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Abstract

With the impressive fluency of modern ma-
chine translation output, systems may pro-
duce output that is fluent but not adequate
(fluently inadequate). We seek to identify
these errors and quantify their frequency
in MT output of varying quality. To that
end, we introduce a method for automat-
ically predicting whether translated seg-
ments are fluently inadequate by predicting
fluency using grammaticality scores and
predicting adequacy by augmenting sen-
tence BLEU with a novel Bag-of-Vectors
Sentence Similarity (BVSS). We then ap-
ply this technique to analyze the outputs of
statistical and neural systems for six lan-
guage pairs with different levels of trans-
lation quality. We find that neural mod-
els are consistently more prone to this type
of error than traditional statistical models.
However, improving the overall quality of
the MT system such as through domain
adaptation reduces these errors.

1 Introduction

Recent work has shown that well-trained, in-
domain neural machine translation (NMT) systems
can produce translations that, at the sentence level,
are rated on par with human reference transla-
tions (Hassan Awadalla et al., 2018). Part of this
success comes from the impressive improvements
in fluency of NMT output compared to previous
MT paradigms (Bentivogli et al., 2016; Toral and
Sánchez-Cartagena, 2017; Koehn and Knowles,
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2017). However, NMT has also been shown to
sometimes produce output that is low adequacy
and even unrelated to the input–particularly when
not trained on sufficient in-domain data (Koehn
and Knowles, 2017). Because of NMT’s uncanny
ability to produce fluent output, these translations
may not just be inadequate but fluently inade-
quate. The fluency of fluently inadequate trans-
lations may mislead users into trusting the content
based on fluency alone–particularly in the context
of other fluent and adequate translations (Martin-
dale and Carpuat, 2018).

Mitigating the effects of fluently inadequate
translations first requires understanding the scale
of the problem and what situations are likely to
generate these errors. The general success and
high system level quality of NMT suggests that flu-
ently inadequate translations are rare, but we can-
not say how rare without a means of automatically
identifying potentially fluently inadequate transla-
tions in large collections of MT output.

In this work, we propose a method to automati-
cally detect fluently inadequate translations based
on the underlying characteristics of fluency and
adequacy. We view fluently inadequate transla-
tions as translations that are fluent, well-formed
sentences that could have been written by a hu-
man, and that do not preserve the meaning of the
reference. In practice, given a reference trans-
lation r and MT hypothesis h, we consider h
to be fluently inadequate if fluency(h) > τf
and adequacy(h, r) < τa, where τa and τf are
minimum fluency and adequacy thresholds respec-
tively. We define novel fluency and adequacy met-
rics for this purpose, building on prior work on
grammaticality detection and comparisons of mul-
tisets applied to word embeddings (Section 2).

We conduct two sets of experiments. First, we
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evaluate the fluency and adequacy metrics, estab-
lishing that they can be used for the task of detect-
ing fluently inadequate translations, and set thresh-
olds τa and τf empirically in Sections 3.1 and 3.2.
We then conduct an automatic analysis to assess
how frequent these errors are in neural and statisti-
cal machine translation (SMT) systems for a vari-
ety of languages and varying levels of model qual-
ity and train/test domain match. We find that flu-
ently inadequate translations are more common in
NMT overall, especially when there is less training
data and when there is a mismatch between train-
ing and test data.

2 Approach

2.1 Predicting Fluency
We propose to score fluency using metrics in-
troduced for the related task of detecting gram-
maticality, which scores the well-formedness of
a sentence. Lau et al (2016) take an unsuper-
vised, language modeling approach to predicting
grammaticality. Based on the intuition that well-
formedness errors will be caused by one or more
incorrect or out of place words, they introduce
scores based not only on sentence probability, but
also on scores that focus on lowest word probabili-
ties in a segment. Specifically, given a 5-gram lan-
guage model, the following scores are computed:

Mean LP =

∑
n=1:N log p5(wn|wn−1, ...)

