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Abstract

Neural networks have become the state-
of-the-art approach for machine transla-
tion (MT) in many languages. While
linguistically-motivated tokenization tech-
niques were shown to have significant ef-
fects on the performance of statistical MT,
it remains unclear if those techniques are
well suited for neural MT. In this pa-
per, we systematically compare neural and
statistical MT models for Arabic-English
translation on data preprecossed by vari-
ous prominent tokenization schemes. Fur-
thermore, we consider a range of data and
vocabulary sizes and compare their effect
on both approaches. Our empirical re-
sults show that the best choice of tokeniza-
tion scheme is largely based on the type of
model and the size of data. We also show
that we can gain significant improvements
using a system selection that combines the
output from neural and statistical MT.

1 Introduction

Neural machine translation (NMT) has been
rapidly attracting the attention of the research com-
munity for its promising results (Cho et al., 2014b;
Bahdanau et al., 2014; Wu et al., 2016; Vaswani et
al., 2017). NMT is composed of two neural net-
works, an encoder and a decoder, where the en-
coder is fed a sentence from the source language
and the decoder generates its translation, word
by word, in the target language. Recently, NMT
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has been shown to outperform other MT systems
in many language pairs, e.g. German-English,
French-English and Basque-English (Escolano et
al., 2017; Dahlmann et al., 2017; Unanue et al.,
2018). While Arabic MT has been mostly devel-
oped under statistical MT (SMT), NMT has also
been applied and studied recently (Habash and Sa-
dat, 2006; Almabhairi et al., 2016; Durrani et al.,
2017).

Linguistically-motivated  tokenization  has
shown to have a significant effect on SMT,
particularly in the case of morphologically rich
languages like Arabic (Habash and Sadat, 2006).
However, it remains unclear if such techniques
are well suited for NMT, where language-agnostic
tokenizations, e.g.  byte-pair encoding (BPE)
(Sennrich et al., 2016), are widely used. Almahairi
et al. (2016) has looked into Arabic SMT and
NMT, achieving the highest accuracy using the
Penn Arabic Treebank (ATB) tokenization, with
51.2 and 49.7 BLEU points for SMT and NMT,
respectively.

In this paper, we study the impact of differ-
ent preprocessing techniques in Arabic-English
MT on both SMT and NMT, by examining vari-
ous prominent tokenization schemes. We conduct
learning curve experiments to study the interac-
tion between data size and the choice of tokeniza-
tion scheme. We study the performance under
morphology-based and frequency-based tokeniza-
tion schemes, provided by MADAMIRA (Pasha
et al., 2014) and BPE, respectively, on in-domain
data. In addition, we evaluate the best performing
models on out-of-domain data. Our results show
that the utilization of BPE for SMT can be effec-
tive and allows achieving a good performance even
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with a small vocabulary size of 20K. Moreover, the
results show that the performance of NMT is es-
pecially sensitive to the size of data. We notice
that NMT suffers with long sentences, and thus,
we utilize system selection, which yields signifi-
cant improvements over both approaches. Our best
system significantly outperforms previous results
reported on the same in-domain test data by +4
BLEU points (Almabhairi et al., 2016).

The rest of the paper is organized as follows.
The related work is presented in Section 2. Sec-
tion 3 describes our proposed approach. Section 4
illustrates the experimental settings. The results
are reported in Section 5. In Section 6, we discuss
our findings. Finally, we conclude the paper and
mention the future work in Section 7.

2 Related Work

Many studies have compared the performance of
different MT models on translation tasks (Unanue
et al., 2018; Almabhairi et al., 2016; Durrani et al.,
2017). However, the data preprocessing was not
unified across those models. For example, BPE
is only applied to the training data utilized by the
NMT system, but not SMT (Almahairi et al., 2016;
Durrani et al., 2017).

Habash and Sadat (2006) investigated and com-
pared across some preprocessing schemes for Ara-
bic, describing and evaluating different methods
for combining them. The main preprocessing
schemes were Simple Tokenization, Decliticiza-
tion (degrees 1 to 3), and Arabic Treebank To-
kenization. Decliticization of degree 2 outper-
formed the rest when applied individually. They
reported improvement in MT performance when
combining different schemes together.

