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Abstract

Characterizing the distribution of crossing dependencies in natural language dependency trees is
a crucial task for building parsers and understanding the formal properties of human language. A
number of formal restrictions on crossing dependencies have been proposed, including bounds on
gap degree, edge degree, and end-point crossings. Here we ask whether the empirical distribution
of crossing dependencies in dependency treebanks offers evidence for these formal restrictions as
true, independent constraints on dependency trees, or whether the distribution can be explained
using other, more generic constraints affecting dependency trees. Specifically, we explore the
null hypothesis that crossing dependencies are formally unrestricted, but occur at a low rate.
We implement the null hypothesis using random trees where crossing dependencies occur at the
same rate as in natural language trees, but without any formal restrictions. We find that this
baseline generally does not reproduce the same distribution of gap degree, edge degree, end-
point-crossing, and heads’ depth difference as real trees, suggesting that these formal constraints
are a consequence of factors beyond the rate of crossing dependencies alone.

1 Introduction

In dependency grammar formalisms, the syntactic structure of a sentence is encoded in the form of head–
dependent relations. For the most part, the dependents of a given head form a contiguous substring of the
sentence, i.e., all the nodes occurring between the head and its dependent are (transitively) dominated
by the head. Such dependencies have been termed projective. In addition to projective dependencies,
we also find instances where the dependents of a head are discontinuous. This happens when a node
in the span of a head and its dependents is not (directly or indirectly) dominated by the head. Such
dependencies are known as crossing or non-projective dependencies. Formally, a dependency Xh→Xd
is deemed crossing if and only if there is at least one node Xi between Xh and Xd that Xh does not
dominate. In Figure 1 the dependency arc from the node Xh to its dependent Xd is crossing because Xi is
headed by a node (X j) which is outside the span of Xh → Xd . Note that all other arcs in the dependency
tree shown in Figure 1 are projective. For example, the arc X j→ Xi is a projective arc as Xh is dominated
by X j.

Xd Xi Xh X j

Figure 1: The dependency arc Xh→Xd is a crossing dependency. All other arcs are non-crossing.

The most basic cross-linguistic generalization about crossing dependencies is that they are rare (see
e.g. Straka et al., 2015). The rarity of crossing dependencies poses several interesting questions that
are relevant from formal, computational, and cognitive perspectives. Most fundamentally, why are these
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constructions rare? When and why are these constructions difficult for computational parsers and hu-
mans? Are there general constraints on the space of variation in natural languages that can explain this
rarity?

Investigating the constraints which cause the rarity of crossing dependencies could help us in dis-
covering the underlying principles that have shaped human language. Not surprisingly, there have been
previous attempts to investigate the cause of this rarity formally as well as from a processing perspec-
tive (e.g., Shieber, 1985; Bach et al., 1986; Vogel et al., 1996; Ferrer-i-Cancho, 2006; Levy et al., 2012;
Kuhlmann, 2013; Husain and Vasishth, 2015; Ferrer-i-Cancho and Gómez-Rodrı́guez, 2016; Yadav et al.,
2017, under review). In addition, a number of formal restrictions on crossing dependencies have also
been proposed. Kuhlmann (2013) proposes that dependency trees have limited gap degree and are usu-
ally well-nested (see Figure 2b). Pitler et al. (2013) propose that crossing dependency configurations
have a property called 1-end-point-crossing. Other formal restrictions such as edge degree, multipla-
narity and heads’ depth difference have also been proposed (Yli-Jyrä, 2003; Kuhlmann and Nivre, 2006;
Nivre, 2007; Yadav et al., 2017). In this paper, we call these formal constraints on crossing dependencies
crossing constraints.

Xk Xi Xg Xd Xh X j Xg Xk Xd Xi Xh X j

(a) Projection chains (b) Gap degree

Figure 2: The projection chain of a node X is the set of all the nodes dominated by X which lie in
a single path from X to a terminal node. For example, in the dependency tree (a), {X j,Xh,Xd ,Xg} and
{X j,Xi,Xk} are two projection chains from the node X j. A projection chain is continuous if it forms
a continuous substring of the sentence. For example, the projection chain of Xh, i.e., {Xh,Xd ,Xg} is a
continuous substring of the sentence {Xk,Xi,Xg,Xd ,Xh,X j}. The dependency tree (b) shows a dependency
schema to illustrate gap degree. The gap degree of a node is the largest number of discontinuities in any
projection chain. In (b), the projection chain for Xh is {Xh,Xd ,Xg}, which contains 2 discontinuities or
gaps, so the gap degree of node X j is 2.

