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Abstract

We propose an interactive-predictive neu-
ral machine translation framework for eas-
ier model personalization using reinforce-
ment and imitation learning. During the
interactive translation process, the user is
asked for feedback on uncertain locations
identified by the system. Responses are
weak feedback in the form of “keep” and
“delete” edits, and expert demonstrations
in the form of “substitute” edits. Condi-
tioning on the collected feedback, the sys-
tem creates alternative translations via con-
strained beam search. In simulation exper-
iments on two language pairs our systems
get close to the performance of supervised
training with much less human effort.

1 Introduction

Despite recent success reports on neural machine
translation (NMT) reaching human parity (Wu
et al., 2016; Hassan et al., 2018), professional
use cases of NMT require model personalization
where the NMT system is adapted to user feedback
provided for suggested NMT outputs (Wuebker et
al., 2018; Michel and Neubig, 2018). In this pa-
per, we will focus on the paradigm of interactive-
predictive machine translation (Foster et al., 1997;
Barrachina et al., 2008) which has been shown to
fit easily into the sequence-to-sequence model of
NMT (Knowles and Koehn, 2016; Wuebker et al.,
2016). The standard interactive-predictive proto-
col takes a human-corrected prefix as condition-
ing context in predicting a sentence completion,
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which is again corrected or accepted by the human
user. Recent work showed in simulation experi-
ments that human effort can be reduced by asking
humans for reward signals or validations of partial
system outputs instead of for corrections (Lam et
al., 2018; Domingo et al., 2017).

Our goal is to combine both feedback modes
— corrections and rewards — by treating them as
expert demonstrations and reward values in an in-
teractive protocol that combines imitation learning
(IL) (Ross et al., 2011) and reinforcement learning
(RL) (Sutton and Barto, 2018), respectively, us-
ing only limited human edits. A further difference
of our framework to standard interactive-predictive
NMT is our use of an uncertainty criterion that re-
duces the amount of feedback requests to the to-
kens where the entropy of the policy distribution
is highest. This idea has been used successfully
before in Lam et al. (2018) and Peris and Casacu-
berta (2018) and connects our work to the area of
active learning (Settles and Craven, 2008). Lastly,
our framework differs from prior work by allowing
model updates based on partial translations.

Our experiments show that weak feedback in
form of keep/delete rewards on translation outputs
yields consistent improvements of between 2.6 and
4.3 BLEU points over the pre-trained baseline. On
one language pair, it even matches the improve-
ments gained by forcing word substitutions from
reference translations into the re-decoded output.
Furthermore, both feedback scenarios consider-
ably reduce human effort.

2 Related Work

Interactive-predictive translation goes back to
early approaches for IBM-type (Foster et al., 1997;
Foster et al., 2002) and phrase-based machine
translation (Barrachina et al., 2008; Green et al.,
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2014). Knowles and Koehn (2016) and Wuebker et
al. (2016) presented neural interactive translation
prediction — a translation scenario where transla-
tors interact with an NMT system by accepting or
correcting subsequent target tokens suggested by
the NMT system in an auto-complete style. How-
ever, in their work the system parameters are not
updated based on the prefix. This idea is imple-
mented in Turchi et al. (2017), Michel and Neu-
big (2018), Wuebker et al. (2018), Karimova et al.
(2018), or Peris et al. (2017). In contrast to our
work, these approaches use complete post-edited
sentences to update their system, while we update
our model based on partial translations. Further-
more, our approach employs techniques to reduce
the number of interactions.

Our work is also closely related to approaches
for interactive pre-post-editing (Marie and Max,
2015; Domingo et al., 2017). The core idea is to
ask the translator to mark good segments and use
these for a more informed re-decoding, while we
integrate constraints derived from diverse human
feedback to interactively improve decoding. Ad-
ditionally, we try to reduce human effort by min-
imizing the number of feedback requests and by
frequent model updates.

