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Abstract

We extend a state-of-the-art deep neural ar-
chitecture for semantic dependency parsing
with features defined over syntactic depen-
dency trees. Our empirical results show
that only gold-standard syntactic informa-
tion leads to consistent improvements in
semantic parsing accuracy, and that the
magnitude of these improvements varies
with the specific combination of the syn-
tactic and the semantic representation used.
In contrast, automatically predicted syntax
does not seem to help semantic parsing.
Our error analysis suggests that there is a
significant overlap between syntactic and
semantic representations.

1 Introduction

Semantic dependency parsing (SDP) is the task of
mapping a sentence into a formal representation of
its meaning in the form of a directed graph with
arcs between pairs of words. Ever since the release
of the now-standard datasets for this task (Oepen
et al., 2014, 2015), most of the approaches to se-
mantic dependency parsing have been based on
previous and ongoing work in syntactic parsing. In
particular, several semantic parsers make use of fea-
tures defined over syntactic dependency trees; one
recent example is the system of Peng et al. (2018).

In this paper we study to what extent semantic
dependency parsing actually benefits from syntac-
tic features. More specifically, we carry out experi-
ments to identify those combinations of semantic
and syntactic representations that yield the highest
parsing accuracy. This is interesting not only for
parser developers – using improvement or non-im-
provement in parsing accuracy as an indicator, our
study also contributes to a better understanding of
the similarities and contentful differences between
semantic and syntactic representations.

Semantic dependency parsers are typically con-
ceptualized as systems for structured prediction,
combining a data-driven component that learns
how to score dependency graphs with a decoder
that retrieves one or several highest-scoring tar-
get graphs from the exponentially large search
space of candidate graphs. Among decoding algo-
rithms we find approaches based on integer linear
programming (Almeida and Martins, 2015; Peng
et al., 2017), dynamic programming algorithms
that support exact decoding for restricted classes of
graphs (Kuhlmann and Jonsson, 2015; Cao et al.,
2017), and transition-based approaches introduc-
ing new shift–reduce-style automata (Zhang et al.,
2016; Wang et al., 2018). Regarding the learning
component, state-of-the-art parsing results have
been achieved using neural architectures (Peng
et al., 2017; Wang et al., 2018; Dozat and Man-
ning, 2018). The system of Dozat and Manning
(2018) even draws essentially all of its strength
from its neural core, employing a trivial decoder.
The parser used in this paper is a (slightly modi-
fied) re-implementation of that system developed
by Roxbo (2019), which adds syntactic information
via a simple head feature, along the lines of Peng
et al. (2018).

Paper Structure. After providing some background
in Section 2, we describe the architecture of our
parser in Section 3, and our data and experimental
setup in Section 4. In Section 5 we present our
empirical results and complement them with an
error analysis in Section 6. Section 7 concludes the
paper and provides an outlook on future work.

2 Background

In both semantic and syntactic dependency parsing,
the target structures are directed graphs with lexi-
calized nodes and bilexical arcs. More formally, a
dependency graph for a sentence x = x1, . . . , xn
is an arc-labelled directed graph whose nodes are in



He tried to take my hand to show me

Figure 1: A sample sentence with a gold-standard
semantic dependency graph in the DM represen-
tation (Flickinger et al., 2016, #41526060) (upper
half-plane) and a predicted syntactic dependency
tree in the Stanford Basic representation (lower
half-plane). (Arc labels omitted in this example.)

one-to-one correspondence to the tokens of x. For
an arc i→ j we refer to the nodes i and j as head
and dependent, respectively. We follow standard
conventions and visualize dependency graphs with
their nodes laid out on a line according to the linear
order of the sentence, and their arcs drawn in the
half-plane above (or sometimes below) the nodes.
An example graph is provided in Figure 1.

In syntactic dependency parsing, target represen-
tations are restricted to trees. Formally, a depen-
dency tree is a dependency graph that is connected,
acyclic, and such that each node except a distin-
guished root node has at most one incoming arc.
The root node has no incoming arc. In a depen-
dency tree we write h(i) to denote the head of the
incoming arc to the (non-root) node i.