Crossing constraints are important in two domains: in the development of computational parsers,
and for theoretical formal syntax, because these restrictions correspond to the formal language class of
natural language. Crossing dependencies indicate deviations from context-free grammar (Marcus, 1965;
Shieber, 1985). More specifically, the hierarchy of mildly context-sensitive languages is defined by
restrictions on gap degree. Gap degree corresponds to the number of components in a Multiple Context-
Free Grammar (Seki et al., 1991) and to the number of distinct selector features in Minimalist Grammars
(Michaelis, 1998). It corresponds to the ‘limited amount of cross-serial dependencies’ allowed in TAG
derivations (Joshi, 1985), (also see Bodirsky et al., 2005). In the computational linguistics literature it is
common to provide statistics showing that there are only a small number of dependency trees violating
any given crossing constraint. For example, Kuhlmann (2013) shows that as gap degree increases, there
are fewer and fewer trees per language with that gap degree.

These proposals across the theoretical syntax and parsing literature raise the possibility that crossing
constraints might constitute independent, causal constraints on natural language syntax. However, it
is also possible that the observed distribution of crossing dependencies may be epiphenomenal, i.e.,
a consequence of other constraints affecting dependency trees which have nothing to do with crossing
dependencies themselves, such as a general pressure to minimize dependency length (e.g., as investigated
in Ferrer-i-Cancho and Gómez-Rodrı́guez, 2016; Gómez-Rodrı́guez and Ferrer-i-Cancho, 2017). In this
paper, we investigate the status of crossing constraints using dependency corpora, asking whether the
empirical distribution of crossing dependencies gives evidence for crossing constraints, or whether the
data is best explained by an extremely simple null hypothesis: that crossing dependencies are formally
unrestricted but simply rare.



As an example of how crossing constraints might be epiphenomenal, consider gap degree. Gap degree
refers to the number of discontinuities in the projection chain headed by a node (see Figure 2). So, for
example, if the longest projection chain in a sentence is of length 6, then gap degree cannot exceed 5.
Now suppose that linguistic dependency trees typically have short projection chains and that crossing
dependencies are rare but randomly distributed across dependency trees. Then it is unlikely that we will
observe a projection with many discontinuities, simply due to the fact that projection chains are usually
short; so we will measure low gap degree. From this measurement, we might falsely conclude that there
exists a bound on gap degree. These considerations suggest that gap degree might not have a causal
role as a restriction on crossing dependencies, but rather emerges as a result of the rarity of crossing
dependencies plus low tree depth.

In this work, we evaluate a number of crossing constraints to determine if dependency corpora give
evidence for them as true independent constraints. Our null hypothesis is that crossing dependencies
are formally unrestricted, but occur at a certain low rate per dependency arc. The alternative to the
null hypothesis is the true constraint hypothesis (TCH), which is that there is a real dispreference for
crossing dependencies violating that specific constraint, arising from grammar or cognitive pressures.

We compare the TCH against the null hypothesis by comparing natural language dependency trees
with randomly generated baseline trees. The baseline trees simulate the null hypothesis: they consist of
randomly generated trees where crossing dependencies have been inserted randomly at the same overall
rate per dependency as in the real trees, but with no formal restrictions (more on this in Section 3.2).
If the distribution of gap degree, edge degree, etc., in random baseline trees is indistinguishable from
real language trees, then we cannot reject the null hypothesis: in that case dependency corpora would
not show evidence for the TCH. On the other hand, if a formal measure like gap degree is minimized
in observed data over the random baseline, then this is evidence against the null hypothesis and for the
TCH.

Our paper is organized as follows. In Section 2, we review the crossing constraints that we will test.
In Section 3, we discuss the natural language dataset and the random baselines. We present the results in
Section 4. Section 5 concludes.