Several recent approaches to reinforcement
learning from human feedback implement the idea
of reinforcing/penalizing a targeted set of ac-
tions. Kreutzer et al. (2018) presented an approach
were ratings from human users on full transla-
tions are used successfully for NMT domain adap-
tation. Simulations of NMT systems interacting
with human feedback have been presented firstly
by Kreutzer et al. (2017), Nguyen et al. (2017), or
Bahdanau et al. (2017), who apply different pol-
icy gradient algorithms, William’s REINFORCE
(Williams, 1992) or advantage-actor-critic meth-
ods (Mnih et al., 2016), respectively. In this paper,
we use REINFORCE update strategies for simu-
lated bandit feedback on the sub-sentence level.

Gonzélez-Rubio et al. (2011; 2012) apply active
learning for interactive machine translation, where
a user interactively finishes translations of a statis-
tical MT system. Their active learning component
decides which sentences to sample for translation
and receive supervision for, and the MT system is
updated on-line (Ortiz-Martinez et al., 2010). In
our algorithm, the active learning component de-
cides which prefixes to receive feedback for based
on the entropy of the policy distribution.
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3 Learning Interactive-Predictive NMT
from Rewards and Demonstrations

As shown in Cheng et al. (2018), IL and RL can
be viewed as a single algorithm that only differs in
the choice of the oracle, based on objective func-
tions that are defined as the expected value func-
tion with respect to the current model’s policy 7,
in case of RL, and as the expected value function
with respect to an expert policy 7* in case of IL.
Applied to NMT, both IL and RL are based on
a Markov Decision Process where a deterministic
sequence of states consisting of the source input
and the history of the model’s predictions (possi-
bly incorporating expert’s demonstrations) serves
as conditioning context to predict the respective
word, or “action” (Bahdanau et al., 2017).

We instantiate rewards and demonstrations to
the feedback types in interactive-predictive trans-
lation as follows: In the first case, uncertain words
predicted by the system receive a positive or neg-
ative reward based on “keep” or “delete” feedback
respectively. In the second case, uncertain words
can additionally be corrected based on an expert
policy in the form of “substitute” feedback associ-
ated with a positive reward. This feedback is inte-
grated in context of the model’s own predictions by
adding rules to constrained beam search decoding
(Hokamp and Liu, 2017; Post and Vilar, 2018)."

3.1 Learning Objective

We formalize the objective of interactive-
predictive NMT as maximizing the value function
V' of a parametrized policy 7y, i.e., we seek to
maximize the expected (future) reward obtainable
from interactions of the NMT system with a
human translator who, by editing translations,
implicitly assigns rewards R(y) to system
predictions ¥ given source sentences Xx:

meax V7r9 (S’y X) = m@ax Ey~W9(~|x) [R(y)] ()

'We observe that the distinction between weak feedback and
expert feedback is difficult to make in the “keep” feedback
case: on the one hand, this type of feedback refers to an action
generated by the system, and on the other hand, it can be seen
as a form of expert demonstration. From this perspective, our
first system is closer to RL while our second system is closer
to IL. For brevity, we will refer to our models as “RL model”
and “IL model”, respectively.
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Figure 1: A graphical illustration of the

interactive-predictive workflow of our system.
Dotted arrows indicate interactions between hu-
man and system; solid arrows indicate procedures
within the system

Following the policy gradient theorem (Sutton et
al., 2000; Bahdanau et al., 2017), its derivative is

T
VoVry = Egrmp(Ix) Z Z Voo (y[x, §<t) R(y)
t=1 yeV

2)

where V is a vocabulary of target words. In our
application, we ask for feedback on a single tra-
jectory at each round of interactions. Similar to
Williams (1992), we consider a 1-sample estimate
to reduce the inner sum of actions at each time step
to the single action g, presented to the user.

Depending on the type of feedback, the instan-
taneous reward R(y;) for a system translation ¢ is
set to the following values:

R = 0.5 %f SUBSTITUTE/KEEP, 3)
—0.1 if DELETE.
In addition, we found that flooring rewards for
tokens that do not receive explicit feedback to a
small number? stabilizes the training and improves
performance on the dev set.

