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Introduction

The Nordic Language Processing Laboratory (NLPL; http://nlpl.eu) is a collaboration of university research groups
in Natural Language Processing (NLP) in Northern Europe. Our vision is to implement a virtual laboratory for large-scale
NLP research by (a) creating new ways to enable data- and compute-intensive Natural Language Processing research by
implementing a common software, data and service stack in multiple Nordic HPC centres, (b) by pooling competencies within
the user community and among expert support teams, and (c) by enabling internationally competitive, data-intensive research
and experimentation on a scale that would be difficult to sustain on commodity computing resources.

One of the clear strengths of NLPL is its community-building component, with the very successful winter school being the
highlight of the year for many of us. As these proceedings demonstrate, the NLPL community-building effort now also includes
the first edition of what will hopefully develop into a series of regular workshops organized under the NLPL umbrella.

The purpose of this first NLPL workshop was to bring together researchers with a special interest in the deep learning tech-
niques, specifically inviting also papers on computational and practical aspects of these methods. We are happy to be able to
present seven peer-reviewed papers on diverse deep learning topics, together with the invited talks of Barbara Plank and Jussi
Karlgren.

On behalf of the organizers,

Joakim Nivre, Filip Ginter, Stephan Oepen, Jörg Tiedemann

September 2019
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Željko Agić, Ali Basirat, Johannes Bjerva, Hande Celikkanat, Mathias Creutz, Leon Derczynski, Filip Ginter, Chris-
tian Hardmeier, Mareike Hartmann, Jenna Kanerva, Andrey Kutuzov, Juhani Luotolahti, Joakim Nivre, Stephan Oepen,
Alessandro Raganato, Yves Scherrer, Natalie Schluter, Miikka Silfverberg, Sara Stymne, Umut Sulubacak, Aarne Tal-
man, Gongbo Tang, Jörg Tiedemann, Raul Vazquez, Erik Velldal, Aleksi Vesanto, Miryam de Lhoneux, Lilja Øvrelid

Invited Speakers:

Barbara Plank, IT University of Copenhagen, Denmark
Jussi Karlgren, Gavagai and KTH Royal Institute of Technology, Sweden

iv



Invited Talks

Deep Transfer Learning: Learning across Languages, Modalities and Tasks

Barbara Plank, ITU (IT University of Copenhagen)

Transferring knowledge to solve a related problem is an extraordinary human ability. Yet, how can we build Natural Language
Processing technology which can transfer to new conditions, such as learning to process a new language or learning to answer
new types of questions? In this talk, I will present some recent work to addresses this ubiquitous challenge using neural
networks for transfer learning. In particular, I will focus on cross-lingual learning for syntactic processing and work at the
interface of language and vision, e.g., multi-task and continual learning for visual question answering.

High-Dimensional Semantic Spaces and the Squinting Linguist

Jussi Karlgren, Gavagai and KTH Royal Institute of Technology

High-dimensional distributed semantic spaces have proven useful and effective for aggregating and processing visual and lex-
ical information for many tasks related to heterogenous data generated by human behaviour or relevant for human information
processing. Models to process such high-dimensional spaces have proliferated in recent years with impressive results on quite
various tasks.

In general, a representation used in research should hold to some basic qualities.

• It should have descriptive and explanatory power;

• be practical and convenient for further application;

• allow generalisations to be made and analogies to be inferred;

• be reasonably true to human performance, providing defaults to smooth over situations where data are lacking and
constraints where the decision space is too broad,

• perform seamlessly and incrementally online in face of novel data, allowing new features and new analyses to be
incorporated without recompiling previous understanding.

High-dimensional semantic spaces are usually not designed with (all of) these qualities in mind.

Human language has a large and varying number of features of various regularity, incorporating both lexical items and con-
structions. The field of linguistics provides a large body of research to understand such regularities. Yet the models used to
process human language disregard those regularities, starting from the general principle that they should be discovered rather
than given and that learning should be in the form an end-to-end classifier from raw data to relevant categories. This principle
is intuitively appealing, in view of the specificity and avowed situation- and task-independence of linguistic rules, but the tools
built end up being black boxes and do not guarantee explanatory generality of the results.

This talk will discuss how tasks where human language is the most important source of information might do well to incorporate
information other than the most typical lexical features, in effect providing a better input layer to recent neurally inspired
models. This talk demonstrates how high-dimensional semantic spaces can accommodate several types of feature concurrently,
and that the convenient computing framework can be used for hypothesis-driven research. Such models can represent broad
ranges of linguistic features in a common integral framework which is suitable as a bridge between symbolic and continuous
representations, as an encoding scheme for symbolic information.
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Mark my Word:
A Sequence-to-Sequence Approach to Definition Modeling
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Université de Lorraine
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Utrecht University
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Mathieu Constant
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Abstract

Defining words in a textual context is a
useful task both for practical purposes and
for gaining insight into distributed word
representations. Building on the distribu-
tional hypothesis, we argue here that the
most natural formalization of definition
modeling is to treat it as a sequence-
to-sequence task, rather than a word-to-
sequence task: given an input sequence
with a highlighted word, generate a con-
textually appropriate definition for it. We
implement this approach in a Transformer-
based sequence-to-sequence model. Our
proposal allows to train contextualization
and definition generation in an end-to-end
fashion, which is a conceptual improve-
ment over earlier works. We achieve state-
of-the-art results both in contextual and
non-contextual definition modeling.