3 Parser

We now give a compact description of our parser,
a version of the system of Dozat and Manning
(2018); for more details, we refer to Roxbo (2019).
We use essentially the same architecture for seman-
tic parsing and for predicting the trees over which
we define our syntactic features.

3.1 Neural Network Model
The core of our parser is a bidirectional recur-
rent neural network with Long Short-Term Mem-
ory cells (BiLSTM; Hochreiter and Schmidhu-
ber, 1997). Feeding this network with a sentence
x = x1, . . . , xn in the form of a sequence of (ini-
tially random) word embeddings wi, we obtain a
sequence of context-dependent embeddings ci:

c1, . . . , cn = BiLSTM(w1, . . . ,wn)

The word embeddings can be easily augmented by
additional lexical features, such as pre-trained word
embeddings or embeddings for part-of-speech tags
or lemmas. In this study we add embeddings cre-
ated via character-based LSTMs and 100-dimen-
sional GloVe (Pennington et al., 2014) embeddings.

The network processes the contextual token em-
beddings ci by two parallel feedforward neural net-
works (FNN), which are meant to learn specialized
representations for the potential roles of each word
as head and dependent:

hi = FNNh(ci) di = FNNd(ci)

These embeddings are then used to score each po-
tential arc i→ j via a bilinear model with weight
matrix U that will be learned during training:

score(hi,dj) = h>
i Udj

3.2 Decoding
The matrix of arc scores can be processed by any
type of arc-factored decoder to return the high-
est-scoring graph for the complete sentence. Our
semantic parser greedily selects all arcs with a non-
negative score. The syntactic parser uses the Chu–
Liu/Edmonds (CLE) maximum spanning tree algo-
rithm (Chu and Liu, 1965; Edmonds, 1967) imple-
mented in Uniparse (Varab and Schluter, 2018).

3.3 Adding Labels
To predict labelled arcs, we take two different ap-
proaches: The semantic parser computes, for each
token pair, scores for all potential labels, including
a special NONE label that represents the absence of
an arc between the two tokens; this yields a three-
dimensional score tensor rather than a score matrix.
The syntactic parser factorizes the computation and
predicts a label for each token pair independently
of the arc scorer; this label is only used if an arc is
actually selected by the decoder.

3.4 Adding Syntactic Features
To add syntactic features to our semantic parser,
we follow the same simple approach as Peng et al.
(2018): Before feeding the contextual embedding
of each token to the arc- and label-scoring compo-
nents, we extend it with the contextual embedding
of its syntactic head in the dependency tree:

c′i = [ci; ch(i)]

This simple variation has a minimal impact on the
complexity of the overall model, and makes further
analysis and comparison more straightforward.



Parameter Value

Embeddings 100
Char LSTM 1 @ 400
Char linear 100
BiLSTM 3 @ 600
Arc/Label FNN 600

Epochs 100
Mini-batch size 50
Adam β1 0
Adam β2 0.95
Learning rate 1 · 10−3

Gradient clipping 5
Interpolation constant 0.025
L2 regularization 3 · 10−9

Table 1: Network sizes and training parameters.

3.5 Training

We train our parser with the Adam optimizer
(Kingma and Ba, 2014) and mini-batching. To
train the arc and label scorers, we use a binary and
a softmax cross-entropy loss, respectively. In the
factorized approach used by the syntactic parser,
the arc- and label-specific losses are summed up
to an overall loss, weighted by an interpolation
constant to emphasize the arc scorer:

losstotal = (1− 0.025) · lossarc + 0.025 · losslabel

Due to the size of the model and its fairly large
number of trainable parameters (see Table 1), it
is prone to overfitting. To address this, we ap-
ply equally large dropout rates to nearly all parts
of the model (see Table 2). We apply variational
dropout (Gal and Ghahramani, 2016) sharing the
same dropout mask between all time steps in a se-
quence. On the LSTM hidden states we use Drop-
Connect (Wan et al., 2013; Merity et al., 2017), a
more general variant of dropout which drops indi-
vidual connections instead of complete nodes of
the computation graph.

Substructure Rate

Embeddings 20%
Char LSTM feedforward 33%
Char LSTM recurrent 33%
Char Linear 33%
BiLSTM feedforward 45%
BiLSTM recurrent 25%
Arc FNN 25%
Arc scorer 25%
Label FNN 33%
Label scorer 33%

Table 2: Dropout rates.