4 Algorithms

In this section, we present the details of our
interactive-predictive workflow and describe the
system components of our implementation to re-
duce human effort while maintaining high qual-
ity model adaptation. In contrast to existing ap-
proaches where full sentences are corrected in each

2We apply Gaussian noise with mean 0.1 and standard devia-
tion of 0.05.
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round, our system stops decoding when the gener-
ated segment meets several (un)certainty criteria.
Our system then identifies uncertain words within
the generated segment and asks the user to edit
these words. The idea is to direct the user to possi-
ble translation errors in the segment, and to collect
feedback on these highly informative locations, ef-
fectively implementing an active learning strategy.
The collected feedback is used twice: first, it is
used to perform an on-line update of the system’s
parameters, and secondly, it is integrated as rules
into constrained beam search. The full translation
is reached after several interactive rounds when the
translator finally accepts the translation. Figure 1
gives a graphical illustration of the workflow.

4.1 Measuring uncertainty

We define a measure of uncertainty based on the
entropy at a time step ¢ given a set of actions V
(i.e., the target vocabulary) where

Ht = - Z W@(y‘X,y<t) log W@(y‘xa y<t)'
yey

The idea is that learning from edits on high en-
tropy time steps is more helpful than learning from
edits on low entropy time steps, because updating
parameters based on uncertain regions better sta-
bilizes the model over time. Furthermore, entropy
is computationally simple and far less expensive
than external reward estimators such as a quality
estimation system, a critic, or a discriminator.

A single token at time step ¢ is considered un-
certain if the entropy exceeds a defined threshold e,
i.e., Hy > e. We use this criterion to identify infor-
mative locations of a partial translation on which
the user is asked for feedback.

In case of partial translations, a sequence of
length ¢ is considered uncertain if the token at time
t is uncertain as defined above, and there is an
abrupt change in entropy at ¢, formally % >
4. Both criteria are applied to determine the length
of a partial translation shown to the user.

4.2 Interactive-predictive workflow

Algorithm 1 describes the workflow in our
interactive-predictive machine translation sce-
nario. In the first round, the system starts with ini-
tial model parameters 6y, and an empty set of feed-
back rules &, and calls BEAM-SEARCH to first gen-
erate an unconstrained partial translation of length
t by evaluating the uncertainty criteria in function
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Algorithm 1: Interactive-predictive workflow
for a single sentence using constrained beam
search. Input: model parameters 6, source sen-
tence x, beam size k, learning rate «. Output:
updated 6*.

1 tprefiz < 1Lin+1

2 00+ 0,6+ 0

3 SET-NMT—-SOURCE (X)

4 repeat

5 Y1:t < BEAM—SEARCH (K, tprefiz, Tmax §)

6 fori <+ 1totdo

7 if UNCERTAIN-LOCATION (Y1:¢,%) then
Collect feedback rules &;

8 | Getrewards for &; € {keep, delete, substitute}

according to Eq. 3

9 On < 01 + VeV (Eq. 2)

10 tprefiz < |Y1:t[,mn —n+1

until y1.; accepted

—

IS-UNCERTAIN. The algorithm then evaluates each
token within the partial translation and asks for
user feedback if the token is considered uncertain
w.r.t. the function UNCERTAIN-LOCATION.

Feedback is captured in form of rules that cor-
respond to edits on specific locations, e.g., KEEP
token at position ¢, DELETE token at position 1,
or SUBSTITUTE token at position 7 with another
token. After collecting the rewards for feedback
rules &; according to Equation 3, the model param-
eters are updated by taking a gradient step as de-
fined in Equation 2.

The updated system then proceeds to the next
round by calling BEAM-SEARCH again, this time
with a set of feedback rules £ to generate a con-
strained partial translation exceeding the previous
length Z,,¢ f;;. The uncertainty criterion of tokens
is evaluated again and the user is asked for feed-
back on these tokens, extending the set of feed-
back rules &, which are used to update the system
parameters and generate the next partial translation
until the user is satisfied with the translation.

