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Abstract

This paper is devoted to developing a re-
current neural network (RNN) solution for
segmenting the unpunctuated transcripts
generated by automatic speech recognition
for simultaneous interpretation. RNNs are
effective in capturing long-distance depen-
dencies and straightforward for online de-
coding. Thus, they are ideal for the task
compared to the conventionaln-gram lan-
guage model (LM) based approaches and
recent neural machine translation based
approaches. This paper proposes a multi-
shifted RNN to address the trade-off be-
tween accuracy and latency, which is one
of the key characteristics of the task. Ex-
periments show that our proposed method
improves the segmentation accuracy mea-
sured in F1 by 21.1% while maintains ap-
proximately the same latency, and reduces
the BLEU loss to the oracle segmenta-
tion by 28.6%, when compared to a strong
baseline of the RNN LM-based method.
Our online sentence segmentation toolkit
is open-sourced1 to promote the field.

1 Introduction

Simultaneous interpretation (SI) is to translate one
spoken language into another spoken language in
real time. Automated SI typically requires inte-
grating two fundamental natural language process-
ing technologies – automatic speech recognition
(ASR) and machine translation (MT). Both tech-
nologies have become quite capable after half a

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.
1https://github.com/arthurxlw/cytonNss

even cats were watching this video cats were
watching other cats watch this video but what ’s
important here is the creativity that it inspired
amongst this techie geeky internet culture there
were remixes someone made an old timey ver-
sion and then it went international there were
remixes someone made an old timey version

Table 1: Illustration of Input for Sentence Segmentation

century’s intensive study, but one problem makes it
difficult for them to work together – the raw tran-
scripts generated by ASR contains no segmenta-
tion (see Table 1 for an example), while MT ex-
pects segmented sentences as input.

Online sentence segmentation smoothly bridges
the gap between ASR and MT through segment-
ing the transcripts generated by ASR engines into
sentences in real time. As a matter of fact, the task
is non-trivial. The example presented in Table 1
is extracted from a TED talk2, which is used in
the experiments of this paper. Readers may find
the raw sequence of words difficult to read. How-
ever, the readability is greatly improved once it is
segmented as follows,

• even cats were watching this video

• cats were watching other cats watch this
video

• but what ’s important here is the creativity
that it inspired amongst this techie geeky in-
ternet culture

• there were remixes

• someone made an old timey version

2https://www.ted.com/
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• and then it went international

• there were remixes someone made an old
timey version

Therefore, sentence segmentation is a meaningful
natural language processing task. Correctly seg-
menting an ASR transcript requires a certain level
of understanding the content.

This paper proposes a multi-shifted RNN to ap-
proach the problem of online sentence segmenta-
tion, which shifts target signals by multiple dura-
tions of time as illustrated by Table 2. This design
emphasizes two central elements of the task – ac-
curacy and latency. Usually, predicting a sentence
boundary immediately after a last input word is not
wise. Instead, waiting and checking a few words to
make sure that a new sentence has started can raise
the accuracy at the cost of latency. Shifting the tar-
get signalsn time stamps right implements the idea
of waiting and checking more words, but the opti-
mal n varies on different textual contexts. There-
fore, the proposed network learns multiple shifted
target signals during training, and maintains multi-
ple pathway of trading latency with accuracy dur-
ing test. Experimental results demonstrate the ef-
fectiveness of our proposed method.

The contributions of this paper include,

• proposing a multi-shifted RNN for online
sentence segmentation;

• achieving competitive performance on a real-
world corpus;

• releasing the source code for reproducibility.

The rest of the paper is organized as fol-
lows. Section 2 reviews a baselinen-gram LM-
based method which serves as a foundation of our
method. Section 3 describes our method from the
aspects of training, decoding and tuning. Sec-
tion 4 presents the experiments. Section 5 com-
pares our method with some related works. Sec-
tion 6 concludes this paper with a description on
future works.

2 Baseline: N -gram LM-based Method

N -gram LMs are used to segment unpunctuated
transcripts by Stolcke et al. (1996; 1998) and Wang
et al. (2016). They view sentence boundaries as
hidden events occurring between the input words,
and usen-gram LMs to compute the likelihood of

the input words with or without sentence bound-
aries. Among them, the work of Wang et al.(2016)
is the most related to this paper, because it ad-
dresses segmenting in an online manner for SI.
Suppose an input sequence of words is· · · , wt−1,
wt, wt+1, · · · . The following two hypotheses are
considered,

• Hypothesis I: there is no sentence boundary
after the wordwt, which assumes that the un-
derlying input remains the same as· · · , wt−1,
wt, wt+1, · · · .