1 Introduction

The task of definition modeling, introduced by
Noraset et al. (2017), consists in generating the
dictionary definition of a specific word: for in-
stance, given the word “monotreme” as input, the
system would need to produce a definition such
as “any of an order (Monotremata) of egg-laying
mammals comprising the platypuses and echid-
nas”.1 Following the tradition set by lexicogra-
phers, we call the word being defined a definien-
dum (pl. definienda), whereas a word occurring in
its definition is called a definiens (pl. definientia).

Definition modeling can prove useful in a vari-
ety of applications. Systems trained for the task
may generate dictionaries for low resource lan-
guages, or extend the coverage of existing lexico-
graphic resources where needed, e.g. of domain-
specific vocabulary. Such systems may also be

1Definition from Merriam-Webster.

able to provide reading help by giving definitions
for words in the text.

A major intended application of definition mod-
eling is the explication and evaluation of dis-
tributed lexical representations, also known as
word embeddings (Noraset et al., 2017). This eval-
uation procedure is based on the postulate that the
meaning of a word, as is captured by its embed-
ding, should be convertible into a human-readable
dictionary definition. How well the meaning is
captured must impact the ability of the model
to reproduce the definition, and therefore embed-
ding architectures can be compared according to
their downstream performance on definition mod-
eling. This intended usage motivates the require-
ment that definition modeling architectures take as
input the embedding of the definiendum and not
retrain it.

From a theoretical point of view, usage of word
embeddings as representations of meaning (cf.
Lenci, 2018; Boleda, 2019, for an overview) is
motivated by the distributional hypothesis (Harris,
1954). This framework holds that meaning can be
inferred from the linguistic context of the word,
usually seen as co-occurrence data. The context
of usage is even more crucial for characterizing
meanings of ambiguous or polysemous words: a
definition that does not take disambiguating con-
text into account will be of limited use (Gadetsky
et al., 2018).

We argue that definition modeling should pre-
serve the link between the definiendum and its con-
text of occurrence. The most natural approach to
this task is to treat it as a sequence-to-sequence
task, rather than a word-to-sequence task: given
an input sequence with a highlighted word, gener-
ate a contextually appropriate definition for it (cf.
sections 3 & 4). We implement this approach in
a Transformer-based sequence-to-sequence model
that achieves state-of-the-art performances (sec-
tions 5 & 6).

1



2 Related Work

In their seminal work on definition modeling, No-
raset et al. (2017) likened systems generating def-
initions to language models, which can naturally
be used to generate arbitrary text. They built a
sequential LSTM seeded with the embedding of
the definiendum; its output at each time-step was
mixed through a gating mechanism with a feature
vector derived from the definiendum.

Gadetsky et al. (2018) stressed that a definien-
dum outside of its specific usage context is am-
biguous between all of its possible definitions.
They proposed to first compute the AdaGram vec-
tor (Bartunov et al., 2016) for the definiendum,
to then disambiguate it using a gating mechanism
learned over contextual information, and finally
to run a language model over the sequence of
definientia embeddings prepended with the disam-
biguated definiendum embedding.

In an attempt to produce a more interpretable
model, Chang et al. (2018) map the definiendum
to a sparse vector representation. Their architec-
ture comprises four modules. The first encodes the
context in a sentence embedding, the second con-
verts the definiendum into a sparse vector, the third
combines the context embedding and the sparse
representation, passing them on to the last module
which generates the definition.

Related to these works, Yang et al. (2019)
specifically tackle definition modeling in the con-
text of Chinese—whereas all previous works
on definition modeling studied English. In a
Transformer-based architecture, they incorporate
“sememes” as part of the representation of the
definiendum to generate definitions.

On a more abstract level, definition modeling
is related to research on the analysis and evalu-
ation of word embeddings (Levy and Goldberg,
2014a,b; Arora et al., 2018; Batchkarov et al.,
2016; Swinger et al., 2018, e.g.). It also relates
to other works associating definitions and em-
beddings, like the “reverse dictionary task” (Hill
et al., 2016)—retrieving the definiendum knowing
its definition, which can be argued to be the oppo-
site of definition modeling—or works that derive
embeddings from definitions (Wang et al., 2015;
Tissier et al., 2017; Bosc and Vincent, 2018).

3 Definition modeling as a
sequence-to-sequence task

Gadetsky et al. (2018) remarked that words are

often ambiguous or polysemous, and thus gener-
ating a correct definition requires that we either
use sense-level representations, or that we disam-
biguate the word embedding of the definiendum.
The disambiguation that Gadetsky et al. (2018)
proposed was based on a contextual cue—ie. a
short text fragment. As Chang et al. (2018) notes,
the cues in Gadetsky et al.’s (2018) dataset do not
necessarily contain the definiendum or even an in-
flected variant thereof. For instance, one train-
ing example disambiguated the word “fool” using
the cue “enough horsing around—let’s get back to
work!”.