4.3 Constrained beam search

A central component is a modified beam search al-
gorithm that takes positional constraints into ac-
count (Algorithm 2). The user constraints force the
system to generate alternative translations and can
thus be interpreted as an exploration strategy. An
efficient alternative exploration strategy is multi-
nomial sampling. In our interactive-predictive sce-
nario, however, it is crucial that translations on
locations without explicit user feedback are pre-
served, and this cannot be modeled easily with
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Algorithm 2: Constrained beam search for un-
certain partial translation. Input: beam size k,
prefix length p, maximum length N, feedback
rules £. Output: partial translation.

1 function BeavM-sEarcH (k, p, N, &)
beam < DECODER—INIT (k)
fort < 1to N do
scores < DECODER—STEP (beam)
beam < KBEST (scores, k, £)
if LEnGTH (beam][0]) > p and
IS-UNCERTAIN (beam[0]) then break
7 | return beam]0]
function xBEST (scores, k, £)
9 scoreSc <~ APPLY-CONSTRAINTS (scores, &)
10 beam < ARGMAX} (scores.:)
1 return beam

= I NI S

®

multinomial sampling. Beam search on the other
hand ensures stable translations due to its deter-
ministic nature, and the idea of constrained beam
search provides the tools to improve the translation
interactively. As a side effect, higher quality trans-
lations can be obtained by increasing the beam size
at the cost of computational power.

After initializing k£ beams, the algorithms gen-
erates a partial translation by calling DECODER-
STEP to retrieve the next token and score all hy-
potheses. The constraints (provided in the form of
feedback rules) are applied in the function KBEST
by filtering out all hypotheses that do not satisfy
the constraints before the ARGMAX, operation se-
lects the k highest scoring remaining hypotheses.
The single best partial translation is shown to the
user only if two conditions are met: (1) the length
exceeds the length of the previous partial transla-
tion, and (2) the current partial translation is con-
sidered an uncertain sequence. In case one con-
dition is not met, the system iteratively extends
the partial translation up to a maximum hypothe-
sis length.

5 Experiments

To demonstrate the effectiveness of our reinforce-
ment and imitation strategies, we simulate the
interactive-predictive workflow described in Sec-
tion 4 in a domain adaptation setup. A human
translator is simulated by comparing partial trans-
lations with corresponding gold translation to ex-
tend the set of feedback rules in every round. In
the RL setting, the simulated human translator pro-
vides only weak feedback (KEEP and DELETE ed-
its) on tokens generated by the system, while in
the IL setting the simulated translator addition-
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Data  Training  train/dev/test & en-length
5 EP pre-training 1.3M/2k/- 25.5
& NC interactive  18.4k/3k/ 5k 22.8
5 EP pre-training 1.7M/2.7k/- 24.0
&8 NC interactive  18.9k/1k/2k 22.6

Table 1: Data used in pre- and interactive training
for French-English (fr-en) and German-English
(de-en).

ally injects expert feedback (SUBSTITUTE edit) by
demonstrating how the system should act at a spe-
cific time step. In our simulation experiments, we
focus on the uncertain tokens of the partial trans-
lation. An exact match between the uncertain to-
ken and the reference generates a KEEP edit, while
differing tokens generate either a DELETE or SUB-
STITUTE edit depending on the type of system. To-
kens exceeding the sentence length of the reference
always receive a DELETE feedback. We refer to the
first system as KEEP+DELETE, and the second sys-
tem as +SUBSTITUTE. While the system parame-
ters are updated online after every such simulated
interaction, system evaluation is done by a stan-
dard offline translation of an unseen test set.