4 Method

In this section we describe our data and the setup
of our experiments.

4.1 Data

The main dataset for our experiments is the English
part of the standard SDP distribution (Flickinger
et al., 2016), which contains semantic dependency
graphs for Sections 00–21 of the venerable Penn
Treebank (Marcus et al., 1993) in a predefined
train/test split, as well as graphs for out-of-domain
test sentences from the Brown Corpus (Francis and
Kučera, 1985). The graphs come in four differ-
ent representation types, of which we use three:
graphs derived from DeepBank (DM, Oepen and
Lønning, 2006; Ivanova et al., 2012); predicate–
argument structures computed by the Enju parser
(PAS, Miyao, 2006); and graphs derived from the
tectogrammatical layer of the Prague Dependency
Treebank (PSD, Hajic et al., 2012). Due to their
structural differences, the three graph types are
more or less difficult to parse into; PSD graphs,
for example, feature a considerably larger label
inventory than the other types.

The graphs in the SDP dataset come with differ-
ent types of gold-standard syntactic analyses, of
which we use Stanford Basic Dependencies (SB,
de Marneffe and Manning, 2008), derived from the
Penn Treebank, and DELPH-IN Syntactic Deriva-
tion Trees (DT, Ivanova et al., 2012), derived from
DeepBank. In addition to those we also use the
English Web Treebank (EWT) from the Universal
Dependencies (UD) project (Nivre et al., 2017),
which contains syntactic dependency trees for text
that does not overlap with the SDP data. We note
that the EWT is considerably smaller than the SDP
dataset.

4.2 Experimental Setup

We train three types of semantic dependency pars-
ing models: no syntactic features (N), features ex-
tracted from gold-standard syntax trees (G), and
features extracted from predicted syntax trees (P).
The models of type N serve as our baseline and per-
form on par with the parser of Dozat and Manning
(2018). For models of type G we use gold trees
as inputs both during training and at test time; for
models of type P, at test time we instead feed the
parser with trees predicted by our syntactic parser.
For the EWT models we use predicted trees during
both training and testing.



Dataset Our parser StanfordNLP UDPipe

id ood id ood

SB 93.2 89.9 94.2 90.9
DT 94.0 90.3 94.9 91.7
EWT 85.9 85.4

Table 3: Parsing accuracy for our syntactic models
on the in-domain (id) and out-of-domain (ood) test
sets for the SDP data, and the regular test set for
the EWT data.

Our three syntactic models (for SB, DT, and
EWT) were trained using the same architecture and
specifications as the semantic models, but use the
factorized approach with CLE-decoding instead.
Their accuracy is reported in Table 3, with addi-
tional results from StanfordNLP (Qi et al., 2018)
and UDPipe (Straka and Straková, 2017) for ref-
erence. We note that in contrast to those systems’
results, ours were achieved without gold POS tags.

5 Empirical Results

The results for our semantic dependency parsing
models for the three graph types in the SDP dataset
are presented in Table 4. For comparison, we add
results reported by Dozat and Manning (2018) and
Peng et al. (2018), and emphasize for each test set
the overall best-performing model.

Baseline Our baseline using no syntactic features
performs comparable to the systems of Dozat and
Manning (2018) and Peng et al. (2018). We note
that the results reported for Dozat and Manning
(2018) are for models that not only use character
embeddings (which we also use), but also part-of-
speech tag embeddings (which we do not use).1

The results reported for Peng et al. (2018) are for
models that use predicted syntax. The slight advan-
tage of our baseline over the latter models suggests
that the network architecture can provide the same
benefits as additional syntactic information.

Contribution of Syntactic Structure Looking
at the results for the models informed by gold-
standard syntax, we see consistent gains in both
in-domain and out-of-domain settings, with sub-
stantial improvements of 3.1 labelled F1 points for
DM–DT, and 2.2 points for PAS–SB. The models
informed by predicted syntax, on the other hand,
do not achieve any significant improvements over

1The best-performing model of Dozat and Manning (2018)
additionally uses lemma embeddings.

the baseline, and in several cases actually perform
slightly worse than it. We saw the same trend in
additional experiments (not reported here) where
we used predicted trees even during training. Inter-
estingly, while the baseline and the models using
predicted syntax have similar F-scores, for the lat-
ter we observe a reduction of the number of false
negatives (i.e., missing arcs), but also an increase in
the number of false positives (i.e., incorrectly pre-
dicted arcs). The models using EWT trees do not
outperform the baseline, and we omit their further
investigation from the rest of the paper.