Almahairi et al. (2016) compared NMT and
SMT on Arabic translation, and showed that NMT
performs comparably to SMT. The best perfor-
mance is achieved when Penn Arabic Treebank
(ATB) tokenization is used with 51.19 and 49.70
BLEU points for SMT and NMT, respectively.

The idea of system selection for MT exists in the
literature, but mostly for model selection under the
same approach (SMT or NMT) (Devlin and Mat-
soukas, 2012; Salloum et al., 2014).

3 Approach

In our study, we systematically compare SMT and
NMT on the following dimensions.
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3.1 Source Language Tokenization

Much research has shown the importance of
tokenization and orthographic normalization for
SMT and NMT, as they deal with data sparsity
(El Kholy and Habash, 2012; Habash and Sa-
dat, 2006; Zalmout and Habash, 2017). Tok-
enization schemes can either be morphology-based
or statistical/frequency-based (Pasha et al., 2014;
Sennrich et al., 2016). We investigate both in the
context of Arabic MT, both separately and in com-
bination, to observe their interaction. We normal-
ize Alif !’ and Ya ‘s’ in all schemes, where
Hamza is removed from the variants of Hamzated
Alif (e.g.V’,*I") to become ‘V, the Alif Maqsura *

’

s’ is replaced with Ya ‘ ¢’ and the diacritics are
removed. i

Morphology-based This tokenization scheme
relies on the linguistic rules of the source lan-
guage. We explore three schemes under this cat-
egory (Habash and Sadat, 2006; Zalmout and
Habash, 2017): 1) Simple Tokenization (Raw) that
splits off punctuation and numbers; 2) Penn Ara-
bic Treebank (ATB) Tokenization, which splits all
clitics except definite articles; 3) Decliticization
(D3), which splits all clitics.

Frequency-based We use byte-pair encoding
(BPE) (Sennrich et al., 2016), which is an iterative
compression approach that replaces the most fre-
quent pair of characters in a sentence with a unique
sequence of characters. It allows for a fixed-size
vocabulary representation. Figure 1 shows an ex-
ample across Raw and Tok schemes with/without
BPE on top.

3.2 Training Data Size

We conduct a learning curve experiment to ex-
plore how much both Arabic-English SMT and
NMT can benefit from adding more training data
with each tokenization scheme. Habash and Sa-
dat (2006) have conducted a similar learning curve
study for SMT. Each tokenization scheme may re-
sult in a different number of tokens per sentence;
hence, a sentence-length filter will discard more
sentences from more verbose schemes. This would
lead to some schemes having access to more words
than others. Therefore, we adopt El Kholy and
Habash (2012)’s approach of filtering training par-
allel data based on the D3 scheme as a reference
scheme for selecting sentences of length up to 100
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Setting Sentence

Original S e aledl g 555 a sl 26 L Basea sl deal 8
Raw ALY e aleall & 558 g asall #U 5 L Bases gl deal JB8
ATB A e aleall & 358 g asll U Uk ) Bases sl daa) B8
D3 LA+ e bles +J) g g8 5 psn +J) ZU L Uk O Baes gl daa) JB8
Raw+BPE DAY e Gled) 85 @@ss o5 25 @@ 5 W) 5 @@ e s 2es | J
ATB+BPE LA e edl 5 @@ 5 s o oV @@ @@0 B O B @@ s 2ea) JB
D3+BPE A+ e alea +0 £ @@ 505+ ) @@ @@0 Ut O bases sl deal JUd

Translation Today we are resting and distributing the new posts, said Ahmad Abou Hamida.

Figure 1: Tokenization schemes applied to an example.

tokens. Thus, the same sentences will be selected
across different tokenization schemes.

3.3 Target Language Resources

We design the training so that both systems will
have access to the same additional target language
resources besides the target side of the training par-
allel corpus. In SMT, target language resources
are used to build language models for fluency im-
provement. Whereas, many works have proven
pretrained word embeddings to be useful in neu-
ral network models (Qi et al., 2018), and there-
for, the same additional TLR are used to learn pre-
trained word embeddings that support the decoder
in NMT. Here, the 444 designation next to the
system name indicates the use of additional TLR.

3.4 Input Length and System Selection

Many have reported NMT performing worse with
long sentences (Cho et al.,, 2014a; Koehn and
Knowles, 2017), which was caught in our er-
ror analysis and thus we explored combining the
two MT systems via a system selection approach,
where the selection of either translation is based on
which is closer to the input length as a criterion.
Whereas the sentence BLEU score is the criterion
in the Oracle system selection.