5.1 Dataset

For pre-training, we use the Europarl (EP) corpus
version 5 for the French-English system, and ver-
sion 7 for German-English. For interactive train-
ing, we use the News Commentary (NC) 2006
corpus. Both corpora are publicly available on
the WMT13’s homepage.®> All experiments are
conducted on two language pairs, i.e., German-
English (de-en) and French-English (fr-en). Data
sets were tokenized and lowercased using MOSES
preprocessing scripts (Koehn et al., 2007). We ap-
plied compound splitting on the German source
sentences using CDEC’s tool (Dyer et al., 2010).
Our data sets for interactive training differ from the
original News Commentary data splits as follows:
(1) we sample a subset of the original training
set to reduce the number of parallel sentences to
18,432 for French-English and 18,927 for German-
English, and (2) we increase both validation and
test set for French-English to 3,001 and 5,014 par-
allel sentences by moving data from the original
training set excluding sentences that were sampled
for training. Note that a training set size of less
than 19,000 parallel sentences is very small even

*https://www.statmt.org/wmt13/
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in a domain adaptation setup. Table 1 summarizes
the statistics of our datasets.

5.2 Model Architecture

We use a single uni-directional LSTM layer with
global attention mechanism between encoder and
decoder. The dimensionality of the LSTM hidden
states and the word embeddings are 500. We build
the vocabulary using the most frequent 50,000
words in each language.

The Adam optimizer (Kingma and Ba, 2014) is
used in all training scenarios. In supervised train-
ing, we use a mini-batch size of 64 and an initial
learning rate of 0.001. Starting from the 5 epoch,
the rate is reduced by half in each epoch if the val-
idation perplexity increases. In interactive train-
ing, we train for a single epoch and apply a con-
stant learning rate of 10~° with a mini-batch size
of 1. In all experiments we set entropy parameters
toe =1, = 0.5, and use a beam size of 5 during
training. For testing, we apply greedy decoding.
PyTorch code of our models is publicly available.*

5.3 Results and Discussion

On both language pairs, the optimal pre-trained
NMT models are obtained in the 6™ training
epoch, forming the out-of-domain baseline. We
also compare our RL/IL strategies with full post-
edits simulated by supervised training on the in-
domain News Commentary data, forming an in-
domain upper bound. We repeated each exper-
iment three times and report mean and standard
deviation for both Character-F> (ChrF) (Popovid,
2015) and corpus BLEU (Papineni et al., 2002).

In the French-English experiments, both our im-
itation and reinforcement strategies show improve-
ments of more than 3 points in BLEU and 1 point
in ChrF over the out-of-domain baseline. Both
strategies achieve lower BLEU score than training
on full post-edits, in particular, 0.94 points lower in
the KEEP+DELETE setting, and 0.58 points lower
in +SUBSTITUTE setting. However, both strategies
achieve higher ChrF scores, i.e., 0.76 points for
KEEP+DELETE and 0.28 points for +SUBSTITUTE.
See upper half of Table 2 for a summary.

In the German-English experiments, there
is a bigger performance gap between the
KEEP+DELETE and the full post-edits sys-
tem, concretely, 0.64 points in ChrF score and

‘https://github.com/heidelkin/IPNMT_RL_IL
>Using parameters ngram =6 and 3 = 2.
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Pair System ChrF (¢) AChrF BLEU (¢) ABLEU @ rounds @ keep+delete / subst.
Pre-trained 61.08 - 24.70 - - -
g Full Post Edits 61.96 (0.15) +0.88 29.10 (0.09) +4.40 - -

&  KEEP+DELETE 62.72(0.11) +1.64 28.16(0.14) +3.46 3.2 13.7/-
+SUBSTITUTE 62.24 (0.08) +1.16 28.52(0.10) +3.82 33 1.8/5.6
Pre-trained 59.34 - 22.66 - - -

5 Full Post Edits  60.24 (0.25) +0.9 27.40(0.22) +4.74 - -
&  KEEP+DELETE 59.57(0.19) +0.23 25.28(0.09) +2.62 3.3 13.1/-
+SUBSTITUTE 60.73 (0.14) +1.39 2691 (0.1) +4.25 33 1.8/5.9

Table 2: Character-F (ChrF), and BLEU test results on the French-English (fr-en) and German-English
(de-en) translation tasks. Highest scores on RL and IL systems are printed in bold. The A columns
indicate the score differences to the pre-trained baseline system. All scores are averaged over three runs

with standard deviation ¢ in parentheses.