N
(1)

Norm LP =

∑
n=1:N log p5(wn|wn−1, ...)∑

n=1:N log p1(wn)
(2)

Word LPminn = minn

{
− log p5(w)

log p1(w)

}
(3)

Word LPn% =

∑
w∈LPn%

− log p5(w)
log p1(w)

|LPn%|
(4)

Word LPmean =

∑
n=1:N − log p5(wn)

log p1(wn)

N
(5)

where logp5 is the 5-gram log probability, wn

is the nth word and N is the number of words in
the sentence. Mean LP is the sentence n-gram

log probability, normalized by length. NormLP is
the sentence n-gram log probability, normalized by
sentence unigram log probability. The other met-
rics are focused on probability of individual words
given the preceding words. Each word’s 5-gram
log probability is normalized by its unigram prob-
ability (logp1), Word LPminn is the nth lowest
normalized word probability, LPn% is the lowest
n% normalized word probabilities. Because there
may be outliers that score artificially low, we in-
troduce an additional variant, WordLPmid, which
uses LPmid, the middle 50% of the normalized
word probabilities:

Word LPmid =

∑
w∈LPmid

− log p5(w)
log p1(w)

|LPmid|
(6)

We expect that fluently inadequate output is be-
ing influenced by the training data more than the
input text, so we build our language model based
on the target side of the system training data rather
than a large generic language model.

2.2 Predicting Adequacy
BLEU (Papineni et al., 2002) is a widely accepted
baseline measure of MT quality at the system level
and, as such, is an obvious choice for a baseline
adequacy metric. However, it may not be well
suited for this task. Segments with high BLEU
scores more closely match the reference, indicat-
ing high adequacy, but translations that receive a
lower BLEU score may be inadequate or they may
be adequate with different word choice. For the
purpose of detecting fluently inadequate transla-
tions, we can be confident that a segment with
a high BLEU score is adequate, but low BLEU
scores do not necessarily imply low adequacy.

To account for cases where a translation may
be adequate but receive a low BLEU score, we
need an adequacy metric that will be less affected
by word choice. This suggests the need for com-
paring semantic representations rather than match-
ing strings. For our baseline vector-based met-
ric, we use the common, simple approach of com-
paring sentence embeddings generated by averag-
ing the word embeddings for each word in the
sentence. However, this approach does not di-
rectly compare any of the word vectors, only their
sum, and there are many unrelated sentences that
could produce the same sentence vector. We in-
troduce an alternative word embedding based mea-
sure of sentence similarity that overcomes this flaw
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to produce more a reliable adequacy metric, bag-
of-vectors sentence similarity (BVSS).

BVSS Metric BVSS is an application of Saga
(Similarity AGregation Application) introduced by
Knox (2015). The Saga approach frames a task as
an information similarity problem. Given a mea-
sure of information I for a multiset, the similarity
between two multisets, X and Y , is the proportion
of information from the union of X and Y that is
found in both X and Y :

S(X,Y ) =
I(X) + I(Y )− I(X ∪ Y )

I(X ∪ Y )
(7)

The information measure in Saga uses single-
linkage agglomerative clustering (Florek et al.,
1951). If the items in a multiset are clustered ac-
cording to similarity, more clusters indicate more
disparate items and, therefore, more information.
When we compare two multisets of items, X and
Y , we first cluster each multiset separately to get
I(X) and I(Y ). We then pool all of the items and
cluster again to get I(X∪Y ). If the items inX are
similar to the items in Y , those items will cluster
together yielding fewer clusters than if they were
different.

A nice feature of this approach is that in addition
to the undirected similarity, we can modify Equa-
tion 7 to a directed form. The directed similarity to
X of Y would be given by the proportion of infor-
mation in Y that also appears in X:

SX(Y ) =
I(X) + I(Y )− I(X ∪ Y )

I(Y )
(8)

To compare sentences with this approach, we
treat a sentence as a multiset of words and deter-
mine the similarity of words using the cosine sim-
ilarity of their embeddings. Replacing X and Y in
equation 7 with S for MT system output and R for
reference gives us the BVSS metric:

BV SS(S,R) =
I(S) + I(R)− I(S ∪R)

I(S ∪R) (9)

The directed form provides a way to measure
when information is lost (i.e., the reference has
more information than the MT output) or halluci-
nated (the MT output has more information than
the reference). We will use BVSS-reference and
BVSS-system to refer to these directed similarities.