• Hypothesis II: there is a sentence boundary
after the wordwt, which assumes that the
underlying input is· · · , wt−1, wt, 〈/s〉, 〈s〉,
wt+1, · · · .

The segmentation is predicted by comparing the
probabilities of the two sequences as,

st =
P

〈II〉
t

P
〈I〉
t

= p(〈/s〉|wt
t−o+2) ·

p(wt+1|〈s〉)
p(wt+1|wt

t−o−2)

·
t−o+1∏

k=t+2

p(wk|wk−1
t+1 , 〈s〉)

p(wk|wk−1
k−o+1)

(1)

whereo is the order of an-gram LM, andst is the
confidence score of placing a sentence boundary
afterwt. The left hand of the formula has one item
for 〈s〉, wt+1, . . . ,wt+o−1, respectively. Theoret-
ically, theo-1 future wordswt+1, . . . ,wt+o−1 are
required when predicting the segmentation for the
time stampt. Empirically, it is found that 1 or 2
future words is enough for accuracy while having
the merit of low latency.
N -gram LM-based methods are effective. How-

ever, they have two shortages. First,n-gram LMs
cannot capture the long-distance dependencies re-
quired by the task, as the length of a sentence
is typically larger than the order ofn-gram LMs.
Second, they are generative methods as the predic-
tion is made by comparing the generative proba-
bility of two sequences. The accuracy of gener-
ative methods is known to be lower than that of
discriminative methods. In the paper, we explore
using RNN LM (Mikolov et al., 2010) to extend
then-gram LM-based method to address the first
issue. This method turns out to be quite effec-
tive and serves as a strong baseline in this paper,
though it does not address the second issue. Our
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Time Stamp 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .
Input i ’d like some tea and cake† that will be a very nice . . .
Target 0 0 0 0 0 0 1 0 0 0 0 0 0 . . .
Shift by 1 0 0 0 0 0 0 0 1 0 0 0 0 0 . . .
Shift by 2 0 0 0 0 0 0 0 0 1 0 0 0 0 . . .
Shift by 3 0 0 0 0 0 0 0 0 0 1 0 0 0 . . .
Shift by 4 0 0 0 0 0 0 0 0 0 0 1 0 0 . . .

Table 2: Illustration of Multi-Shifted Target Signals for Sentence Segmentation. Theinput is a sequence of words. The target
signals are 0’s and 1’s where 1 means a sentence boundary after the current time stamp. The last four rows shift the target
signals by 1 to 4 time units.† Suppose the sentence ends here.
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Figure 1: Network Architecture of Multi-shifted RNN Sen-
tence Segmentor

proposed method addresses both issues; thus, it
achieves even higher accuracy.

3 Our Method

3.1 Network Architecture

A network architecture inspired by RNN LM is
adopted (illustrated by Figure 1). The network
works in an online manner by taking one wordxt
at each time stampt as input, and outputtingyt for
sentence segmentation.

The outputyt is an (m + 1)-dimensional vec-

tor (y〈1〉t , y
〈2〉
t , . . ., y

〈m〉
t , y

〈m+1〉
t ), wherey〈k〉t (

1 6 k 6 m ) presented the confidence of putting
a sentence boundary after the k-th word before the
time stampt, while y

〈m+1〉
t is imposed by the soft-

max layer to sum up the probabilities to one. To be
precise,

• y
〈1〉
t indicated segmenting afterwt−1 ;

• y
〈2〉
t indicated segmenting afterwt−2 ;

• . . .

• y
〈m〉
t indicated segmenting afterwt−m ;

• y
〈m+1〉
t equals to1− y

〈1〉
t − y

〈2〉
t . . .− y

〈m〉
t .

In contrast to LM-based methods, this design re-
moves the use of a fixed number of future words.
It enables the network to predict a sentence bound-
ary flexibly to time stamps.

3.2 Training

The proposed network is trained on the samples
extracted from neighboring sentences, and the
training target is to match the outputyt with the
oracle segmentation signals. The following two
paragraphs explain these two aspects in details.