6 Error Analysis

To gain a deeper understanding for our empirical
results, we complement them with an error analysis.
For space reasons we will focus our analysis on the
DM models (Figures 2a–2c); however, we will also
discuss results from one PAS model (Figure 2d).

6.1 Error Types
Our analysis is based on a two-dimensional classi-
fication of errors. In the first dimension, for each
semantic parsing model M , we break down all er-
rors relative to the no-syntax baseline model into
the following four types:

1. false negatives of the baseline avoided by M

2. false positives of the baseline avoided by M

3. false negatives of M avoided by the baseline

4. false positives of M avoided by the baseline

Type 1 thus consists of arcs that the baseline incor-
rectly does not and the syntax-informed model M
correctly does predict, and so on.

In the second dimension, for each error type we
distinguish four different sub-categories, based on
the correspondence between the incorrectly pre-
dicted/not predicted arc i → j in the semantic
graph and the structural relation between the head
i and dependent j in the syntactic dependency tree:

(a) the dependency tree has an arc i→ j

(b) the dependency tree has an arc j → i

(c) i and j are siblings in the dependency tree

(d) none of the above

This subclassification allows us to see if there are
systematic correspondences between semantic and
syntactic relations, and to assess the impact of syn-
tactic features on the semantic parser’s ability to
handle difficult arcs.



Model DM PAS PSD

id ood id ood id ood

N – no syntax (baseline) 92.1 87.4 92.6 89.7 79.7 77.3

DT
G – gold syntax 95.2 90.9 93.2 90.3 80.0 78.3
P – predicted syntax 92.2 89.3 92.4 88.9 79.5 77.5

SB
G – gold syntax 92.7 88.1 94.8 92.1 80.4 79.0
P – predicted syntax 92.0 87.0 92.4 88.9 79.6 77.2

EWT P – predicted syntax 91.8 87.1 92.7 89.3 79.6 77.3

Dozat and Manning (2018) 92.7 87.8 94.0 90.6 80.5 78.6
Peng et al. (2018) 91.6 86.7 78.9 77.1

Table 4: Labeled F1 for our semantic parsers on the in-domain (id) and out-of-domain (ood) test sets.
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Figure 2: Error analysis for various models when informed by syntactic features, broken down by arc
type and PoS pair. The four columns represent the four error types of Section 6.1 and colour distributions
according to gold and predicted syntax features.
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Figure 3: Relation between DM arcs and syntac-
tic features extracted from gold-standard DT trees,
broken down by arc type.

To show how syntactic heads and semantic arcs
correlate independently of the parsing model, we
add Figure 3. As we can see, arcs denoting the first
argument of a semantic predicate (ARG1) occur
mostly with syntactic arcs in the opposite direc-
tion. Similarly, a syntactic arc in the same direc-
tion often accompanies arcs denoting the second
argument of a semantic predicate (ARG2); two in-
stances from the example analysis in Figure 1 are

“take”→ “hand” and “show”→ “me”. Another
example of a clear pattern is with compound and
conjunction ( and c). Both types of arcs connect
mostly nouns, but whereas compound arcs correlate
with opposite syntactic arcs, head and dependent
in a conjunction more typically share the same syn-
tactic head (the conjunction “and”).

6.2 Results
We now explain how to read the graphs with the re-
sults of our two-dimensional error analysis for the
DM parsing models. Figure 2a shows the outcome
of this analysis when the model is informed by
syntactic features extracted from gold-standard DT
trees and evaluated on the development data. More
specifically, it shows results for those five DM arc
types for which adding syntax has the greatest ef-
fect on the absolute difference of mistakes relative
to the baseline. For each arc type we plot four
pairs of bars, one for each of the error types 1–4,
from left to right. Figure 2b breaks down results
by head–dependent part-of-speech pairs instead.
Figure 2c compares the baseline with the model
using predicted syntax, also on DM graphs and DT
trees. Note that, as the ordering follows the abso-
lute difference of mistakes, the arc types shown in
Figure 2c are not the same as the ones in Figure 2a.

