503 0.651 0.996

Hungarian Szeged 910 449 20 0.635 0.609 0.440 0.598 0.969

Irish IDT 566 452 18 0.674 0.753 0.461 0.603 0.978

Italian ParTUT 1781 153 22 0.657 0.796 0.482 0.651 0.996

Latin Perseus 1334 939 20 0.614 0.582 0.613 0.729 0.855

Maltese MUDT 1119 516 18 0.729 0.750 0.498 0.682 0.995

Slovenian SST 1669 890 18 0.549 0.567 0.663 0.798 0.967

Telugu MTG 1051 146 14 0.916 0.931 0.925 0.971 0.997

Uyghur UDT 1656 900 20 0.728 0.727 0.629 0.762 0.976

Table 1: Results. Each language is listed by its corpus; number of training and testing sentences; embed-
ding dimension; Spearman’s ρ rank correlation coefficient for AVG and GNN; and rate of projectivity
for AVG, GNN, and as attested in the UD corpus. Boldfaced numbers indicate cases in which GNN per-
formed better than AVG. Sparklines show trends over 10K iterations with horizontal gray lines indicating
AVG performance and black dots showing peak performance of GNN.

4 Results & Discussion

Table 1 shows the results of running both the AVG baseline and GNN algorithm on 14 v2.4 UD corpora
representing a range of language families. These are relatively small corpora—between 500 and 2000
training sentences—and as a consequence their small vocabularies result in embedding vector dimensions
between 14 and 22 due to the use of twice the fourth root of vocabulary size (§2.4, §3.1). While smaller
than the more usual 50- or 300-element vectors, tying dimensionality to corpus vocabulary size seemed
to avoid instability in the embedding space, though perhaps not in every case. Further, experiments with
larger dimensions resulted in poor generalization to the testing set, possibly due to a lack of correlation
between embeddings seen and unseen during training.

Results from Spearman’s ρ rank correlation show that both AVG and GNN were able to positively
correlate surface order with the source UD corpora. Because Spearman’s ρ ranges from -1 to 1, positive
values are better than chance; values above 0.5 seem rather promising. A large part of surface order can
apparently be predicted based on dependency distance, averaged or learned. In all cases the GNN was
able to approach AVG, exceeding it 10 out of 14 times. For many languages, the GNN achieved its peak
value before training was complete, probably indicating overfitting. In the cases in which the GNN did
not best AVG, the sparkline trends for Czech, Hungarian, and Latin suggest problems during training,
perhaps due to overzealous learning rates or unstable embeddings, while Uyghur came very close.

In terms of projectivity, the GNN outperformed AVG in all cases, even when it did not best AVG in
terms of Spearman’s ρ . While it is of course true that were the AVG or GNN method able to perfectly
capture the word order of the UD corpora, the rate of projectivity and Spearman’s ρ would match exactly,
but it is intriguing that short of perfection, Spearman’s ρ and projectivity are not necessarily correlated.
Nor do many of the intralanguage trends match between the two measures—the highest GNN projectivity
was generally achieved late in the training process, and the two sparklines of, for example, Armenian,
are not very similar. While the GNN outperformed AVG in generating surface orders with higher rates
of projectivity, even those rates lagged quite a bit behind the actual rates for almost all languages. This
is likely due to even seemingly minor word transpositions leading to non-projective arcs (§4.1).



(a) target poset (a′) poset generated by GNN

this judge shall be chosen by lot .
2 2

111

3 3

be shall this judge chosen by lot .

1.1
3

0.70.6 0.1
1.9

0.9

(b) target poset (b′) poset generated by GNN

ce juge est désigné par le sort .
2 2

4

1 1 1

3

ce est juge désigné par le sort .
1.60.9

4

0.90.7

3.10.8

Figure 3: Target and generated posets from English- and French-ParTUT corpora.

Importantly, AVG is a naive approach, not a learning algorithm. As such there is very little room for
improvement by adjusting how the averaged dependency distances are determined—employing morpho-
logical data or using lemmata instead of wordforms, for example. Conversely, changes to number of
iterations, architecture, or hyperparameters of the GNN, especially tailored to each corpus, would almost
certainly yield even better results, with a hypothetical upper bound limited only by the irreducible error
present in a language’s word-order variation.

The results confirm that dependency distances can be learned from dependency trees by the GNN algo-
rithm, usually better than a naive approach. Those distances can be used to generate surface realizations
with word orders that positively correlate with attested UD sentences. Because these promising results
can be generated from an essentially off-the-shelf GNN with relatively standardized parameters across a
wide variety of languages, future endeavors improving the GNN architecture is certainly warranted.

4.1 Error analysis

Delving a bit into the sorts of errors in the surface orders generated by GNN, Figure 3 shows four versions
of the same sentence: (a) the poset for a sentence from the UD English-ParTUT corpus; (a′) the poset
generated by GNN with a Spearman’s ρ coefficient of 0.786—only slightly higher than the average ρ for
that corpus, and therefore a typical generation; (b) the poset for the same sentence from French-ParTUT;
and (b′) the poset generated by GNN with a non-projective11 arc.