3.2.1 Extracting Training Samples

SupposeS = (S1, S2, . . . ) is a sequence of sen-
tences which are taken from continuous text. In
other words,Si+1 is the succeeding sentence ofSi.

SupposeSi = ( wi
1, w

i
2, . . . ,wi

ni
) wherewi

t (1 6
t 6 ni) are theni words in the sentence.

One training sample (Xi , ni) is extracted from
(Si, Si+1) as ( illustrated by Figure 2 ),

xt =

{
wi
t 1 6 t 6 ni

wi+1
t−ni

ni + 1 6 t 6 ni +m
(2)

whereXi = (x1, x2, . . . , xni+m) is a sequence of
input words.

3.2.2 Training Criterion

The desired value ofyt is formulated as,

y
〈k〉
t

.
=





1 16 t6ni, k=m+1
1 ni+16 t6ni+m, k= t−ni

0 otherwise
(3)

Therefore, minimizing the cross entropy be-
tweenyt and the desired value is taken as the train-
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Figure 2: Unrolling a Sample on Multi-shifted RNN Sentence Segmentor. The ASR transcript is “i ’d like some strawberries
how much does it cost” where the first sentence ends after “strawberries”. Note thatyt’s last dimensiony〈4〉

t =1−y
〈1〉
t −y

〈2〉
t −

y
〈3〉
t is omitted for simplicity.

ing criterion,

E(S) = − E
(Xi,ni)

(
ni∑

t=1

log y
〈m+1〉
t

+

ni+m∑

t=ni+1

log y
〈t−ni〉
t

) (4)

Note that the equation 4 treats each dimension of
the outputyt separately. Other sophisticated train-
ing criteria that encourage the cooperation among
different dimensions have been tried, such as

E(S) = − E
(Xi,ni)

(
ni∑

t=1

log y
〈m+1〉
t

+
ni+m
max

t=ni+1
log y

〈t−ni〉
t

) (5)

which requires only one of the output to be1 if
the corresponding position is a sentence bound-
ary. However, decrease of segmentation accu-
racy is observed from this kind of training crite-
ria. We suspect that these criteria introduce de-
pendency among the different dimensions, which
reduces the robustness of the method and eventu-
ally harms the performance. Therefore, the idea
has been avoided.

3.3 Decoding

Decoding on the proposed network is to infer
the position of sentence boundaries from a se-
quence of real-number vectorsyt. The decod-
ing method should be both simple enough to

cause no additional latency, and effective enough
to achieve competitive accuracy. Therefore, the
threshold-latency hybrid decoding strategy pro-
posed by Wang et al. (2016) is extended for the
proposed network (illustrated by Figure 3).

The extended decoding strategy uses an m-
dimensional threshold vectorθ=(θ〈1〉, θ〈2〉, . . .,
θ〈m〉) to deal with the m-dimensional outputyt.
The strategy works as, for each time stampt,

1. if y〈k〉t exceedsθ〈k〉 ( k = m,m − 1, . . . , 1 ),
sett̂ = t− k and go to3;

2. if the buffered input exceed the maximum
length, findargmaxt′,k(y

〈k〉
t′ − θ〈k〉), sett̂ =

t′ − k and go to3;

3. predict a sentence boundary aftert̂, and
restart the decoding from̂t+ 1.

The method of tuningθ is described in Section 3.4.

3.4 Tuning

This subsection first defines an empirical score to
measure the overall performance of online sen-
tence segmentation, which serves as a target for
tuning; then presents an algorithm to search for the
optimal threshold vector to maximize the score.

3.4.1 Performance Measurement

An F1 score calculated on the base of sentences
is adopted to measure the accuracy of sentence
segmentation. According to our observation, SI
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Figure 3: Decoding a Sample on Multi-shifted RNN Sentence Segmentor. Suppose thethreshold vector is(0.40, 0.50, 0.60).
y
〈2〉
7 is the first value that exceeds the corresponding thresholdθ〈2〉. This correctly predicts a sentence boundary after the time

stamp 5. Note thatyt’s last dimensiony〈4〉
t =1−y

〈1〉
t −y

〈2〉
t −y

〈3〉
t is omitted for simplicity.

users often judge the performance based on sen-
tences – how many predicted sentences are cor-
rect and how many oracle sentences are recalled.
TheF1 score summarizes the precision and recall
through calculating the harmonic mean as,

F1 = 2
precision · recall
precision+ recall

. (6)

The latency of sentence segmentation is mea-
sured as the average distance per word between the
time stamp when a word is input to the segmentor,
and the time stamp when this word is output as part
of a sentence. Please see Section 4.2 on calculat-
ing the latency of the oracle segmentation for an
example.