In all plots, the two bars in each of the four pairs
of bars show the (colour-coded) distributions of
the types (a)–(d) relative to gold-standard syntax
(first bar) and predicted syntax (second bar); thus
the distribution relative to the syntactic information
actually used by each model is in the first bar in
Figures 2a–2b (models informed by gold-standard
syntax), and in the second bars in Figure 2c (models
informed by predicted syntax).

6.3 Relation between Syntax and Semantics

To directly compare how gold-standard and pre-
dicted syntax relate to semantic arcs, we look at
the differently coloured sub-columns in Figures 2a
and 2b. We recall that these figures compare the no-
syntax baseline to a model informed by syntactic
features extracted from gold-standard analyses.

The errors avoided by the syntax-informed
model (columns 1 and 2) have similar syntactic-
head distributions as the general distribution in Fig-
ure 3 when looking at gold syntax. The distribution
for predicted syntax does not match, due to wrong
predictions when parsing these related substruc-
tures. For example, in the predicted syntax, much
fewer of the avoided false negative ARG1 arcs have
syntactic arcs in the opposite direction, and instead
many more of the false positives (error type 2). Us-
ing a syntactic arc in the opposite direction as an
indicator, fewer false negatives would have been
avoided and more false positives would have been
predicted. This shows that the baseline system and
the syntactic parser have difficulties analyzing the
same substructures.

In Section 6 we stated that the model informed
by predicted syntax increases recall at the cost of
precision. This is illustrated by Figure 2c, and most
pronounced for the ARG1 type, where the number
of baseline false negatives avoided by the syntax-
informed model (column 1) is almost as large as
the number of model false positives avoided by
the baseline (column 4). The error types (a)–(d)
follow the same distribution when the syntax-en-
hanced model improves over the baseline, but di-
verge when not. This finding suggests that, unsur-
prisingly, syntactic information helps when it is
correct, and interferes otherwise. An improved sys-
tem would ideally know when to trust its predicted
syntax and when to rather fall back on the baseline
prediction.



death in a plane crash of his old boss

will go a long way toward enhancing

Figure 4: Graph fragments for sentences
#22013118 and #22012010. Semantic arcs are
shown in black, syntactic arcs in red. False nega-
tives are drawn with continuous lines, false posi-
tives are drawn with dashed lines.

6.4 Where can Syntax help?
In order to better understand where syntax helps the
semantic dependency parser, we look at the part-of-
speech pairs of head and dependent in Figure 2b.
The five pairs which receive the largest improve-
ment when informed by gold-standard syntax can
be divided into two groups:

(i) arcs between prepositions (IN) and nouns
(NN, NNS)

(ii) arcs between multiple (proper) nouns (NN,
NNS, NNP, NNPS)

Prepositional Attachment The arcs in group (i),
between prepositions and nouns, represent the ma-
jority of baseline errors not only in the case of
DM/DT but also in the case of PAS/SB, where they
correspond (roughly) to the arc type prep ARG1 in
Figure 2d. Figure 4 shows two graph fragments
with arcs from this group; these fragments hap-
pen to be identical for DM/DT and for PAS/SB. In
the two examples the gold-standard syntactic arc
goes into the opposite direction than the semantic
arc (our type b), and this regularity seems to be
learned by the models informed by gold-standard
syntax to such a degree that when the syntactic arc
is incorrectly predicted, the parser also makes a
corresponding mistake on the semantic side: In the
examples, the prepositional phrase “of his old boss”
is wrongly attached to the neighbouring “plane
crash”, while “toward” is attached to the distant
predicate “use” instead of the neighbouring “way”.
Examples of this kind seem to suggest that having
access to gold-standard syntax essentially ‘solves’
the prediction problem on the semantic side.