Though the remark that definienda must be dis-
ambiguated is pertinent, the more natural formula-
tion of such a setup would be to disambiguate the
definiendum using its actual context of occurrence.
In that respect, the definiendum and the contextual
cue would form a linguistically coherent sequence,
and thus it would make sense to encode the con-
text together with the definiendum, rather than to
merely rectify the definiendum embedding using a
contextual cue. Therefore, definition modeling is
by its nature a sequence-to-sequence task: map-
ping contexts of occurrence of definienda to defi-
nitions.

This remark can be linked to the distributional
hypothesis (Harris, 1954). The distributional hy-
pothesis suggests that a word’s meaning can be
inferred from its context of usage; or, more suc-
cinctly, that “you shall know a word by the com-
pany it keeps” (Firth, 1957). When applied to def-
inition modeling, the hypothesis can be rephrased
as follows: the correct definition of a word can
only be given when knowing in what linguistic
context(s) it occurs. Though different kinds of
linguistic contexts have been suggested through-
out the literature, we remark here that senten-
tial context may sometimes suffice to guess the
meaning of a word that we don’t know (Lazaridou
et al., 2017). Quoting from the example above, the
context “enough around—let’s get back to
work!” sufficiently characterizes the meaning of
the omitted verb to allow for an approximate def-
inition for it even if the blank is not filled (Taylor,
1953; Devlin et al., 2018).

This reformulation can appear contrary to the
original proposal by Noraset et al. (2017), which
conceived definition modeling as a “word-to-
sequence task”. They argued for an approach
related to, though distinct from sequence-to-
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sequence architectures. Concretely, a specific en-
coding procedure was applied to the definiendum,
so that it could be used as a feature vector during
generation. In the simplest case, vector encoding
of the definiendum consists in looking up its vector
in a vocabulary embedding matrix.

We argue that the whole context of a word’s us-
age should be accessible to the generation algo-
rithm rather than a single vector. To take a more
specific case of verb definitions, we observe that
context explicitly represents argument structure,
which is obviously useful when defining the verb.
There is no guarantee that a single embedding,
even if it be contextualized, would preserve this
wealth of information—that is to say, that you can
cram all the information pertaining to the syntactic
context into a single vector.

Despite some key differences, all of the previ-
ously proposed architectures we are aware of (No-
raset et al., 2017; Gadetsky et al., 2018; Chang
et al., 2018; Yang et al., 2019) followed a pattern
similar to sequence-to-sequence models. They all
implicitly or explicitly used distinct submodules to
encode the definiendum and to generate the defini-
entia. In the case of Noraset et al. (2017), the en-
coding was the concatenation of the embedding
of the definiendum, a vector representation of its
sequence of characters derived from a character-
level CNN, and its “hypernym embedding”. Gadet-
sky et al. (2018) used a sigmoid-based gating mod-
ule to tweak the definiendum embedding. The ar-
chitecture proposed by Chang et al. (2018) is com-
prised of four modules, only one of which is used
as a decoder: the remaining three are meant to
convert the definiendum as a sparse embedding,
select some of the sparse components of its mean-
ing based on a provided context, and encode it into
a representation adequate for the decoder.

Aside from theoretical implications, there is an-
other clear gain in considering definition modeling
as a sequence-to-sequence task. Recent advances
in embedding designs have introduced contextual
embeddings (McCann et al., 2017; Peters et al.,
2018; Devlin et al., 2018); and these share the par-
ticularity that they are a “function of the entire sen-
tence” (Peters et al., 2018): in other words, vector
representations are assigned to tokens rather than
to word types, and moreover semantic information
about a token can be distributed over other token
representations. To extend definition modeling to
contextual embeddings therefore requires that we

devise architectures able to encode a word in its
context; in that respect sequence-to-sequence ar-
chitectures are a natural choice.

A related point is that not all definienda are
comprised of a single word: multi-word expres-
sions include multiple tokens, yet receive a single
definition. Word embedding architectures gener-
ally require a pre-processing step to detect these
expressions and merge them into a single token.
However, as they come with varying degrees of se-
mantic opacity (Cordeiro et al., 2016), a definition
modeling system would benefit from directly ac-
cessing the tokens they are made up from. There-
fore, if we are to address the entirety of the lan-
guage and the entirety of existing embedding ar-
chitectures in future studies, reformulating defini-
tion modeling as a sequence-to-sequence task be-
comes a necessity.

4 Formalization

A sequence-to-sequence formulation of definition
modeling can formally be seen as a mapping be-
tween contexts of occurrence of definienda and
their corresponding definitions. It moreover re-
quires that the definiendum be formally distin-
guished from the remaining context: otherwise
the definition could not be linked to any particular
word of the contextual sequence, and thus would
need to be equally valid for any word of the con-
textual sequence.