An empirical score is proposed to summarize
accuracy and latency, calculated as

score = F1 − α · latency, (7)

The trade-off existed because a segmentor could
either trade latency for accuracy by waiting for
more input words to re-evaluate a prediction, or
trade accuracy for latency by predicting boldly
without waiting for more evidence brought by in-
put words. The trade-off ratioα is set to 0.01
in this paper according to our observation on SI
users and our test on practical sentence segmen-
tors. Note that this ratio can be changed to fit

practical applications without the need to revise the
proposed method.

3.4.2 Tuning Algorithm

Manually tuning the threshold vectorθ for the
proposed network is unfeasible as it hasm dimen-
sions. Therefore, we propose to use a heuristic
greedy search to maximize the score on a develop
set, presented in Algorithm 1. The algorithm in-
creases the efficiency by,

• prioritizing the threshold vectors whose par-
ent have achieved high scores;

• pruning the search space by the heuristic that
theθ〈k〉 ( k = 1 . . .m ) should be in descend-
ing order.

The intuition for the second point is that a higher
threshold should be given to the value derived from
fewer future words, because the evidence under
that circumstance is weaker.

4 Experiments

4.1 Experimental Setting

The corpora from the shared task in the interna-
tional workshop on spoken language translation
(IWSLT 2015) are used as the experimental cor-
pora (Cettolo et al., 2015)3. The task is to translate
3https://wit3.fbk.eu/mt.php?release=2015-01
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Algorithm 1 Tuning Threshold Vector
Require: θ0 ⊲ a seed threshold vector
Require: D ⊲ a development set
Require: µ ⊲ a search step on threshold
Require: ν ⊲ a margin on score

1: Θ ← [θ0 :0] ⊲ a sorted list of threshold vectors
descending on the scores of their parents

2: s∗ ← −∞ ⊲ the best score
3: θ∗ ← θ0 ⊲ the best threshold vector
4: dict ← {} ⊲ a dictionary of visited threshold

vectors
5: for θ in the beginning ofΘ do
6: removeθ fromΘ
7: if θ′ not indict then
8: dict ← dict ∪ {θ}
9: s ← decodeD usingθ and evaluate

10: if s > s∗ − ν then
11: if s > s∗ then
12: s∗ ← s
13: θ∗ ← θ
14: end if
15: for k in 1 tom do
16: θ′ ← increase/decreaseθ〈k〉 by

µ
17: if θ′〈k−1〉 > θ′〈k〉 > θ′〈k+1〉

and 0.0 6 θ′〈k〉 6 1.0 then
18: Θ ← Θ ∪ [θ′ :s]
19: end if
20: end for
21: end if
22: end if
23: end for

return θ∗

English TED talks into Chinese. Table 3 presents
the statistics of the corpora. The news commen-
tary corpora (Tiedemann, 2012)4 and a subset of
the OpenSubtitles corpora (Lison and Tiedemann,
2016)5 are used to scale up the in-domain training
set in order to achieve higher performance.

The corpora are pre-processed using standard
procedures for MT. The English text is tokenized
using the toolkit released with the Europarl cor-
pus (Koehn, 2005) and converted to lower case.
The Chinese text is tokenized into Chinese char-
acters and English words using the tool ofspli-
tUTF8Characters.pl from the NIST Open Ma-
chine Translation 2008 Evaluation6

4http://opus.nlpl.eu/News-Commentary.php
5http://opus.nlpl.eu/OpenSubtitles2016.php
6ftp://jaguar.ncsl.nist.gov/mt/resources/

Two operations are applied in order to simu-
late the transcripts generated by ASR following
the setting in (Wang et al., 2016) and (Cho et al.,
2017). First, because ASR engines normally do
not produce punctuation, punctuation is removed
from the text. Second, because ASR engines split
output based on long pauses, and each of the output
contains multiple sentences; every 10 neighboring
sentences in the development and test set are con-
catenated to form an input for sentence segmenta-
tion.

Two baselines are used in the experiments. The
first baseline is then-gram LM-based method pro-
posed by Wang et al. (2016). The toolkit of
SRILM (Stolcke, 2002)7 is used to buildn-gram
LMs with Kneser-Ney Smoothing and an order of
6.