2.12 points in BLEU lower than full post-edits.
However, the improvement over the pre-trained
model amounts to 2.62 BLEU points and 0.25
points in ChrF score. Our +SUBSTITUTE system
is comparable in performance to the full post-edits
system, yielding a result that is 0.49 lower in
BLEU but 0.49 points higher in ChrF. See lower
half of Table 2 for the summary.

We also report average numbers of feedback
rounds and rules per sentence in Table 2. We opti-
mized the maximum number of allowed feedback
rules per round on the dev set and use 9 (fr-en)
and 7 (de-en) for the KEEP+DELETE and 3 for
the +SUBSTITUTE systems. Even for the simpler
model based on only weak feedback, the number
of user clicks is between 13.7 and 13.1, which is
well below the average target sentence length of
22.8 and 22.6. By allowing expert SUBSTITUTE
feedback that actively generates better tokens in
the next round the number of rules is reduced to 7.4
and 7.7. Our experiments indicate that focusing on
uncertain locations can reduce human translation
effort substantially.

Effect of on-line learning. We also examine
the effect of on-line learning on average cumu-
lative entropy of the model’s policy distribution
over time. Figure 2 visualizes the change of
entropy during interactive training. At the be-
ginning, the system is in regions of high en-
tropy but quickly learns from human edits and
the curves become smooth and monotonic. Af-
ter this initial phase, the overall better perform-
ing French-English task shows consistently lower
entropy than the German-English task, indicat-
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fr-en: KEEP+DELETE —A—  de-en: KEEP+DELETE
fr-en: +SUBSTITUTE --€-- de-en: +SUBSTITUTE
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Figure 2: Average cumulative entropy of the
model’s policy distribution over time during sim-
ulated interactive learning. Plots are shown for the
French-English (fr-en) and the German-English
(de-en) task, and for the KEEP+DELETE and the
+SUBSTITUTE system, respectively.

ing a connection between model’s entropy and
translation quality. However, the comparison be-
tween the KEEP+DELETE and the better perform-
ing +SUBSTITUTE systems shows the opposite
trend and requires a different explanation. We
conjecture that the +SUBSTITUTE system’s ex-
pert demonstrations at uncertain locations help
the system to find better translations, but such
demonstrations also move the system to higher
entropy regions, effectively implementing a use-
ful exploration strategy. In contrast to this, the
KEEP+DELETE system always stays in more cer-
tain regions by selecting another high probability
token if the original token receives a DELETE feed-
back by the user.
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Effect of beam size. The observations on
model’s entropy over time in the previous para-
graph and the implementation details described in
Section 4.3 show that our constrained beam search
implements exploration in a user-controlled man-
ner. We conjecture that beam size also influences
the exploration and should have a different effect
on different feedback strategies. We thus conduct
additional experiments using beam sizes of 2, 5,
10 and 20 on all language pairs and the two sys-
tems. The results are summarized in Figure 3. In
both KEEP+DELETE and +SUBSTITUTE systems,
a beam size of 2 is sufficient to achieve substan-
tial gains over the baselines in both language pairs.
In case of the KEEP+DELETE system, increasing
beam sizes only marginally influence the transla-
tion performance. In case of the +SUBSTITUTE
system, there are considerable gains of almost 1
BLEU point and 1 Character-F point when increas-
ing the beam size from 2 to 5. Here, the larger
beam size enables the system to connect the expert
demonstrations with better prefixes which helps
the system to explore higher scoring trajectories.
Increasing the beam size to 10 or 20 further im-
proves performance but the gains are small.