4 Experimental Settings

4.1 Datasets

The training dataset contains 1.2M sentence pairs
in newswire (NW) domain from three Linguistic
Data Consortium (LDC) resources: LDC2004T18,
LDC2004T14, and LDC2007T08. For tuning,
we use LDC2010T12 (MT04), which consists of
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1,075 sentence pairs in NW and government doc-
uments. As for the in-domain testing, we use
LDC2010T14 (MTO05), which consists of 1,056
sentence pairs in NW, and has four English ref-
erence translations. We look into the perfor-
mance of the systems in out-of-domain data using
LDC2014T02 (MT12), which consists of 1,535
sentence pairs mostly web collection, and has four
English reference translations.

4.2 Preprocessing

MADAMIRA (Pasha et al., 2014) is utilized for
morphology-based tokenization of the source side.
Sennrich et al. (2016)’s BPE implementation is
used for learning and applying BPE models. We
set vocabulary size to 20K in BPE learning af-
ter exploring multiple vocabulary sizes, includ-
ing 10K, 20K and 30K, where the 20K setting
achieved comparable results to the 30K and out-
performed the 10K. Each BPE model is trained on
source side of training data of the respective ex-
periment. While Moses’ (Koehn et al., 2007) to-
kenizer and lowercaser are used for preparing the
target side.

4.3 SMT settings

We use Moses 3.0 (Koehn et al., 2007) to train
SMT models with maximum phrase length of 8 to-
kens. Two versions of the language model are ex-
amined: 1) trained solely on the target side of the
training dataset, and 2) trained on the target side
and the English Gigaword 5" edition.

4.4 NMT settings

We use the encoder-decoder with the general
global attention architecture as introduced by Lu-
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Figure 2: The performance on in-domain test (MTO5) under different settings with different training data sizes.

#Vocab | SMT,,,. . CI ||NMT..., ..., CI | P-value
Raw 331K 52.78 ||+ 0.98 52.76 +1.24| 0412
ATB 208K 5542 ||+ 1.07 53.54 +1.20] 0.002
D3 190K 54.66 |+ 1.02 53.51 4+ 1.20] 0.027
Raw+BPE | 20K 53.78 ||+ 1.10 52.41 4+ 1.17| 0.003
ATB+BPE| 20K 55.64 | +1.11 53.18 + 1.15] 0.001
D3+BPE 20K 54.59 ||+ 1.07 53.38 + 1.16| 0.018

Table 1:

Comparing Raw, ATB and D3 Tokenized cases without/with BPE on in-domain test (MTO0S), in terms of BLEU

scores, where the Confidence Interval (CI) and P-value are reported. Bold font highlights best results by SMT and NMT.

ong et al. (2015). All the NMT models have been
trained using OpenNMT toolkit (Klein et al., 2017)
with no restriction on input’s vocabulary. We use
long short-term memory units (LSTM) (Hochre-
iter and Schmidhuber, 1997), with hidden units
of size 500 and two layers in both the encoder
and decoder. The word embedding vector size for
source/target is 300.

English pretrained word embeddings were
trained as skip-gram model (Mikolov et al., 2013)
via gensim tool (Rehurek and Sojka, 2010) with
settings: (size=300, window=8, min count=5) on
English Gigaword 5" edition (Graff and Cieri,
2003) dataset. Arabic embeddings were trained
on the Arabic Gigaword 5" edition (Parker et
al., 2011) via FastText (Bojanowski et al., 2017),
which showed better performance with morpho-
logically rich languages (Erdmann et al., 2018).
We give the designation of ,,../;g¢ 4 to the system
that uses both embeddings.

4.5 Evaluation Metrics

The evaluation results are reported in case insensi-
tive BLEU scores (Papineni et al., 2002) with their
confidence intervals (CI) and p-values. Bootstrap
resampling is used to compute statistical signifi-
cance intervals (Koehn, 2004).
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5 Results

5.1 Preprocessing and Learning Curve

We examine Raw, ATB and D3 with and without
BPE applied on top, across a learning curve where
smaller sets of our training data (1.2M) are consid-
ered at 25% (300K) and 6.25% (75K) tokens. Fig-
ure 2 illustrates the learning curve results for Raw
(baseline) and ATB (overall best), with and with-
out BPE. Figure 2 shows the importance of training
data availability, especially for NMT, and also that
BPE impact can be seen in both systems, which we
find interesting. Moreover, SMT is shown to be far
more sensitive to preprocessing than NMT.