The second baseline is an extension of the first
one by replacing then-gram LM with an RNN
LM. The settings of RNN LM follow the large
LSTM setting used by Zaremba et al. (2014)
which consists of two layers of 1500 LSTM
units (Hochreiter and Schmidhuber, 1997), and a
vocabulary size of 10K. A dropout of 0.65 is ap-
plied to the non-recurrent connections.

The proposed neural network adopts three layers
of 512 LSTM units, and an input vocabulary size
of 20K according to our pilot experiments. The
output dimensionm is 6. A dropout of 0.50 is ap-
plied to the non-recurrent connections. Larger net-
works have been tried in our experiments, but no
significant improvement has been observed.

Both the proposed network and RNN LM are
trained using SGD with a start learning rate of 1.0.
The cross-entropy on the development set is mea-
sured after each epoch. When the development
cross-entropy stops decreasing, the learning rate
starts to decay by 0.5 per epoch. The training ter-
minates when no improvement is made during 3
continuous attempts of decaying learning rates.

The numbers of future words for the two base-
line methods are enumerated from 1 to 6, and the
decoding thresholds are tuned by a grid search
from -1.6 to 1.6 with a step of 0.2. The decoding
threshold vector for the proposed method is tuned
by Algorithm 1 with θ0 = (0.9, 0.8, 0.7, 0.6, 0.5,
0.4),µ = 0.1, andν = 0.04 . The maximum sen-
tence length is set to 40 for all the methods, which
covers approximately 95% development and test
sentences.

7http://www.speech.sri.com/projects/srilm/
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Corpus Sentences Src. Tokens Trg. Tokens
IWSLT-Train 209,491 4,270,869 6,050,169
News Commentary 223,153 5,689,117 5,660,789
OpenSubtitle(subset)† 1,000,000 8,682,476 1,047,208
Dev (test2010 test2011) 2,815 55,426 83,317
Test (test2012 test2013) 2,658 52,766 74,822

Table 3: Experimental Corpora.† The subset consists of the first one million sentence pairs.

The software is implemented using C++ and
NVIDIA’s GPU-accelerated libraries. The exper-
iments are run on a workstation equipped with
an Intel Xeon CPU E5-2630 and a GPU Quadro
M4000.

4.2 Evaluation after Training on Standard
Set

The three methods – two baselines and the pro-
posed method – first learn their models on the
source side of the standard training set (Table 3).
Then-gram LM-based method learns a 6-ordered
n-gram LM whose perplexity on the development
set is 148.17. The RNN LM-based method learns
an RNN LM with a development perplexity of
62.93. The proposed method learns a network
model with a development cross entropy of 0.441.
After that, each method tunes its decoding param-
eters on the development set to maximize the score
(the equation 6). In the end, each method decodes
the test set using its learned method and tuned pa-
rameters. The evaluation of the results is presented
in Table 4.

The proposed method outperforms the stronger
baseline of the RNN LM-based method by 18.8%
on the measurement of score, which is quite large.
The improvement is caused by the rise of the mea-
surement of accuracy –F1 – which is improved by
13.5%, and the stableness of the latency which is
only enlarged by 3.4%. This result indicates that
the architecture of the proposed network suits the
task better than that of RNN LM. In addition, the
RNN LM-based method outperforms then-gram
LM-based method by 67.7%. This confirms our
expectation that RNN can model a sentence better
thann-gram as it can capture long-distance depen-
dencies.

The table also presents the latency of the oracle
segmentation which assumes that every sentence is
submitted to MT engines as soon as it ends. Sup-
pose thei-th sentence hasli words, the average la-
tency per word would be

P

i li·(li−1)/2
P

i li
. On the ex-

perimental test set in, the latency of the oracle seg-
mentation is 8.126, and the latency of the proposed
method is 12.386. This approximately means a de-
lay of 4.2 words per sentence, which is acceptable
in a real-world environment.

4.3 Evaluation after Adapting Models
Trained on Scaled-up Set

Luong et al. (2015) and Cho et al. (2016) show that
large-scale out-domain training data and model
adaption can effective improve the quality of NMT
models. They first train models on the union set
of in-domain and out-domain data, and then adapt
the models by resuming training on in-domain data
only. Inspired by their work, we scale up the stan-
dard training set to pursuit better performance for
sentence segmentation (see Table 3 for details) .