Decoding Speed. The total runtime of each of
our simulated interactive experiments is roughly
6 hours when simulated on a Nvidia P40, while
training of the KEEP+DELETE system is slightly
slower than of the +SUBSTITUTE system due to the
higher number of feedback rules. Looking at the
sentence level this means the total decoding time
of our system for all partial translations of a sin-
gle sentence is 6 x 1h/(18,432 x 3.3) = 0.361s
for the French-English task, and even less for the
German-English task. This estimate does not ac-
count for the time our system conducts validation
tests or constructs simulated feedback, thus the ac-
tual average processing time is lower. Knowles
and Koehn (2016) argue that beam search is usu-
ally too slow to be used for training in interac-
tive live systems, however, recent hardware devel-
opments together with our strategy of partial de-
coding makes constrained beam search applicable
even in training. As a side effect, corrections on
early time steps reduce the problem of error prop-
agation and thus improve both usability of the sys-
tem and satisfaction of the translator.

Leveraging BPE or character-level NMT. Our
current implementation of interactive-predictive
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Figure 3: The two figures show the effect of dif-
ferent beam sizes on Character-F score (top) and
BLEU score (bottom). We conduct experiments on
French-English (fr-en) and German-English (de-
en) and both systems (KEEP+DELETE and +SUB-
STITUTE). All scores are averaged over two runs.

NMT uses a word-based translation approach and
presents word units to users for feedback. An
adaptation of our algorithm to sub-word or char-
acter level NMT is possible and requires to re-
distribute the reward associated to the word level
to sub-word units or characters, and to maintain
their location information in the constrained beam
search. We leave this extension to future work.

5.4 Examples

Table 3 illustrates the translation workflow of our
interactive-predictive protocol by listing four ex-
amples: the upper half shows example translations
of the two systems for the German-English task,
the lower half shows two examples of the systems
for the French-English task.

The first example 1is taken from the
KEEP+DELETE system, where our simulated
user provides only KEEP and DELETE feedback
on suggested locations. In interactive round 1 on
the German-English task, the system stops after
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Source der kern des problems ist nicht die gesamt_menge des ols , sondern seine lage .
Reference the heart of the problem is not the overall quantity of oil , but its location .

Round Partial translation — FEEDBACK

< 1 the cores
= — DELETE(2)
Lﬁ 2 the heartsy of the problem is not the totalg
g — KEEP(2), — DELETE(9)
g 3 the heart of the problem is not the overall amount of oil , but its;5
@] — DELETE(10), — KEEP(15)
4 the heart of the problem is not the overall volume;q of oil , but its situationg .
— DELETE(10, 16)
5 the heart of the problem is not the overall supply of oil , but its position .
— accepted.

Source die siid_koreaner ihrerseits verlassen sich darauf , dass china mit der nuklearen krise in nord_korea fertig wird .
Reference as for the south koreans , they are counting on china to deal with the north korean nuclear crisis .

= Round Partial translation — FEEDBACK
= 1 the; south koreans arey
uﬁ — SUBSTITUTE(1:as, 4:south)
g 2 as for theg south koreans , chinay
% — KEEP(3:the), — SUBSTITUTE(7:they)
O 3 as for the south koreans , they are relyingg on china to be;3
— SUBSTITUTE(9:counting, 13:deal)
4 as for the south koreans , they are counting on china to deal with the nuclear crisis in north korea .
— accepted.

Source il est dur d” aimer ou de respecter un peuple et de hair son état .

Reference it is hard to love or respect a people and hate their state .

Round Partial translation — FEEDBACK

= 1 it is hard to loves
=, — KEEP(5)
) 2 it is hard to love or to7
< — DELETE(7)
§ 3 it is hard to love or comply7 with a people and to hate;3 theiry4
B — DELETE(7, 12, 13, 14)
4 it is hard to love or respect; ag people and hatred;; .12
— KEEP(7, 8),— DELETE(11, 12).
5 it is hard to love or respect a people and fo hate their state .
— accepted.

Source  un gouvernement qui n’ est pas en mesure d’ équilibrer ses propres finances ne peut pas apporter une stabilité macroéconomique .
Reference a government that cannot balance its own finances cannot be relied on to provide macroeconomic stability .