Table 1 shows the best systems’ results when
100% of the training data is tokenized by Raw,
ATB and D3, with and without BPE on top of it, for
SMT and NMT. It shows ATB+BPE and ATB to
achieve the best results for SMT and NMT, respec-
tively, which we find interesting as BPE is usu-
ally associated with NMT. The p-value indicates
whether the difference between SMT and NMT re-
sults under the same tokenization scheme is sta-
tistically significant or not. The statistical signifi-
cance is illustrated with p-value < 0.05. SMT,,,, .
and NMT,,, ..., have comparable results at the
baseline. As expected, using more data for LM
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Figure 3: The input size vs. output size in SMT and NMT, respectively, on MTO5 with ATB tokenization. We notice that in
NMT parts of the input sentences are dropped and not translated at all, which motivates the length-based selection.

SMT,,.. . NMT...,.,... ||System Selection|Oracle
Setting |BLEU | Scheme | BLEU BLEU BLEU
ATB+BPE | 55.64 | ATB | 53.54 56.18 61.26

Table 2: BLEU score of the length-based system selection (using best models of SMT and NMT) when applied on in-domain

test (MTO5).
SMT,,.. . NMT...,.,... ||System Selection|Oracle
Scheme |BLEU | Scheme | BLEU BLEU BLEU
ATB+BPE | 35.11 | ATB | 36.56 37.96 39.11

Table 3: BLEU score of the length-based system selection (using best models of SMT and NMT) when applied on out-of-

domain test (MT12).

produces better results as well as the increase in
training data size. Using pretrained word embed-
dings for both languages improve the NMT re-
sults significantly compared to only target ones
by two BLEU points. As shown in Table 3, the
best NMT..,,.,.,, model (using ATB) outperforms
SMT,,... model (using ATB+BPE) by 1.5 BLEU
against MT12 in the out-of-domain testing.

5.2 Error analysis

Error analysis has shown that NMT output is more
fluent than SMT’s, especially with short sentences
(< 50 tokens), in contrast to long sentences where
coverage and accuracy drop, which support related
work. Figure 3 shows dropping in NMT output
size as the input size increases, especially < 40
tokens, while SMT keeps more consistent output
to the input size. So we explore system selec-
tion based on the closeness to the input length as
well as Oracle results, where the selection is based
on the highest output BLEU score. Tables 2 and
3 show the results of length-based system selec-
tion on best models in SMT and NMT when ap-
plied to in-domain test (MTO05) and out-of-domain
testing (MT12), respectively, which illustrate im-
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provements over the original BLEU scores.

Figure 4 illustrates five examples, where either
SMT or NMT output is selected based on the out-
put length compared to the source input size. In
Example 1, the SMT output is selected over the
NMT one as the NMT system drops the phrase af-
ter the comma and only translates the part before,
however, fluently. Example 2, which represents
much longer sentence, SMT output is selected over
NMT, which translates the saying and drops the
rest of the sentence. On the other hand, in Exam-
ples 3 and 4, NMT output is selected over SMT’s
for being the closest to the source input in terms of
length. Furthermore, Example 5 represents a case
where the system selection approach fails to select
the better prediction (in terms of BLEU score) for
the final output based on the source-output length
comparison.