Through scaling up training set and model adap-
tation, the development perplexity of the RNN LM
is reduced by 8.06% (from 62.93 to 57.86), and the
development cross entropy of the model learned
by the proposed method decreases by 0.082 (from
0.441 to 0.359).

Then-gram LM is adapted by linear interpreta-
tion. The mixture weight is tuned to minimize the
development perplexity, whose value turns out to
be 0.7. The development perplexity of then-gram
LM is reduced by 8.25% (from 148.16 to 135.93)

Each method again tunes its decoding parame-
ters, and then decodes the test set as described in
Section 4.2. Table 5 summarizes the results, and
compares them with the previous ones on the stan-
dard training set. The performance of all three
methods is found to be improved, while the pro-
posed method achieves the largest improvement.

The detailed comparison between the two re-
sults (the last row in Table 5) shows that all the
individual performance measurements have been
improved. Moreover, the optimal thresholds gen-
erally get lower. This clearly indicates that the
quality of the trained model has been improved,
which is quite impressive. The same effects also
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Methods Parameters Performance
nf thresh. Precision Recall F1 Latency Score

Oracle 1.000 1.000 1.000 8.126 0.9187
n-gram LM 1 -0.6 0.1402 0.2432 0.1779 8.3410 0.0945

2 -0.6 0.1862 0.3087 0.2323 9.6480 0.1358
3 -0.6 0.1928 0.3005 0.2349 11.2520 0.1224
4 -0.6 0.1944 0.2993 0.2357 12.2930 0.1128
5 -0.6 0.1935 0.2959 0.2340 13.2410 0.1016
6 -0.6 0.1927 0.2937 0.2327 14.1570 0.0912

RNN LM 1 -0.8 0.2686 0.3213 0.2926 10.3503 0.1891
2 -0.6 0.3289 0.3683 0.3475 11.9733 0.2277
3 -0.8 0.3255 0.3743 0.3482 12.7531 0.2207
4 -0.8 0.3372 0.3845 0.3593 13.8317 0.2210
5 -0.8 0.3342 0.3822 0.3566 14.8643 0.2080
6 -0.8 0.3256 0.3740 0.3481 15.7449 0.1907

Proposed 1 – 6 (...)‡ 0.3583 0.4387 0.3945 12.3863 0.2706
Improve† 8.9% 19.1% 13.5% -3.4% 18.8%

Table 4: Performance after Training on Standard Set.† Improvement versus the stronger baseline of RNN LM.‡ The optimal
threshold vector is (1.0, 0.8, 0.8, 0.5, 0.5, 0.3).

Methods Parameters Performance
nf thresh. Precision Recall F1 Latency Score

n-gram LM 1 -0.6 0.1349 0.2541 0.1762 7.6290 0.1000
2 -0.4 0.2054 0.3163 0.2490 10.3310 0.1457 (+0.0099)†

3 -0.4 0.2125 0.3148 0.2537 11.6760 0.1369
4 -0.4 0.2129 0.3129 0.2534 12.7040 0.1264
5 -0.4 0.2125 0.3099 0.2521 13.6660 0.1154
6 -0.4 0.2120 0.3080 0.2512 14.5780 0.1054

RNN LM 1 -1.0 0.2574 0.3269 0.2880 9.7292 0.1907
2 -1.0 0.3205 0.3894 0.3516 11.2249 0.2394 (+0.0117)†

3 -0.8 0.3383 0.3856 0.3604 12.8106 0.2323
4 -1.0 0.3315 0.3894 0.3581 13.6455 0.2217
5 -1.0 0.3302 0.3871 0.3564 14.7268 0.2092
6 -1.0 0.3295 0.3845 0.3549 15.7642 0.1972

Proposed 1–6 (...)‡ 0.3959 0.4605 0.4257 12.1118 0.3046 (+0.0340)†

Imp. vs. RNN LM 23.5% 18.3% 21.1% -7.9% 27.2%
Imp. vs. standard† 10.5% 5.0 % 7.9% 2.2% 12.6%

Table 5: Segmentation Performance after Adapting the Models Trained on Scaled-up Set.† Compared to the best score of each
method on the standard training set.‡ The optimal threshold vector is (0.9, 0.8, 0.5, 0.5, 0.5, 0.4)

happen on the RNN LM-based method. Therefore,
adapting neural network models through resuming
training is a very effective technique.