2 Measures

In order to test the TCH, we compare the distributions of violations of crossing constraints in random
baseline trees vs. real language trees. Below we discuss the crossing constraints used in our investigation.
In addition, we also discuss the properties of the dependency tree that are used in our comparison of real
vs. random trees. In particular, we will be testing whether the correlation between these dependency tree
properties and crossing constraint violations is the same in real vs. random trees.

2.1 Crossing Constraints

Gap degree: The gap degree of a node X is the number of discontinuities in the projection of node
X . For example, in Figure 2, the projection chain of node Xh contains two discontinuities; these dis-
continuities are present in Xh→Xd and in Xd→Xg. Therefore, the gap degree of node Xh is 2. On the
other hand, the gap degree of node Xd is 1. The gap degree of a dependency tree is the maximum among
the gap degrees of its nodes (Kuhlmann and Nivre, 2006). In Figure 2, the gap degree of the tree is 2
as the highest gap degree (associated with Xh) is 2. Since gap degree is number of discontinuities in a
projection chain, it is upper bounded by the length of projections chains.

Edge degree: Let e be the span of dependency arc Xh→ Xd . The span e consists of nodes between a
head Xh and its dependent Xd , which are Xi, Xa, and Xb in Figure 3. The edge degree of a dependency
arc Xh→ Xd is the number of nodes in the span e which are neither dominated by some node in the span
e nor dominated by the head Xh. For example, arc Xh→ Xd in Figure 3(a) and 3(b) has an edge degree
of 2 because node Xi and Xb are not dominated by any node in the span e. In addition, they are also not
dominated by head Xh. The edge degree of a dependency tree is the highest edge degree among the arcs
of the tree.



There are cognitive reasons to suspect edge degree might be limited in natural language. From an on-
line processing perspective, higher edge degree in a subtree results in the need to maintain an unresolved
crossing dependency across a longer span of words, which may result in online processing difficulty due
to higher working memory load (Gibson, 1998).

End-point crossing: The number of end-point crossings is the number of heads which dominate the
gap of an arc. Given an arc Xh→ Xd with a span e containing Xi, Xa and Xb as in Figure 3, the end-point
crossing of arc Xh→ Xd is defined as the number of heads modified by the nodes in e that are not part of
the projection chain of Xh. For example, in Figure 3(a) and 3(b), Xi and Xb are not part of the projection
chain of Xh, in other words they are not dominated by either Xh or any node in the span e. In 3(a), the
number of heads modified by Xi and Xb is 1 (corresponding to X j), therefore, the end-point crossing is
1. In 3(b), the number of heads modified by Xi and Xb are 2 (corresponding to X j and Xr respectively),
therefore, the end-point crossing is 2.

It has been argued that natural language dependency trees tend to have not more than one end-point
crossing, which is called the 1-end-point crossing constraint (Pitler et al., 2013). Pitler et al. (2013) argue
that this constraint is related to the Phase Impenetrability Condition from Minimalist syntax (Chomsky,
2007). From a processing based perspective, higher end-point crossings in a subtree should lead to
multiple heads/dependents being maintained/stored at the same time in the parse stack. This should lead
to increased storage cost (Gibson, 1998). In addition, a longer span of the crossing dependency could
lead to similarity-based interference (Lewis and Vasishth, 2005) at the head.

Xd Xi Xa Xb Xh X j Xr Xd Xi Xa Xb Xh X j Xr

(a) : Edge degree=2, End-point crossing=1 (b) : Edge degree=2, End-point crossing=2

Figure 3: Dependency schemas showing edge degree and end-point crossing. In both the dependency
trees, Xh →Xd is a crossing dependency. The span of crossing dependency e consists of Xi, Xa and Xb.
Xi and Xb are dominated neither by head Xh nor by any node in span e. In (a) and (b), different sets of
nodes are modified by Xi and Xb.

(1).jpg

Figure 4: A schematic diagram for heads’ depth difference (HDD).