Round Partial translation — FEEDBACK
1 a government that is4
— SUBSTITUTE(4:cannot)
2 a government that cannot balance its owny
— KEEP(7)

French-English

— SUBSTITUTE(10:be,11:relied,12:0n)

3 a government that cannot balance its own finances cannot bring;o about;; macro-economic stability .

4 a government that cannot balance its own finances cannot be relied on to bring about macro-economic stability .

— accepted.

Table 3: Interaction protocol illustrating translation progress of the two learning systems on the German
English task (upper half) and French-English (lower half). For each language pair, the first example
illustrates interactions with the KEEP+DELETE system, while the second example shows interactions
with the +SUBSTITUTE system. In each round, the user is asked for feedback on uncertain locations of
the current partial translation. Tokens printed in blue with their position in subscript indicate uncertain
locations. At the end of each round, the system is updated given the user’s feedback (KEEP, DELETE,
SUBSTITUTE). In the next round, it generates a constrained (partial) translation with respect to this
feedback. Tokens generated based on feedback rules are printed in italics.

generating the uncertain partial translation “the
core” and asks the user for feedback specifically
on the term “core”. The simulated user returns
a DELETE feedback and the system is able to
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generate the more appropriate translation “heart
of the problem” in round 2. In round 3, however,
a weakness of the simulated feedback becomes
apparent: our user gives a negative DELETE
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feedback on the token “amount” because the token
differs from the given reference word “quantity”,
even though it is an appropriate translation for
the German word “Menge” in this context. The
system then generates “volume” in round 4 and
“supply” in the final round 5, although both
translations are worse than the initially proposed
translation “amount”. One explanation for this
behavior is the way on-line updates are applied
to the NMT system: while the constrained beam
search implements feedback rules on token level,
the on-line updates of the NMT system take place
on the word embedding level. An update based
on negative feedback actually forces the NMT
system to avoid semantically similar words. In
the above example, the negative feedback for
“amount” downgrades the optimal translation
“quantity” because of the semantic similarity
of both words, and instead upgrades the more
diverse translations “volume” and “supply”. In our
example, this strategy has an immediate negative
impact on translation quality, but it also illustrates
the positive exploration effect which is helpful in
the long run.

The second example is taken from the +SUBSTI-
TUTE system, where the simulated user addition-
ally provides “substitute” feedback. In interactive
round 1, the system generates the uncertain par-
tial translation “the south koreans are” and iden-
tifies “the” and “are” as uncertain tokens. The
user suggests to change “the” to “as”, and “are”
to “south” by providing SUBSTITUTE feedback.
Again, a limitation of our simulation becomes ap-
parent: our simulated substitutions are based on
reference translations, but a real translator would
not change the given partial translation to “as south
korean south”. Still, based on the two feedback
rules and the on-line update, the NMT system is
able to follow a better trajectory in round 2. We ob-
serve that SUBSTITUTE feedback is a very strong
signal that supports the system to quickly get close
to the translation our simulated user has in mind
(which is the reference in our simulation).

The French-English task examples illustrate a
noteworthy property of our algorithm: In round 3
of the KEEP+DELETE system, the simulated user
provides DELETE feedback on the tokens “to hate
their” only because they occur at different posi-
tions compared to the reference. However, the sys-
tem is able to recover and re-generate the tokens at
the correct position in round 5. A similar behav-
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ior can be observed for the +SUBSTITUTE system
in round 3, where the phrase “bring about macro-
economic” is first substituted and then generated
again in the final round 4.

6 Conclusion

In this work, we integrate interactive-predictive
NMT with imitation learning and reinforcement
learning. Our goal is to merge the human edit
process with effort reduction and model learning
into a single framework for easier model personal-
ization. Our results indicate that on-line learning
from edits on uncertain locations of partial trans-
lations can achieve performance comparable to us-
ing supervised learning on in-domain data but with
substantially less human effort. In the future, we
would like to investigate the limitations of entropy-
based uncertainty measures, work on the efficiency
of the training speed, and conduct field studies
with human users.
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