4.4 Evaluation of End-to-end Translation
Quality

The best segmentations of each method, which are
listed in Table 5 in bold font, are post-processed to
recover case and punctuation, and then piped into

an English-to-Chinese NMT engine. The post-
processing is conducted by a monotone phrase-
based statistical MT system, which is trained to
translate lower-cased unpunctuated sentences to
cased punctuated sentences. Moses toolkit (Koehn
et al., 2007) is used. The NMT engine is an im-
plementation of attention-based encoder-decoder
proposed by Bahdanau et al. (2014) and Luong et
al. (2015), and the model is trained and tuned on an
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Methods BLEU Loss†

Oracle 19.73
n-gram LM 18.98 0.75
RNN LM 19.38 0.35
Proposed 19.48 0.25 (-28.6%)‡

Table 6: Evaluation of End-to-end Translation Quality.†

Compared to the BLEU of the oracle sentence segmentation.
‡ Compared to the stronger baseline of RNN LM.

in-house parallel corpus of approximately 21 mil-
lion sentence pairs from various domains.

The translations are evaluated following the of-
ficial guidelines of IWSLT 2015. The translations
are aligned to reference sentences through edit dis-
tance (Matusov et al., 2005). BLEU is calculated
on cased tokens including Chinese characters and
English words. Table 6 presents the results.

The results show that the proposed method
achieves the highest BLEU, which is lower than
that of the oracle segmentation only by 0.25. The
improvement compared to the stronger baseline of
the RNN LM-based method is 0.10 BLEU point,
or 28.6% calculated by 0.10 / 0.35.

5 Related Works

Segmenting the unpunctuated transcripts gener-
ated by ASR have attracted attentions from many
researchers. A large variety of methods have been
proposed.

Conditional random fields (CRFs) are used to
approach the problem. Hassan et al. (2014) did a
thorough treatment of this problem in 2014. How-
ever, CRFs have been outperformed by neural net-
works recently.

MT systems are used to approach the problem
by Cho et al.(2015), Ha et al. (2015), Kzai et
al. (2015), Cho et al. (2017), Pham et al. (2016),
Klejch et al. (2016; 2017) and Przybysz et
al. (2016). This approach builds MT systems to
translate unpunctuated text into punctuated text
which contains full stop marks as sentence bound-
aries. The drawback of this approach is that MT
systems normally expect complete sequences as
input, which prevents them from working in an on-
line manner. Cho et al. (2015; 2017) address the
issue using sliding windows. A fixed-length sub-
sequence of words are extracted from the stream of
words, and then feed into MT systems. The short-
age of this method is that the dependencies outside
the sliding windows are ignored, which will de-

crease the accuracy. In contrast, our RNN-based
method performs incremental decoding from the
beginning of sentences, so it can capture all the de-
pendencies within a whole sentence.

Pauses, or precisely the duration of silence be-
tween two spoken words, which can be captured by
ASR engines, are used to predict sentence bound-
aries by F̈ugen et al. (2007) and Bangalore et
al. (2012). However, studies on human interpreters
reveal that segmenting merely by pauses is insuf-
ficient, as human speakers might not pause be-
tween sentences. The mean proportion of silence-
based chunking by interpreters is 6.6% when the
source is English, 10% when it is French, and
17.1% when it is German (Venuti, 2012). There-
fore, this paper focuses on using linguistic infor-
mation. Nevertheless, pauses can be directly inte-
grated into our proposed method to boost perfor-
mance.

There are several segmentation methods that
target at splitting an input sentence into smaller
pieces for simultaneous interpretation, such as
Yarmohammadi et al. (2013), Oda et al. (2014),
and Fujita et al. (2013). However, these meth-
ods often assume that ASR transcripts have already
been segmented into sentences, which is the task
addressed by this paper. Therefore, our method is
orthogonal to these methods, and it is possible to
pipeline our proposed method with them.

6 Conclusion

In this paper, a multi-shifted RNN is proposed to
solve the problem of segmenting the unpunctuated
ASR transcripts for SI. The multi-shifted RNN ad-
dresses the trade-off between accuracy and latency
which are the two central elements of the problem.
The experiments show that the proposed method
greatly outperforms ann-gram LM-based method
and an RNN LM-based method on accuracy, la-
tency and end-to-end BLEU, under both a standard
training set and a scaled-up training set.
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