Heads’ depth difference (HDD): For a crossing dependency Xh → Xd , suppose that Xi is the node
which creates discontinuity, i.e. Xi is not directly or indirectly dominated by Xh (see Figure 4). For this
configuration, we call Xi the intervener, X j the head of the intervener, and Xh the head of the crossing
dependency. The heads’ depth difference (HDD) is defined as the difference between the depth of head
of the crossing dependency Xh and depth of head of the intervener X j. This is schematically shown in



Figure 4. Depth of a node is computed as the hierarchical position of that node in a projection chain.
The depth of Xh is 2 while the depth of X j is 0, making the HDD for this configuration equal to 2. Thus,
HDD for a crossing dependency Xh→ Xd is:

HDD(Xh,Xd) = depth(Xh)−depth(X j), (1)

where depth(Xh) is the hierarchical position of the head of the non-projective dependency (Xh) and
depth(X j) is the hierarchical position of the head of the intervening element (Xi). The HDD of a de-
pendency tree is the maximum HDD among the HDDs of the arcs in the tree.

In terms of formal syntax, HDD can correspond to the hierarchical depth between a filler and a gap
in a long distance dependency (e.g., wh movement). Based on the theoretical syntax literature, HDD
should be unbounded, at least for leftward wh-dependencies (Sag et al., 1999). However, increasing
HDD seems to correlate with increased online processing difficulty for humans (Phillips et al., 2005).
More generally, HDD has been proposed (see Yadav et al., 2017) to formalize the experimental findings
that increased embedding depth leads to processing difficulty (e.g., Yngve, 1960; Gibson and Thomas,
1999). Therefore, it is possible that HDD is restricted in dependency trees due to cognitive constraints.

2.2 Dependency tree properties
We study violations of crossing constraint as a function of the following properties of dependency trees.

Sentence length: Sentence length is measured as the total number of nodes in a dependency tree.

Arity: The arity of a node is the total number of dependents of that node. We quantify arity as a global
property of a tree by taking the maximum arity per node in the tree.

Tree depth: Tree depth is the number of heads in the longest projection chain in a dependency tree
(see Figure 2). Tree depth represents the maximum number of levels of embedding occurring in a tree.

3 Data and methodology

3.1 Natural languages dataset
We use the Universal Dependencies (UD v2.3) treebanks of 14 languages as a dataset (Nivre et al., 2018).
The languages were selected for typological diversity: the dataset contains 8 head-initial languages and
6 head-final languages. We do not include dependencies marking punctuation (labeled as ‘punct’ in UD
scheme) and the abstract root of the tree (labeled as ‘root’ in UD scheme) in our analysis.

As we discuss below, the process of sampling random baseline trees makes it prohibitively difficult to
study all languages in the UD dataset. Therefore we study treebanks of 14 languages: German, English,
Hindi, French, Arabic, Russian, Czech, Italian, Spanish, Afrikaans, Japanese, Korean, Bulgarian and
Slovak. We present results aggregating over dependency trees from all these languages.

3.2 Random baseline
Our null hypothesis is that the only restriction on crossing dependencies is that they are rare, i.e. that
they occur at some certain low rate per dependency in a sentence. We instantiate the null hypothesis
by sampling random trees which are constrained to have the same distribution over sentence length and
number of crossings per dependency as a corpus of some natural language.

We control for sentence length and crossing rate in the random trees in the following way. For each
real dependency tree t of length n in a corpus, we sample random trees t ′ from a uniform distribution
over nn−1 directed labeled tree structures with n nodes using Prüfer codes (Prüfer, 1918). We control for
the crossing rate by rejection sampling: we reject random samples t ′ which do not have the same number
of crossings as the original tree t. For long sentences (over length 12), the rejection sampling process
is prohibitively slow, because the vast majority of random trees for n ≥ 12 have a very large number of
crossings. So in the present work we only consider sentences of length less than 12.

Since we are only controlling the number of crossings and the sentence length, the distribution of arity
and depth in random baseline trees is quite different from real language trees. In particular, we find that



the growth of tree depth with respect to sentence length is faster for random baseline trees. In addition,
the growth of arity with sentence length in the random tree is slower. In sum, random baseline trees are
typically deeper than real trees.