Compounds and Conjuncts The arcs in
group (ii) include both compounds and conjuncts.
The difficulties with compounds lie in determining
which token is the governing head of the complete
phrase and deciding which tokens are part of
the compound. They naturally appear as part
of conjunctions as well, where the difficulty
of correctly identifying the heads of the two
conjuncts is the same as identifying the heads of
the compounds themselves. Similar to what we
observed for preposition–noun arcs, having the
governing head basically given by a syntactic arc,
essentially eliminates the problem for compounds
and conjuncts.

The example in Figure 5 showcases how failing
to recognize a compound results in a cascade of
follow-up mistakes. While “guerrilla action” is
recognized as a compound, “siege tactics” is not.
The word “tactics” is left out of the compound
and therefore also the conjunct, receiving “use” as
its syntactic head instead. This leads the seman-
tic parser to not only fail to analyse the second
compound and hence also the conjunct, but also
attaching “tactics” as second argument (ARG2) to
the predicate “use”, instead of the actual head of
the complete phrase, “action”.

6.5 Where can Syntax not help?

While syntactic information appears to help the
semantic parser in some cases, there are similar
examples where syntax does not seem to be able
to help at all, two of which are shown in Figure 6.

use guerrilla action and siege tactics

and c / compound

Figure 5: Graph fragments for sentence #22052046.
Semantic arcs are shown above, syntactic arcs be-
low the words. False negatives are shown in blue,
false positives dashed. The blue dashed arc is an
incorrectly labelled arc, annotated with the correct
and the predicted label.



beheading of Hugo Spadafora

dislike of President Bush’s proposal

Figure 6: Graph fragments for sentences
#22013141 and #22030001. Semantic arcs are
shown in black, syntactic arcs in red. False nega-
tives are drawn with continuous lines, false posi-
tives are drawn with dashed lines.

Both graph fragments contain a nominalized verb
(“beheading” and “dislike”) followed by “of” and
the object of the nominalization (“Spadafora” and

“proposal”). In both cases, the parser has access to
gold-standard syntax that connects the nominaliza-
tion, the preposition and the object left to right. In
the first instance, the parser interprets the nominal-
ization and the object both as arguments of “of”,
instead of directly attaching the object as an argu-
ment to the nominalization. In the second instance,
the intended and observed behaviours are switched.

7 Conclusion

Our re-implementation of the state-of-the-art se-
mantic dependency parsing architecture of Dozat
and Manning (2018) performs on par with that sys-
tem. Surprisingly, adding syntactic features to the
standard lexical and morphological embeddings
does not generally increase parsing accuracy. More
specifically, while gold-standard syntactic informa-
tion is highly beneficial, yielding accuracies signif-
icantly above the state of the art, adding predicted
syntax does not lead to consistent improvements.

Our error analysis shows that there is some over-
lap of the information that syntactic dependency
trees and semantic dependency graphs encode, in
the sense that both tend to mirror each other. We
have provided examples for cases that are difficult
to analyze due to their inherent ambiguity. In some
cases, these examples suggest that adding gold-
standard syntax essentially also reveals the correct
semantic analysis to the parser. This means that
high-precision syntactic parsing holds significant

promises even for semantic parsing, but our experi-
ments suggest that the state of the art in syntactic
dependency parsing may still be too low to fully
capitalize on this potential. We believe however,
that a joint syntactic–semantic parser that is able
to dynamically leverage both structures (trained,
perhaps, using a multi-task objective), would be an
opportunity for further advances in both syntactic
and semantic dependency parsing.
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Dan Flickinger, Jan Hajič, Angelina Ivanova, Marco
Kuhlmann, Yusuke Miyao, Stephan Oepen, and
Daniel Zeman. 2016. SDP 2014 & 2015:
Broad Coverage Semantic Dependency Parsing
LDC2016T10.

W. Nelson Francis and Henry Kučera. 1985. Frequency
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Onďrej Bojar, Silvie Cinková, Eva Fućiková, Marie
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Lê H`ông, Alessandro Lenci, Nikola Ljubešić, Olga
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Huỳên Nguỹên Th i Minh, Vitaly Nikolaev, Hanna
Nurmi, Stina Ojala, Petya Osenova, Lilja Øvre-
lid, Elena Pascual, Marco Passarotti, Cenel-Augusto
Perez, Guy Perrier, Slav Petrov, Jussi Piitulainen,
Barbara Plank, Martin Popel, Lauma Pretkalniņa,
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