BVSS-reference is the proportion of the informa-
tion in the reference that is also in the MT output
and BVSS-system is the proportion of the informa-
tion in the MT output that is also in the reference:

BV SSreference =
I(S) + I(R)− I(S ∪R)

I(R)
(10)

BV SSsystem =
I(R) + I(S)− I(R ∪ S)

I(S)
(11)

3 Detection Method Evaluation

Since there is no existing dataset with manual an-
notation of fluently inadequate translations, we
first evaluate our fluency and adequacy prediction
approaches comparing against direct assessment
scores from WMT16 (Bojar et al., 2016) as 2016
was the only year in which human fluency judg-
ments were collected. We then use our automated
fluency scores on reference translations and auto-
mated adequacy scores on synthetic low adequacy
"translations" to determine thresholds for high flu-
ency and dubious adequacy.

3.1 Fluency Experiments
Task For WMT16, fluency judgments were
collected for Czech-English (CS-EN), German-
English (DE-EN), Finnish-English (FI-EN),
Romanian-English (RO-EN), Russian-English
(RU-EN), and Turkish-English (TR-EN) in the
news shared task. Annotations were collected
with the goal of system-level reliability, so many
segments only have one judgment. To improve
reliability, we use only segments where there are
two or more judgments.

Model setup Fluency scores are based on a 5-
gram language model. We built a 5-gram KenLM
(Heafield, 2011; Heafield et al., 2013) language
model using the monolingual news training data
from WMT16.

Results For each of the metrics described in sec-
tion 2.1, we calculated the Pearson correlation with
the direct assessment scores for each of the lan-
guage pair data sets and for all the data combined.
Results are shown in Table 1. Although these cor-
relations are lower than we would like, we find
that for all language pairs and for the combined
data, WordLPmid yields the highest correlation,
so we will use this formula for our fluency predic-
tion metric.
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Fluency Metric CS-EN DE-EN FI-EN RO-EN RU-EN TR-EN All
MeanLP 0.32619 0.21290 0.27686 0.25831 0.22792 0.32402 0.26974
NormLP 0.41271 0.26721 0.25297 0.22797 0.27404 0.2496 0.28037
WordLPmin1 0.04490 0.01192 0.05817 0.02359 0.05289 0.04036 0.03745
WordLPmin2 0.28831 0.23004 0.21382 0.21216 0.24384 0.20712 0.23121
WordLP25% 0.40021 0.25993 0.23916 0.20506 0.28920 0.21564 0.26748
WordLP50% 0.32168 0.26854 0.22640 0.19729 0.25738 0.20799 0.24382
WordLPmean 0.38227 0.29371 0.26660 0.22748 0.30028 0.25658 0.28609
WordLPmid 0.42543 0.34306 0.34907 0.31295 0.34471 0.38615 0.35872

Table 1: Pearson correlation between each of the fluency prediction metrics and the human fluency
direct assessment scores for each language and across all languages.

CS-EN DE-EN FI-EN RO-EN RU-EN TR-EN All
Percent fluent 59.22% 59.70% 56.79% 58.04% 60.80% 48.81% 57.21%

Precision 65.35 63.36 59.62 62.06 66.22 52.37 61.42
Recall 90.97 87.29 91.56 92.20 87.67 87.77 89.38

F1 76.06 73.42 72.21 74.18 75.45 65.60 72.81

Table 2: Precision, recall, and F1 on fluent translations for WordLPmid on system outputs for each
language pair and on all system outputs. The percentage of outputs that were labeled fluent based on the
human fluency judgments is also provided for reference.

Setting the fluency threshold Because our goal
is to correctly label sentences as fluently inade-
quate rather than to provide an exact score, we
must select a fluency threshold τf to label a trans-
lation as “fluent". To determine this threshold,
we computed the WordLPmid scores for the ref-
erence translation sentences in the WMT16 news
training data. To cover most examples while allow-
ing for variance in human judgments, the threshold
is set at the point where 90% of reference segments
would be labeled as fluent. Precision, recall, and
F1 scores for WordLPmid, are shown in Table 2.
Across all data sets we see high recall but the preci-
sion is not as high. Although this suggests that this
metric might overestimate the fluency of transla-
tions, we are more concerned with comparing be-
tween systems than with the raw scores.