3.3 Testing the Null and True Constraint Hypotheses

We compare the rate at which crossing constraints are violated in real trees as compared with random
baseline trees, as a function of sentence length, arity, and tree depth. We evaluate the difference be-
tween real and random trees statistically using mixed-effects Poisson regression (Gelman and Hill, 2007;
Baayen et al., 2008). We fit the regression to predict the rate of constraint violations as a function of de-
pendency tree features (length, depth, and arity) and a dummy-coded variable encoding whether a given
tree is real or random. We also include by-language random intercepts. For example, we predict the gap
degree gi of the ith sentence si in the jth language as:

logE[gi] = β0 +βl|si|+βrri +βlrri|si|+ γ j + ε, (2)

where |si| is the length of sentence si, ri is an indicator variable with value 1 for a real tree and 0 for a
baseline tree, and γ j, subject to L2 regularization, is a random intercept for the jth language. The fitted
value of the interaction coefficient βlr gives the extent to which the growth rate of gap degree as a
function of sentence length differs between the real and the random trees. If βlr is significantly negative,
then this would mean that gap degree grows more slowly with sentence length in real trees as compared
with random trees, i.e. gap degree would be minimized in real trees.

4 Results

We compared the regression pattern of each measure with length, arity and depth between observed
and random baseline trees. Below we report the results for each crossing constraint. A summary of all
regression results is found in Table 1.

4.1 Gap degree

We find that the distribution of gap degree as a function of sentence length and arity is not significantly
different between real and random trees (see Figure 5). In particular, the interaction between length/arity
and tree type was not significant in the respective models (see Table 1). However, growth rate of gap
degree with tree depth is significantly different between real and random trees (p< .001). In other words,
we found no evidence for the TCH for gap degree as a function of length and arity: the distribution
of gap degree in natural language trees can be fully explained without formal restrictions on crossing
dependencies or tree structures. However, the results with respect to depth provide support for the TCH.

Observed Random baseline
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Figure 5: Gap degree as a function of sentnece length and tree depth in real and random trees. In this and
all other figures, for visual clarity, we only display results for trees with at least one crossing dependency.
All statistical tests are performed using all trees.



4.2 Edge degree
As shown in Figure 6, edge degree grows faster in random trees in comparison to real trees as a function
of sentence length, arity and depth. The mixed-effects Poisson regression models show that the three
interaction coefficients (for length, arity, and depth) are significant in the respective models (see Table 1).
This provides evidence for the TCH for edge degree.
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Figure 6: Edge degree as a function of sentence length and tree maximum arity for real and random trees.

4.3 End-point crossings
As shown in Figure 7, we find that end-point crossings grow at a slower rate in real trees as a function
of tree depth as compared with random baselines. The results support the TCH for end-point crossings.
Similar to gap degree, end-point crossing as a function of maximum arity and sentence length does not
differ significantly between real and random trees (see Table 1).
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Figure 7: End-point crossings as a function of sentence length and tree depth in real and random trees.
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Figure 8: HDD as a function of sentence length and tree depth in real and random trees.



4.4 Heads’ Depth Difference (HDD)

The results show that HDD decreases with sentence length in real trees, and the rate of decrease is less
than in random trees (Figure 8). HDD is also much higher in random trees compared to real trees as a
function of tree depth. These results support the TCH for HDD. HDD does not differ between real and
random tree with respect to maximum arity (see Table 1).

Dependent variable Independent variable β Estimate Std. Error p value
Sentence length 0.75 0.04 < 2e-16 *
Observed -0.07 0.05 0.174 n.s.
Sentence length × Observed -0.03 0.05 0.563 n.s.
Arity 0.25 0.03 2.88e-14 *

Gap degree Observed -0.18 0.04 0.00013 *
Arity × Observed -0.06 0.04 0.1570 n.s.
Depth 0.52 0.02 < 2e-16 *
Observed 0.24 0.05 1.23e-05 *
Depth × Observed 0.29 0.04 2.43e-10 *
Sentence length 0.37 0.03 < 2e-16 *
Observed -0.20 0.04 1.41e-06 *
Sentence length × Observed -0.11 0.04 0.0153 *
Arity 0.09 0.02 0.0015 *

Edge degree Observed -0.24 0.04 3.65e-09 *
Arity × Observed -0.13 0.04 0.0009 *
Depth 0.32 0.02 < 2e-16 *
Observed 0.04 0.04 0.33 n.s.
Depth × Observed 0.21 0.04 1.02e-06 *
Sentence length 0.32 0.03 < 2e-16 *
Observed -0.10 0.04 0.0173 *
Sentence length × Observed -0.07 0.04 0.1013 n.s.
Arity -0.001 0.03 0.9900 n.s.