We formalize definition modeling as mapping to
sequences of definientia from sequences of pairs
〈w1, i1〉, . . . , 〈wn, in〉 , where wk is the kth word
in the input and ik ∈ {0, 1} indicates whether the
kth token is to be defined. As only one element
of the sequence should be highlighted, we expect
the set of all indicators to contain only two ele-
ments: the one, id = 1, to mark the definiendum,
the other, ic = 0, to mark the context; this entails
that we encode this marking using one bit only.2

To treat definition modeling as a sequence-to-
sequence task, the information from each pair
〈wk, ik〉 has to be integrated into a single repre-

2Multiple instances of the same definiendum within a sin-
gle context should all share a single definition, and therefore
could theoretically all be marked using the definiendum indi-
cator id = 1. Likewise the words that make up a multi-word
expression should all be marked with this id indicator. In this
work, however, we only mark a single item; in cases when
multiple occurrences of the same definiendum were attested,
we simply marked the first occurrence.

3



sentation ~markedk:

~markedk = mark(ik, ~wk) (1)

This marking function can theoretically take any
form. Considering that definition modeling uses
the embedding of the definiendum ~wd = e(wd), in
this work we study a multiplicative and an additive
mechanism, as they are conceptually the simplest
form this marking can take in a vector space. They
are given schematically in Figure 1, and formally
defined as:

~marked×k = ik × ~wk (2)
~marked+k = e(ik) + ~wk (3)

The last point to take into account is where to
set the marking. Two natural choices are to set it
either before or after encoded representations were
obtained. We can formalize this using either of the
following equation, with E the model’s encoder:

~marked after
k = mark(ik, E( ~wk))

~marked before
k = E(mark(ik, ~wk)) (4)

4.1 Multiplicative marking: SELECT

The first option we consider is to use scalar multi-
plication to distinguish the word to define. In such
a scenario, the marked token encoding is

~marked×k = ik × ~wk (2)

As we use bit information as indicators, this
form of marking entails that only the representa-
tion of the definiendum be preserved and that all
other contextual representations are set to ~0 =
(0, · · · , 0): thus multiplicative marking amounts
to selecting just the definiendum embedding and
discarding other token embeddings. The contex-
tualized definiendum encoding bears the trace of
its context, but detailed information is irreparably
lost. Hence, we refer to such an integration mech-
anism as a SELECT marking of the definiendum.

When to apply marking, as introduced by eq. 4,
is crucial when using the multiplicative marking
scheme SELECT. Should we mark the definiendum
before encoding, then only the definiendum em-
bedding is passed into the encoder: the resulting
system provides out-of-context definitions, like in
Noraset et al. (2017) where the definition is not
linked to the context of a word but to its definien-
dum only. For context to be taken into account

~r1 ~r2 ~r3 ~r4 ~r5

~I ~
we
ar ~a ~

ti
e ~.

(a) SELECT: Select-
ing from encoded items.
Items are contextualized
and the definiendum is
singled out from them.

~r1 ~r2 ~r3 ~r4 ~r5

~I
+
~C

~
we
ar

+
~C

~a
+
~C

~
ti
e
+
~D

~.
+
~C

(b) ADD: Additive mark-
ing in encoder. Context items
and definiendum are marked
by adding dedicated embed-
dings.

Figure 1: Additive vs. multiplicative integration

under the multiplicative strategy, tokens wk must
be encoded and contextualized before integration
with the indicator ik.

Figure 1a presents the contextual SELECT

mechanism visually. It consists in coercing the
decoder to attend only to the contextualized rep-
resentation for the definiendum. To do so, we en-
code the full context and then select only the en-
coded representation of the definiendum, dropping
the rest of the context, before running the decoder.
In the case of the Transformer architecture, this is
equivalent to using a multiplicative marking on the
encoded representations: vectors that have been
zeroed out are ignored during attention and thus
cannot influence the behavior of the decoder.

This SELECT approach may seem intuitive and
naturally interpretable, as it directly controls what
information is passed to the decoder—we care-
fully select only the contextualized definiendum,
thus the only remaining zone of uncertainty would
be how exactly contextualization is performed. It
also seems to provide a strong and reasonable bias
for training the definition generation system. Such
an approach, however, is not guaranteed to excel:
forcibly omitted context could contain important
information that might not be easily incorporated
in the definiendum embedding.

Being simple and natural, the SELECT approach
resembles architectures like that of Gadetsky et al.
(2018) and Chang et al. (2018): the full en-
coder is dedicated to altering the embedding of the
definiendum on the basis of its context; in that, the
encoder may be seen as a dedicated contextualiza-
tion sub-module.
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4.2 Additive marking: ADD

We also study an additive mechanism shown in
Figure 1b (henceforth ADD). It concretely con-
sists in embedding the word wk and its indicator
bit ik in the same vector space and adding the cor-
responding vectors:

~marked+k = e(ik) + ~wk (3)

In other words, under ADD we distinguish the
definiendum by adding a vector ~D to the definien-
dum embedding, and another vector ~C to the re-
maining context token embeddings; both markers
~D and ~C are learned during training. In our imple-
mentation, markers are added to the input of the
encoder, so that the encoder has access to this in-
formation; we leave the question of whether to in-
tegrate indicators and words at other points of the
encoding process, as suggested in eq. 4, to future
work.