6 Discussion

We notice that morphology-based tokenization
schemes improve the performance of MT systems
regardless of the MT approach, but in different lev-
els. The difference in scheme choice is less im-
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Example 1
pu sasiall by
SMT* and repeated that iran ’ s nuclear program is peaceful and that iran is not seeking to acquire an atomic
bomb , as the united states alleges .
NMT he repeated that iran ’ s nuclear program was peaceful and iran was not seeking to acquire atomic
bomb .
Human he repeated that iran ’ s nuclear program is peaceful and that iran is not trying to acquire an atomic
bomb as the united states claims .
Example 2
é‘ﬂ\ J\}a.“ d}d @LAA u\ Lg‘)gs“d\ ) L.\A‘)\}” 2:\;_)\;)\ B)\j) ru.n‘-H—I L;m.u‘)n djau‘ dG-( « al )3-1
Input ‘5_\1\ Ol Uil o A JIAN ¢l 5 (5 s 4;‘“‘ Jiall Guedll jles 55 Qaay (g éﬂ\ tLAEA\J\ ‘55 S LI + e
A 4y Al s sl A AN p5s delue ot pul p s o SIS+
oman 3 - 1 (afp ) - the jordanian foreign ministry spokesman recep UNK that all iraqi neighboring
SMT* countries will participate in the meeting , which will be held in amman next thursday at the level of
foreign ministers , with the exception of iran , which would participate with a delegation led by
assistant foreign minister UNK international and legal .
NMT jordan will take part in a meeting of foreign ministers in amman on thursday , except for iran , a
foreign ministry spokesman said .
amman 1 - 3 (afp ) - jordanian foreign ministry spokesperson rajab sukayri has said that all of iraq ’ s
Human neighboring countries will be taking part in thursday ’ s meeting in amman at foreign minister level ,
with the exception of iran which will be represented by a delegation headed by the foreign minister * s
assistant for legal and international affairs .
Example 3
Input okl daia (e @l Gy Al
SMT | he could not verify the authenticity of the statement .
NMT* | the authenticity of the statement could not be verified .
Human | the authenticity of the statement could not be verified .
Example 4
a)) b o Lo Gl sl Ja ) onla) e S g 3 ol sl Bl Cang 4
Input Ny
SMT and designed six-party nuclear talks which have been stalled since last september to peacefully solve
the nuclear issue on the korean peninsula .
NMT* the six-party nuclear talks , which have been stalled since last september , are aimed at resolving the
nuclear issue peacefully on the korean peninsula .
Human the six-party nuclear talks , which stopped last september , are aimed at a peaceful settlement of the
nuclear issue on the korean peninsula .
Example 5
Input Sl aul e (Spe sl A Gsiall 4y pddl e Gl Gl s+
SMT* the two presidents attended the omar al-beshir and south african president thabo mbeki the signing
ceremony
NMT sudanese president omar al-beshir and south african president thabo mbeki attended the signing
ceremony
Human the sudanese president umar bashir and the south african president thabo mbeki attended the signing
ceremonies

Figure 4: Examples from MTO0S5, with SMT and NMT outputs when ATB is used as a scheme. The * designation next to the
system name indicates the decision of the system selection.

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 219



pactful on NMT; compared with SMT. The im-
provement range for NMT is 1.13 BLEU, while for
SMT the range is 2.86 BLEU. While Raw results
are almost the same for SMT and NMT; ATB im-
proves both NMT and SMT; but the improvement
is higher for SMT. Adding BPE helps SMT, while
lowering vocabulary size. The effect of BPE on
NMT is insignificant, which is a surprising result
since BPE is often associated with NMT. Also, we
significantly improve on Almahairi et al. (2016)’s
results by more than three BLEU points.

Length-based system selection improves over
both NMT and SMT results in in-domain and out-
of-domain cases, significantly in the later, which
indicates a hybrid MT system may be promising.
Moreover, the huge jump in performance with Or-
acle selection shows that there is still room for po-
tential improvement in system designs, for better
accuracy and fluency. More TLR allow for bet-
ter results in MT systems. When both Arabic and
English pretrained word embeddings are used, the
performance improves by more than two BLEU
points compared to English only.

7 Conclusion and Future Work

In this paper, we study the impact of various pre-
processing techniques to Arabic-English MT un-
der SMT and NMT, where various prominent to-
kenization schemes are examined. We conduct a
learning curve analysis of the different preprocess-
ing settings with incremental training data size,
where ATB scheme performs consistently well
along the learning curve. Moreover, we imple-
mented a length-based system selection to deal
with NMT’s struggle with short sentences, and sig-
nificant improvements. The empirical results show
that the choice of tokenization scheme can be op-
timized based on the type of model to train and
the data available. We also gain significant im-
provements using length-based system selection
that combines the output from neural and statis-
tical MT. Our results significantly outperform the
ones reported in the prior work when applied to
in-domain test (MTO05). As future work, we plan
to examine training data of general domain with
linguistically-motivated tokenization schemes to
study further their impact on NMT under different
neural models. Also, exploring sophisticated sys-
tem selection schemes for potential improvement.
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