Figure 3 (a′) deviates from (a) in that the weight of be 1.1−→ chosen is larger than shall 0.9−→ chosen, and
both those edges have weights larger than the combination of this 0.6−→ judge and judge 0.1−→ chosen. The
result is a sentence in which the auxiliaries be and shall are transposed, and both appear in front of this
judge. Similarly, (b′) deviates from (b) in that the weight of est 0.8−→ désigné is larger than the weight of
juge 0.7−→ désigné—though unlike the English not larger than the combined weights of ce 0.9−→ juge and
juge 0.7−→ désigné. The result is a transposition of juge and est, causing a non-projective arc as est appears
between ce and juge but is not dominated by either.

Aside from the transposition of the auxiliaries in (a′), both generated surface orders suffer from the
weight of judge/juge→ chosen/désigné being too small. While the offending edge in (a′) is quite small
at 0.02, requiring an addition of over 2 to overcome the combined weights of the auxiliaries be and shall,
an addition of just 0.11 to the weight of the edge would resolve (b′). In other words, if the weight of
est 0.8−→ désigné were increased to 0.81, it would be larger than est 0.8−→ désigné and therefore juge would
precede est, resolving (b′) to (b).

Neither training set for these corpora contains the word judge/juge, so the word’s embedding collapses
to an average of all nouns acting as passive subjects, NOUN|nsubj:pass. This suggests that insufficient
training size, lack of proper generalization from the available training data, and/or problematic embed-
ding creation for unseen words is at fault here. These can all be addressed in future research.

11The graphs in Figure 3 are posets, not dependency trees, and therefore the dependency concept of projectivity is not readily
apparent. A poset analogue is planarity in the half-plane, or 1-planarity (cf. Pitler et al., 2013, p. 19). If all arcs in Figure 3 (b′)
were drawn above the words, we would see that the ce→ juge and est→ désigné arcs would cross.



4.2 Dependency distance tolerance & projectivity
What is being learned by the GNN? That is, what do the edge weights, used to create a poset, actually
represent? The question is perhaps conceptually a bit easier with AVG: the weights are the average
distances between dependents and their heads in a corpus. AVG calculates how far a dependent tends to
be from its head, or put another way, how many intervening words tend to be allowed between dependent
and head in a collection of surface orders. It is a dependent word’s tolerance for how far it can be placed
in front or behind its head in a surface realization. It seems that the GNN is learning this same information
about dependency distance tolerance, but in a more subtle and context-sensitive way. Rather than simply
an average distance, the GNN is learning how far a dependent can be placed from its head in concert
with its syntactically related words12 in a given dependency tree.

Dependency distance tolerance is effectively a maximum for how far apart a dependent and head can
be in the surface realization of a given dependency tree. What factors determine this tolerance and how
it might be encoded in a linguistic system is left for other research. However, dependency distance
tolerance is a useful concept for exploring how projectivity might come about.

It was suggested in §2.3 that observed rates of projectivity might emerge from Dependency Distance
Minimization (DDM). That is, the desire to minimize cumulative or mean dependency distances results
in the high rates of projectivity seen across languages. A further goal within DDM is to avoid long-
distance dependencies, though this avoidance may result in non-projective surface orders. The concept
of dependency distance tolerance provides a more nuanced view of this second DDM motivation.

The topological sort of a poset whose edge weights correspond to contextual dependency tolerances,
at least as implemented here, may place dependents closer to their heads than their tolerance, but not
farther. As such, it defines an upper bound for each edge weight in a poset. A surface order can be seen
as the result of assembling words such that dependents are placed no farther from their heads than their
tolerance. In this way dependency distances in the surface order are not only minimized, but minimized
in such a way that each word’s contextual dependency tolerance is taken into account.

Thus the topological sort of a weighted poset implements DDM’s goal of minimizing dependency
distances generally, while the learned dependency tolerances provide a contextually sensitive definition
of what ‘long distance’ means for each dependent pair in order to avoid generating surface orders with
long-distance dependencies. Through this lens both the strong tendency towards projectivity across
languages, as well as the occasional instances of non-projectivity, can be seen as an effect of avoiding
dependency distances which exceed their contextual tolerances.

5 Summary

This paper describes a novel method for converting dependency trees to surface orders via syntactic
word embeddings and edge-weighted posets. The embeddings are learned via word2vecf, and poset
edge directions and weights are learned by a graph neural network (GNN), all trained on Universal
Dependencies (UD) corpora. An algorithm is provided for topologically sorting a weighted poset. The
output of the GNN is compared to a naive baseline in which average dependency distances are used as
poset edge weight, both evaluated against attested word orders in UD corpora representing a variety of
language families. The GNN outperforms the baseline on 10 of 14 corpora in terms of rank correlation
and in all cases in terms of rate of projectivity.

The main contribution of the paper is the insight that a surface order can be represented by an edge-
weighted poset, the weights of which can be learned by a graph neural network. Representing surface
order as the result of topologically sorting this poset contributes to our understanding of how a tendency
towards projectivity across natural languages might be explained.

Future research directions include improvement of the GNN architecture and hyperparameters; explo-
ration of the interaction between word embedding dimension, performance, and generalizability; and the
analysis of larger corpora.

12Due to the graph nature of the GNN, message passing, and the use of syntactic embeddings, a word’s context for determin-
ing dependency distance in this study is entirely dependency based, never linear.
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