Additive marking of substantive features has its
precedents. For example, BERT embeddings (De-
vlin et al., 2018) are trained using two sentences
at once as input; sentences are distinguished with
added markers called “segment encodings”. To-
kens from the first sentence are all marked with
an added vector ~segA, whereas tokens from sec-
ond sentences are all marked with an added vector
~segB . The main difference here is that we only

mark one item with the marker ~D, while all others
are marked with ~C.

This ADD marking is more expressive than the
SELECT architecture. Sequence-to-sequence de-
coders typically employ an attention to the input
source (Bahdanau et al., 2014), which corresponds
to a re-weighting of the encoded input sequence
based on a similarity between the current state of
the decoder (the ‘query’) and each member of the
input sequence (the ‘keys’). This re-weighting
is normalized with a softmax function, produc-
ing a probability distribution over keys. However,
both non-contextual definition modeling and the
SELECT approach produce singleton encoded se-
quences: in such scenarios the attention mecha-
nism assigns a single weight of 1 and thus de-
volves into a simple linear transformation of the
value and makes the attention mechanism useless.
Using an additive marker, rather than a selective
mechanism, will prevent this behavior.

5 Evaluation

We implement several sequence to sequence mod-
els with the Transformer architecture (Vaswani
et al., 2017), building on the OpenNMT library
(Klein et al., 2017) with adaptations and modifi-
cations when necessary.3 Throughout this work,
we use GloVe vectors (Pennington et al., 2014)
and freeze weights of all embeddings for a fairer
comparison with previous models; words not in
GloVe but observed in train or validation data and
missing definienda in our test sets were randomly
initialized with components drawn from a normal
distribution N (0, 1).

We train a distinct model for each dataset. We
batch examples by 8,192, using gradient accumu-
lation to circumvent GPU limitations. We opti-
mize the network using Adam with β1 = 0.99,
β2 = 0.998, a learning rate of 2, label smooth-
ing of 0.1, Noam exponential decay with 2000
warmup steps, and dropout rate of 0.4. The pa-
rameters are initialized using Xavier. Models were
trained for up to 120,000 steps with checkpoints at
each 1000 steps; we stopped training if perplexity
on the validation dataset stopped improving. We
report results from checkpoints performing best on
validation.

5.1 Implementation of the Non-contextual
Definition Modeling System

In non-contextual definition modeling, definienda
are mapped directly to definitions. As the source
corresponds only to the definiendum, we conjec-
ture that few parameters are required for the en-
coder. We use 1 layer for the encoder, 6 for the de-
coder, 300 dimensions per hidden representations
and 6 heads for multi-head attention. We do not
share vocabularies between the encoder and the
decoder: therefore output tokens can only corre-
spond to words attested as definientia.4

The dropout rate and warmup steps number
were set using a hyperparameter search on the
dataset from Noraset et al. (2017), during which
encoder and decoder vocabulary were merged for
computational simplicity and models stopped af-
ter 12,000 steps. We first fixed dropout to 0.1
and tested warmup step values between 1000 and

3Code & data are available at the following URL:
https://github.com/TimotheeMickus/onmt-selectrans.

4In our case, not sharing vocabularies prevents the model
from considering rare words only used as definienda, such as
“penumbra” as potential outputs, and was found to improve
performances.
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10,000 by increments of 1000, then focused on the
most promising span (1000–4000 steps) and ex-
haustively tested dropout rates from 0.2 to 0.8 by
increments of 0.1.

5.2 Implementation of Contextualized
Definition Modeling Systems

To compare the effects of the two integration
strategies that we discussed in section 4, we imple-
ment both the additive marking approach (ADD,
cf. section 4.2) and the alternative ‘encode and
select’ approach (SELECT, cf. section 4.1). To
match with the complex input source, we de-
fine encoders with 6 layers; we reemploy the
set of hyperparameters previously found for the
non-contextual system. Other implementation de-
tails, initialization strategies and optimization al-
gorithms are kept the same as described above for
the non-contextual version of the model.

We stress that the two approaches we compare
for contextualizing the definiendum are applicable
to almost any sequence-to-sequence neural archi-
tecture with an attention mechanism to the input
source.5 Here we chose to rely on a Transformer-
based architecture (Vaswani et al., 2017), which
has set the state of the art in a wide range of
tasks, from language modeling (Dai et al., 2019)
to machine translation (Ott et al., 2018). It is
therefore expected that the Transformer architec-
ture will also improve performances for definition
modeling, if our arguments for treating it as a se-
quence to sequence task are on the right track.

5.3 Datasets
We train our models on three distinct datasets,
which are all borrowed or adapted from previous
works on definition modeling. As a consequence,
our experiments focus on the English language.
The dataset of Noraset et al. (2017) (henceforth
DNor) maps definienda to their respective defini-
entia, as well as additional information not used
here. In the dataset of Gadetsky et al. (2018)
(henceforth DGad), each example consists of a
definiendum, the definientia for one of its mean-
ings and a contextual cue sentence. DNor contains
on average shorter definitions than DGad. Defini-
tions inDNor have a mean length of 6.6 and a stan-
dard deviation of 5.78, whereas those inDGad have
a mean length of 11.01 and a standard deviation of
6.96.