3.2 Adequacy Experiments

Task and Data We assess adequacy metrics us-
ing the direct assessment adequacy scores and sys-
tem outputs for all language pairs from WMT16
(Bojar et al., 2016). Adequacy judgments were
collected for all submitted systems in all language
pairs in the news shared task. These annotations
were used to determine the system rankings in
the news task and as gold standard quality judg-
ments for the metrics shared task. For the metrics

task, enough annotations were collected for each
system-produced segment to establish segment-
level reliability, while only enough judgments for
system-level reliability were collected for the re-
mainder of the segments for the news task. Be-
cause we need segment-level reliability, we use
only the metrics subset of the data as gold standard
human judgments, and we use the reference trans-
lations from the news subset in generating syn-
thetic inadequate examples.

We use the standardized human direct assess-
ment adequacy scores from WMT16 (Bojar et
al., 2016) as gold standard in determining how
well each adequacy metric correlates with hu-
man judgments. However, for binary question-
able/acceptable adequacy judgments, we must be
sure that the inadequate examples are clearly inad-
equate regardless of fluency and other MT quirks.
The high correlation between human judgments
of fluency and adequacy in Callison-Burch et al
(2007) and Graham et al (2017) may indicate that
human adequacy judgments are influenced by flu-
ency, lowering the adequacy scores of disfluent
translations. To ensure that our inadequate ex-
amples are truly inadequate, we rely on synthetic
examples. We generate synthetic low adequacy
translations by randomly selecting pairs of ref-
erence translations from the WMT16 news task
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Adequacy Metric CS-EN DE-EN FI-EN RO-EN RU-EN TR-EN All
BLEU 0.54275 0.41975 0.41460 0.48410 0.45093 0.50346 0.46242
Averaged Embeddings 0.43905 0.18998 0.31218 0.36303 0.23545 0.30257 0.29584
BVSS 0.61286 0.47068 0.51856 0.56164 0.55478 0.58858 0.54306
BVSS-Reference 0.62178 0.47877 0.49006 0.55619 0.51949 0.56264 0.53643
BVSS-System 0.53773 0.38887 0.45177 0.47698 0.50288 0.53687 0.46925

Table 3: Pearson correlation between each of the adequacy prediction metrics and the human adequacy
direct assessment scores for each language and across all languages.

Prec. Recall F1
BLEU 94.33 99.08 96.65
Averaged Embeddings 84.56 99.15 91.28
BVSS 99.39 99.04 99.22
BVSS-Reference 99.00 99.03 99.01
BVSS-System 99.17 99.03 99.10
BLEU+BVSS 99.61 99.81 99.71

Table 4: Precision, recall, and F1 on
BLEU, BVSS, BVSS-Reference, BVSS-System,
and BLEU with BVSS and BVSS-System on the
questionable adequacy test set with thresholds cal-
culated based on predicted adequacy scores for the
synthetic low adequacy dev data.

and treating one as synthetic MT output and the
other as reference. We split these synthetic ex-
amples into dev and test sets. The dev synthetic
examples are used in choosing the binary accept-
able/questionable adequacy threshold τa as de-
scribed below. The test synthetic examples are
used as the questionable adequacy items in our
adequacy precision/recall test set, with acceptable
adequacy items chosen from actual WMT16 sub-
missions. Because we are looking for extreme
inadequacy and the systems in WMT16 were of
competitively high quality, we use segments with
direct assessment scores in the top 90% as accept-
able adequacy in the test set.

Model setup Our vector-based metrics are based
on word embeddings. We use the pre-trained
aligned Wikipedia fastText word vectors (Joulin et
al., 2018; Bojanowski et al., 2017).

Results For each metric defined in Section 2.2,
we calculated the Pearson correlation with the di-
rect assessment scores for each of the WMT16
language pair data sets and for all the data sets
combined (Table 3). The averaged sentence em-
beddings had the lowest correlation across all lan-

guage pairs. BVSS-System performed similarly
well compared to BLEU, but BVSS and BVSS-
Reference both outperformed BLEU.

Setting the adequacy threshold As with flu-
ency, our goal for the adequacy metric is to cor-
rectly label a sentence as questionable adequacy
rather than to provide an exact score. We used
each candidate adequacy metric described in sec-
tion 2.2 to score the segments in the synthetic low
adequacy dev set, and set adequacy threshold τa
for each metric such that 99% of dev set examples
would be labeled inadequate. The precision, recall,
and F1 on the synthetic test set using this thresh-
old for each metric is shown in Table 4. We see
that as with correlation scores, the Averaged Em-
beddings have much lower precision than BLEU
or any of the BVSS metrics, and the BVSS metric
have higher precision than BLEU.