End-point crossing Observed -0.10 0.04 0.0141 *
Arity × Observed -0.07 0.04 0.1098 n.s.
Depth 0.34 0.02 < 2e-16 *
Observed 0.16 0.04 0.0002 *
Depth × Observed 0.20 0.04 3.92e-06 *
Sentence length 0.27 0.02 < 2e-16 *
Observed -0.14 0.03 8.78e-06 *
Sentence length × Observed -0.08 0.03 0.0152 *
Arity -0.11 0.02 7.36e-06 *

HDD Observed -0.10 0.03 0.0025 *
Arity × Observed -0.02 0.03 0.4695 n.s.
Depth 0.44 0.02 < 2e-16 *
Observed 0.21 0.03 1.19e-08 *
Depth × Observed 0.13 0.03 8.78e-06 *

Table 1: Mixed-effect Poisson regression results for all the crossing constraints and dependency tree
measures for 14 languages. “Observed” is an indicator variable with value 1 for observed trees and 0 for
random trees, the same as ri in Equation 2. A significant interaction between an independent variable
and Observed rejects the null hypothesis.



5 Conclusion

We found that the distribution of gap degree, edge degree, end-point crossing and HDD cannot be ex-
plained solely in terms of sentence length and the rate of crossings. These constraints are violated at a
different rate as a function of various tree properties than would be expected in random trees, suggesting
that they may constitute real formal restrictions on trees.

The results show that the behavior of these crossing constraints differ depending dependency tree
properties. Gap-degree and end-point crossings in real vs. random trees are only different as a function
of tree depth (which itself has a very different distribution between real and random trees). HDD in real
vs random trees is indistinguishable as a function of arity, but is different for tree depth and sentence
length. Edge degree, on the other hand, emerges as the crossing constraint that is most distinct between
real and random trees: its distribution is significantly different as a function of all three tree properties.

Our results do not rule out the possibility that the correlations reported here might themselves be
epiphenomenal, resulting from other graph-theoretic properties of real dependency trees which were not
controlled for here. For example, a great deal of work has shown that syntactic dependency trees are
subject to dependency length minimization: a pressure for the linear distance between syntactic heads
and dependents to be short (Hawkins, 1994; Gibson, 1998; Liu, 2008; Futrell et al., 2015) (for recent
reviews, see Liu et al., 2017; Temperley and Gildea, 2018), and this pressure has been argued to underly
the scarcity of crossing dependencies in general (Ferrer-i-Cancho, 2006; Ferrer-i-Cancho and Gómez-
Rodrı́guez, 2016; Gómez-Rodrı́guez and Ferrer-i-Cancho, 2017). It is also possible that the differences
between real trees and random trees in our results are driven by differences in the depth and arity of these
trees, or by UD annotation decisions such as the use of content-head dependencies.

Our work provides a strong framework for evaluating any such theory that aims to predict the partic-
ular distribution of crossing dependencies in natural language. A syntactic theory can be tested in our
framework by creating random baselines that control for the stipulations of the theory and then statisti-
cally comparing the distribution of crossing constraint violations with real trees. To that end, we make
the code for our analysis freely available at http://github.com/yadavhimanshu059/measures_
of_nonProjectivity.
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Heinz Prüfer. 1918. Neuer Beweis eines Satzes über Permutationen. Archiv der Mathematischen Physik,
27:742–744.



Ivan A. Sag, Thomas Wasow, and Emily M. Bender. 1999. Syntactic theory: A formal introduction.
Center for the Study of Language and Information, Stanford, CA.

Hiroyuki Seki, Takashi Matsumara, Mamoru Fujii, and Tadao Kasami. 1991. On multiple context-free
grammars. Theoretical Computer Science, 88(2):191–229.

Stuart M. Shieber. 1985. Evidence against the context-freeness of natural language. In The Formal
complexity of natural language, pages 320–334. Springer.
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