5For best results, the SELECT mechanism should require
a bi-directional encoding mechanism.

Chang et al. (2018) stress that the dataset DGad
includes many examples where the definiendum
is absent from the associated cue. About half of
these cues doe not contain an exact match for the
corresponding definiendum, but up to 80% con-
tains either an exact match or an inflected form of
the definiendum according to lemmatization by the
NLTK toolkit (Loper and Bird, 2002). To cope with
this problematic characteristic, we converted the
dataset into the word-in-context format assumed
by our model by concatenating the definiendum
with the cue. To illustrate this, consider the ac-
tual input from DGad comprised of the definien-
dum “fool” and its associated cue “enough hors-
ing around—let’s get back to work!”: to convert
this into a single sequence, we simply prepend
the definiendum to the cue, which results in the
sequence “fool enough horsing around—let’s get
back to work!”. Hence the input sequences of
DGad do not constitute linguistically coherent se-
quences, but it does guarantee that our sequence-
to-sequence variants have access to the same input
as previous models; therefore the inclusion of this
dataset in our experiments is intended mainly for
comparison with previous architectures. We also
note that this conversion procedure entails that our
examples have a very regular structure: the word
marked as a definiendum is always the first word
in the input sequence.

Our second strategy was to restrict the dataset
by selecting only cues where the definiendum (or
its inflected form) is present. The curated dataset
(henceforth DCtx) contains 78,717 training ex-
amples, 9,413 for validation and 9,812 for test-
ing. In each example, the first occurrence of the
definiendum is annotated as such. DCtx thus dif-
fers from DGad in two ways: some definitions
have been removed, and the exact citation forms
of the definienda are not given. Models trained
on DCtx implicitly need to lemmatize the definien-
dum, since inflected variants of a given word are to
be aligned to a common representation; thus they
are not directly comparable with models trained
with the citation form of the definiendum that
solely use context as a cue—viz. Gadetsky et al.
(2018) & Chang et al. (2018). All this makes
DCtx harder, but at the same time closer to a
realistic application than the other two datasets,
since each word appears inflected and in a spe-
cific sentential context. For applications of def-
inition modeling, it would only be beneficial to
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take up these challenges; for example, the output
“monotremes: plural of monotreme”6 would not
have been self-contained, necessitating a second
query for “monotreme”.

5.4 Results
We use perplexity, a standard metric in definition
modeling, to evaluate and compare our models.
Informally, perplexity assesses the model’s confi-
dence in producing the ground-truth output when
presented the source input. It is formally defined
as the exponentiation of cross-entropy. We do not
report BLEU or ROUGE scores due to the fact that
an important number of ground-truth definitions
are comprised of a single word, in particular in
DNor (≈ 25%). Single word outputs can either
be assessed as entirely correct or entirely wrong
using BLEU or ROUGE. However consider for in-
stance the word “elation”: that it be defined either
as “mirth” or “joy” should only influence our met-
ric slightly, and not be discounted as a completely
wrong prediction.

DNor DGad DCtx

Noraset et al. 48.168 45.620 –
Gadetsky et al. – 43.540 –
Non-contextual 42.199 39.428 48.266
ADD – 33.678 43.695
SELECT – 33.998 62.039

Table 1: Results (perplexity)

Table 1 describes our main results in terms of
perplexity. We do not compare with Chang et al.
(2018), as they did not report the perplexity of
their system and focused on a different dataset;
likewise, Yang et al. (2019) consider only the Chi-
nese variant of the task. Perplexity measures for
Noraset et al. (2017) and Gadetsky et al. (2018) are
taken from the authors’ respective publications.

All our models perform better than previous
proposals, by a margin of 4 to 10 points, for a
relative improvement of 11–23%. Part of this im-
provement may be due to our use of Transformer-
based architectures (Vaswani et al., 2017), which
is known to perform well on semantic tasks
(Radford, 2018; Cer et al., 2018; Devlin et al.,
2018; Radford et al., 2019, eg.). Like Gadet-
sky et al. (2018), we conclude that disambiguat-
ing the definiendum, when done correctly, im-
proves performances: our best performing contex-

6Definition from Wiktionary.

tual model outranks the non-contextual variant by
5 to 6 points. The marking of the definiendum
out of its context (ADD vs. SELECT) also impacts
results. Note also that we do not rely on task-
specific external resources (unlike Noraset et al.,
2017; Yang et al., 2019) or on pre-training (unlike
Gadetsky et al., 2018).

Our contextual systems trained on the DGad
dataset used the concatenation of the definiendum
and the contextual cue as inputs. The definien-
dum was always at the start of the training exam-
ple. This regular structure has shown to be use-
ful for the models’ performance: all models per-
form significantly worse on the more realistic data
of DCtx than on DGad. The DCtx dataset is in-
trinsically harder for other reasons as well: it re-
quires some form of lemmatization in every three
out of eight training examples, and contains less
data than other datasets, only half as many exam-
ples as DNor, and 20% less than DGad.