Because of the potentially complementary dif-
ferences in BLEU and BVSS, we also tested com-
binations of BLEU and the highest-performing
vector-based metric, BVSS. We combine the met-
rics by marking a translation as questionable ade-
quacy only if both metrics would label it as ques-
tionable. We see a slight improvement in F1 with
the combination, and we adopt this metric for la-
beling segments as questionable adequacy.

3.3 Selected Scoring Method

Based on the fluency and adequacy evaluations in
Sections 3.1 and 3.2, we select WordLPmid and
the BLEU+BVSS combination to label segment
translations as fluently inadequate.

The results on segment level fluency and ade-
quacy prediction tests show that neither metric is
perfect at the segment level. However, the impact
of segment-level errors is lessened when segment
level scores are aggregated to compare across sys-
tems.
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Data source Arabic Chinese Farsi German Korean Russian
Subtitles 30M 11M 6.2M 22M 1.4M 26M
UN v1 18M - - - - -
WMT17 - 25M - 5.8M - 25M
LDC 1.3M - - - - -
All General 49M 36M 6.2M 28M 1.4M 51M
TED 174K 169K 114K 152K 164K 180K
TED Test 1982 1982 1982 1982 1982 1982

Table 5: Number of segments in General Domain and TED training and test data for all languages

4 System-Level Analysis of Fluently
Inadequate Translations

Koehn and Knowles (2017) showed that in out-of-
domain and low-resource settings NMT produces
lower quality output than SMT and they include
examples where the NMT produced translations
that were fluent but unrelated to the input. We seek
to quantify this observation by estimating how of-
ten such fluently inadequate translations occur in
SMT and NMT systems in different domain mis-
match and training data settings. We score the out-
put of 36 MT systems according to the percent-
age of fluently inadequate translations using the
method described above.

4.1 MT Systems

We use a set of neural and phrase-based statistical
MT models built from the same general domain
data and adapted to translate a more specific do-
main, namely, transcripts of TED talks. We se-
lected six languages to cover a range of resource
availability scenarios and language families: Ara-
bic, Chinese, Farsi, German, Korean and Russian.

4.1.1 Data

The number of segments of training and test data
for each language is summarized in Table 5. The
same tokenization was performed for all systems
for a given language, and the tokenized data was
split into subwords for NMT training using byte
pair encoding (BPE) (Sennrich et al., 2016). The
BPE models were trained separately on the source
and target language with 30K BPE symbols.

All languages used data from the OpenSubti-
tles1 corpus (Tiedemann, 2009) in the General do-
main training and dev data sets. The Chinese, Ger-
man, and Russian models used additional parallel

1http://www.opensubtitles.org/

corpora from WMT172 (Bojar et al., 2017). For
the Arabic models, we added data from the Lin-
guistic Data Consortium (LDC)3 and the UN v1
corpus4 (Ziemski et al., 2016).

The domain for the In-Domain and Domain-
Adapted models was TED talks. Training, dev, and
test sets for the domain were from the Multi-target
TED Talks Task (MTTT) corpus (Duh, 2018). All
systems, regardless of training setting, were tested
on the TED domain test set.

Fluency scores for each system were generated
based on a language model built on the English
side of its primary training data. As noted in Sec-
tion 2.1, it is important that the language model
match the training data, and we expect this to be
particularly true when the test set is out-of-domain.
We therefore use only the General domain data
for both the General models and the adapted mod-
els, while the In-Domain models use the in-domain
training data. Thresholds were calculated in a sim-
ilar manner to the thresholds on the WMT16 data:
thresholds for WordLPmid were calculated based
on the General domain training data and thresholds
for sentence BLEU and BVSS based on synthetic
data built from the TED training data.