The surprisingly poor results of SELECT on the
DCtx dataset may be partially blamed on the ab-
sence of a regular structure in DCtx. Unlike DGad,
where the model must only learn to contextual-
ize the first element of the sequence, in DCtx the
model has to single out the definiendum which
may appear anywhere in the sentence. Any infor-
mation stored only in representations of contextual
tokens will be lost to the decoders. The SELECT

model therefore suffers of a bottleneck, which is
highly regular in DGad and that it may therefore
learn to cope with; however predicting where in
the input sequence the bottleneck will appear is
far from trivial in the DCtx dataset. We also at-
tempted to retrain this model with various settings
of hyperparameters, modifying dropout rate, num-
ber of warmup steps, and number of layers in the
encoder—but to no avail. An alternative explana-
tion may be that in the case of theDGad dataset, the
regular structure of the input entails that the first
positional encoding is used as an additive marking
device: only definienda are marked with the posi-
tional encoding ~pos(1), and thus the architecture
does not purely embrace a selective approach but
a mixed one.

In any event, even on the DGad dataset where
the margin is very small, the perplexity of the ad-
ditive marking approach ADD is better than that
of the SELECT model. This lends empirical sup-
port to our claim that definition modeling is a non-
trivial sequence-to-sequence task, which can be
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better treated with sequence methods. The stabil-
ity of the performance improvement over the non-
contextual variant in both contextual datasets also
highlights that our proposed additive marking is
fairly robust, and functions equally well when con-
fronted to somewhat artificial inputs, as in DGad,
or to linguistically coherent sequences, as in DCtx.

6 Qualitative Analysis

filch to seize
grammar the science of language
implosion a sudden and violent collapse

(a) Handpicked sample

sediment to percolate
deputation the act of inciting
ancestry lineage

(b) Random sample

Table 2: Examples of production (non-contextual
model trained on DNor)

A manual analysis of definitions produced by
our system reveals issues similar to those dis-
cussed by Noraset et al. (2017), namely self-
reference,7 POS-mismatches, over- and under-
specificity, antonymy, and incoherence. Annotat-
ing distinct productions from the validation set,
for the non-contextual model trained on DNor,
we counted 9.9% of self-references, 11.6% POS-
mismatches, and 1.3% of words defined as their
antonyms. We counted POS-mismatches whenever
the definition seemed to fit another part-of-speech
than that of the definiendum, regardless of both of
their meanings; cf. Table 2 for examples.

For comparison, we annotated the first 1000
productions of the validation set from our ADD

model trained on DCtx. We counted 18.4% POS

mismatches and 4.4% of self-referring definitions;
examples are shown in Table 3. The higher rate of
POS-mismatch may be due to the model’s hardship
in finding which word is to be defined since the
model is not presented with the definiendum alone:
access to the full context may confuse it. On the
other hand, the lower number of self-referring def-
initions may also be linked to this richer, more var-
ied input: this would allow the model not to fall

7Self-referring definitions are those where a definiendum
is used as a definiens for itself. Dictionaries are expected to
be exempt of such definitions: as readers are assumed not to
know the meaning of the definiendum when looking it up.

back on simply reusing the definiendum as its own
definiens. Self-referring definitions highlight that
our models equate the meaning of the definiendum
to the composed meaning of its definientia. Sim-
ply masking the corresponding output embedding
might suffice to prevent this specific problem; pre-
liminary experiments in that direction suggest that
this may also help decrease perplexity further.

As for POS-mismatches, we do note that the
work of Noraset et al. (2017) had a much lower
rate of 4.29%: we suggest that this may be due to
the fact that they employ a learned character-level
convolutional network, which arguably would be
able to capture orthography and rudiments of mor-
phology. Adding such a sub-module to our pro-
posed architecture might diminish the number of
mistagged definienda. Another possibility would
be to pre-train the model, as was done by Gadetsky
et al. (2018): in our case in particular, the encoder
could be trained for POS-tagging or lemmatization.

Lastly, one important kind of mistakes we ob-
served is hallucinations. Consider for instance this
production by the ADD model trained on DCtx,
for the word “beta”: “the twentieth letter of the
Greek alphabet (κ), transliterated as ‘o’.”. Nearly
everything it contains is factually wrong, though
the general semantics are close enough to deceive
an unaware reader.8 We conjecture that filtering
out hallucinatory productions will be a main chal-
lenge for future definition modeling architectures,
for two main reasons: firstly, the tools and met-
rics necessary to assess and handle such hallucina-
tions have yet to be developed; secondly, the input
given to the system being word embeddings, re-
search will be faced with the problem of ground-
ing these distributional representations—how can
we ensure that “beta” is correctly defined as “the
second letter of the Greek alphabet, transliterated
as ‘b’”, if we only have access to a representa-
tion derived from its contexts of usage? Integra-
tion of word embeddings with structured knowl-
edge bases might be needed for accurate treatment
of such cases.