4.1.2 Statistical MT Systems
The statistical systems were built using the

Apache Joshua toolkit5 (Post et al., 2015). We
tested three SMT models for each language:
Joshua General, Joshua In-Domain, and Joshua
Domain-Adapted, which were trained respectively
on the General domain data, on the TED training
data and on both. Language models for all sys-
tems were built from the English side of the train-
ing data. The Domain-Adapted model was tuned

2http://www.statmt.org/wmt17/translation-task.html
3LDC2004T18, LDC2007T08, and LDC2012T09
4UN v1 is included in the Russian and Chinese WMT17 data
5http://cwiki.apache.org/confluence/display/JOSHUA/
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Arabic German Farsi Korean Russian Chinese
Joshua General 23.50 30.65 13.41 6.34 24.49 14.79
Joshua TED Only 24.49 28.72 16.56 9.81 21.85 13.32
Joshua Adapted 27.11 31.35 17.71 10.24 25.23 15.70
Sockeye General 29.6 34.59 22.22 11.56 28.6 15.92
Sockeye TED Only 27.42 32.25 21.31 14.4 22.9 16.18
Sockeye Adapted 35.37 39.9 27.92 17.22 28.6 20.37

Table 6: BLEU scores for all systems

on TED dev data.

4.1.3 Neural MT Systems
The neural systems were built using Sockeye6

(Hieber et al., 2017). The systems used two LSTM
layers in both encoder and decoder with hidden
size 512 and word embeddings dimension 512. We
used a batch size of 4096 and created a checkpoint
every 4000 mini-batches. Our systems employed
the Adam optimizer (Kingma and Ba, 2014) with
an initial learning rate of 0.0003. As with the
SMT, we built three models for each language:
Sockeye General, Sockeye In-Domain, and Sock-
eye Domain-Adapted. The Sockeye General and
In-Domain models were trained with the same data
as the corresponding SMT models. The Sock-
eye Domain-Adapted models were trained using
continued training on TED data starting from the
Sockeye General model as in Luong at al (2015)
and Freitag and Al-Onaizan (2016).

4.2 System Analyses

We compute the percentage of fluently inade-
quate translations in the system output of all MT
and SMT systems to determine the effect of MT
paradigm and training data on the occurrence of
fluently inadequate translations.

Although the language pair and system varies,
we can directly compare the output of the systems
because the test data for all systems is from the
Multi-target TED corpus. Note that in the corpus,
the source is English and the other languages are
translations while our task is translating into En-
glish. This means that if there are human trans-
lation errors or non-literal translations, the source
will be inconsistent across languages but the refer-
ence will be the same. Table 7 shows English refer-
ences for two different segments in Farsi and Chi-
nese that yielded fluently inadequate MT output,
along with their corresponding source and system
6http://github.com/awslabs/sockeye

outputs. For some segments the human transla-
tion (our source) may have slightly different mean-
ing from the original (our reference), but the flu-
ently inadequate examples we seek to identify are
much further in meaning from both the source and
reference. For instance, in the Chinese-English
example the Chinese adds information that must
be inferred from context in the original English.
The Chinese literally translates to "Crow parents
also teach their children these kinds of skills." The
Sockeye TED and Joshua outputs reflect this addi-
tional information, but the Sockeye General output
is fluent but completely unrelated to the reference.

Figure 1 shows the percent of segments labeled
as fluently inadequate for each system. Even
the highest percentage (Chinese-English Sockeye
General) is less than 2%. Based on the high re-
call and low precision scores for the fluency metric
in Section 3.1, we expect that we are overpredict-
ing fluently inadequate translations so the actual
percentage may be even lower. This confirms that
these errors are indeed rare.

We also see from Figure 1 that the NMT models
for Korean and Chinese, the languages most typo-
logically different from English, have the highest
levels of fluently inadequate translations on out-
of-domain models. Although they have similarly
high percentages of fluently misleading and sim-
ilar amounts of in-domain training data, the Chi-
nese domain-adapted model improves much more
than the Korean domain-adapted model.

We compare the percent fluently inadequate seg-
ments to system BLEU scores in Figure 2. Based
on the definition of our metric for fluently inade-
quate translations, translations with high sentence
BLEU cannot be labeled fluently inadequate, so
we expect a strong negative correlation between
system BLEU and the percent fluently inadequate.
We do see this negative correlation, but we can also
see a clear difference in the percent fluently inade-
quate for the SMT vs NMT systems.
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System FA-EN Example ZH-EN Example
Source تری زیرکانه های انگیزه

باشید داشته
乌鸦父母还教会自己的孩子这样的技巧
呢。

Reference get smarter incentives . parents seem to be teaching their young .
Joshua General terry زیرکانه have motives

.
parents also teach their children the skills like this
?

Joshua TED you have the انگیزه
زیرکانه needed

parents crow can also teach our kids that the skills
that .

Joshua Adapted terry motives inspired . the parents teach their children such skills .
Sockeye General have a more subtle motiva-

tor .
i ’m afraid i ’m not going to have to go to bed .

Sockeye TED there ’s a lot of gamers . and the crow parents taught their kids like this .
Sockeye Adapted have smarter motivations . and their parents also taught their children how to

do it .

Table 7: Reference translation and example translations from the Farsi-English and Chinese-English
systems. Fluently inadequate examples in bold.

Figure 1: Segments labeled as fluently inadequate
for General, TED, and Domain-Adapted Sockeye
and Joshua models for all languages.

The NMT systems with low BLEU scores have
much higher percentage of fluently inadequate
translations than the similarly low-scoring SMT
systems. This follows the suggestion in Koehn
and Knowles (2017) that NMT is more prone to
producing output that is disconnected from the
source text when trained with insufficient or out-
of-domain data. Indeed, we can see in Figure 1
that the NMT consistently has a higher percentage
of fluently inadequate translations than the SMT.

Because our fluency metric relies on language
models very similar to the language models used
in the SMT systems, we might suspect that the
fluency metric is biased towards the SMT models,
potentially making SMT output more likely to be

Figure 2: Segments labeled as fluently inadequate
vs BLEU score for all Sockeye and Joshua models
for all languages.

labeled as fluently inadequate. However, Figure
3 shows that the NMT systems still consistently
have more segments labeled as fluent compared
to SMT systems with similar BLEU score. This
agrees with prior work showing that NMT output
is more fluent than SMT and suggests that while
the fluency metric likely leads to overprediction of
fluently inadequate translations, it does not do so
in a way that favors one paradigm over the other.

We also measured the percentage of fluently in-
adequate translations on the development set dur-
ing training. Figure 4 shows that the percent flu-
ently inadequate levels off very quickly, flattening
after a few checkpoints on the in-domain model.
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Figure 3: Segments labeled as fluent vs BLEU
score for all Sockeye and Joshua models for all
languages.

Figure 4: Percent fluently inadequate at each
checkpoint during in-domain training

5 Related Work

MT quality metrics are judged based on their cor-
relation with human judgments, and recently that
has meant human adequacy judgments (Bojar et
al., 2017). This indicates that any of the common
MT metrics such as BLEU (Papineni et al., 2002)
or METEOR (Banerjee and Lavie, 2005) may also
serve as baseline adequacy scores. However, they
incorporate elements of fluency while we wish to
separate fluency and adequacy.

Adequacy is, essentially, semantic equivalence
and the goal of SemEval’s Semantic Textual Sim-
ilarity (STS) task is to measure the degree of se-
mantic equivalence between two sentences (Cer et
al., 2017). The cross-lingual version of the task is
similar enough to quality estimation that one of the
data sets for 2017 actually came from the WMT

quality estimation task. However, the STS systems
performed much worse on the MT data than when
tested on the Stanford Natural Language Inference
(SNLI) Corpus data for the same language pair,
with the top system achieving a correlation of only
34 compared to 83. These models are also com-
plex and for use in combination with fluency, we
prefer a simpler approach for this study.

Although grammaticality focuses on well-
formedness while fluency includes all aspects of
“sounding natural," the metrics used to predict
grammaticality may still prove to be good mea-
sures of fluency. Lau et al (2016) take an un-
supervised, language modeling approach to the
task of predicting grammaticality as described in
Section 2.1. They used two types of test data.
One was generated by round-tripping sentences
through Google Translate and the other was gener-
ated by extracting example sentences from a syn-
tax textbook. The MT-generated English data is
most similar to our problem, and the most effective
models for that data were the word-based scores
from the language model.

6 Conclusion

We have introduced an approach to automatically
detect fluently inadequate translations in machine
translation output based on automatic fluency and
adequacy metrics. Applying this technique to a
diverse set of statistical and neural MT systems,
we found that although fluently inadequate trans-
lations are rare, NMT does appear to be consis-
tently more prone to this type of error compared to
SMT. Improving the match between training and
test with continued training on in-domain data re-
duces these errors. These findings raise several
questions for future work: How often are fluently
inadequate translations actually misleading to hu-
man users? How can we detect fluently inadequate
translations without reference translations?
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