8On a related note, other examples were found to contain
unwanted social biases; consider the production by the same
model for the word “blackface”: “relating to or characteris-
tic of the theatre”. Part of the social bias here may be blamed
on the under-specific description that omits the offensive na-
ture of the word; however contrast the definition of Merriam
Webster for blackface, which includes a note on the offen-
siveness of the term, with that of Wiktionary, which does not.
Cf. Bolukbasi et al. (2016); Swinger et al. (2018) for a dis-
cussion on biases within embedding themselves.
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Error type Context (definiendum in bold) Production
POS-mismatch her major is linguistics most important or important
Self-reference he wrote a letter of apology to the hostess a formal expression of apology

Table 3: Examples of common errors (ADD model trained on DNor)

7 Conclusion

We introduced an approach to generating word
definitions that allows the model to access rich
contextual information about the word token to be
defined. Building on the distributional hypothe-
sis, we naturally treat definition generation as a
sequence-to-sequence task of mapping the word’s
context of usage (input sequence) into the context-
appropriate definition (output sequence).

We showed that our approach is competitive
against a more naive ‘contextualize and select’
pipeline. This was demonstrated by compari-
son both to the previous contextualized model by
Gadetsky et al. (2018) and to the Transformer-
based SELECT variation of our model, which dif-
fers from the proposed architecture only in the
context encoding pipeline. While our results are
encouraging, given the existing benchmarks we
were limited to perplexity measurements in our
quantitative evaluation. A more nuanced seman-
tically driven methodology might be useful in the
future to better assess the merits of our system in
comparison to alternatives.

Our model opens several avenues of future ex-
plorations. One could straightforwardly extend it
to generate definitions of multiword expressions
or phrases, or to analyze vector compositionality
models by generating paraphrases for vector repre-
sentations produced by these algorithms. Another
strength of our approach is that it can provide the
basis for a standardized benchmark for contextual-
ized and non-contextual embeddings alike: down-
stream evaluation tasks for embeddings systems
in general either apply to non-contextual embed-
dings (Gladkova et al., 2016, eg.) or to contextual
embeddings (Wang et al., 2019, eg.) exclusively,
redefining definition modeling as a sequence-to-
sequence task will allow in future works to com-
pare models using contextual and non-contextual
embeddings in a unified fashion. Lastly, we also
intend to experiment on languages other than En-
glish, especially considering that the required re-
sources for our model only amount to a set of pre-
trained embeddings and a dataset of definitions, ei-
ther of which are generally simple to obtain.

While there is a potential for local improve-
ments, our approach has demonstrated its abil-
ity to account for contextualized word meaning
in a principled way, while training contextualized
token encoding and definition generation end-to-
end. Our implementation is efficient and fast,
building on free open source libraries for deep
learning, and shows good empirical results. Our
code, trained models, and data will be made avail-
able to the community.
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Abstract

We extend a state-of-the-art deep neural ar-
chitecture for semantic dependency parsing
with features defined over syntactic depen-
dency trees. Our empirical results show
that only gold-standard syntactic informa-
tion leads to consistent improvements in
semantic parsing accuracy, and that the
magnitude of these improvements varies
with the specific combination of the syn-
tactic and the semantic representation used.
In contrast, automatically predicted syntax
does not seem to help semantic parsing.
Our error analysis suggests that there is a
significant overlap between syntactic and
semantic representations.

1 Introduction

Semantic dependency parsing (SDP) is the task of
mapping a sentence into a formal representation of
its meaning in the form of a directed graph with
arcs between pairs of words. Ever since the release
of the now-standard datasets for this task (Oepen
et al., 2014, 2015), most of the approaches to se-
mantic dependency parsing have been based on
previous and ongoing work in syntactic parsing. In
particular, several semantic parsers make use of fea-
tures defined over syntactic dependency trees; one
recent example is the system of Peng et al. (2018).

In this paper we study to what extent semantic
dependency parsing actually benefits from syntac-
tic features. More specifically, we carry out experi-
ments to identify those combinations of semantic
and syntactic representations that yield the highest
parsing accuracy. This is interesting not only for
parser developers – using improvement or non-im-
provement in parsing accuracy as an indicator, our
study also contributes to a better understanding of
the similarities and contentful differences between
semantic and syntactic representations.

Semantic dependency parsers are typically con-
ceptualized as systems for structured prediction,
combining a data-driven component that learns
how to score dependency graphs with a decoder
that retrieves one or several highest-scoring tar-
get graphs from the exponentially large search
space of candidate graphs. Among decoding algo-
rithms we find approaches based on integer linear
programming (Almeida and Martins, 2015; Peng
et al., 2017), dynamic programming algorithms
that support exact decoding for restricted classes of
graphs (Kuhlmann and Jonsson, 2015; Cao et al.,
2017), and transition-based approaches introduc-
ing new shift–reduce-style automata (Zhang et al.,
2016; Wang et al., 2018). Regarding the learning
component, state-of-the-art parsing results have
been achieved using neural architectures (Peng
et al., 2017; Wang et al., 2018; Dozat and Man-
ning, 2018). The system of Dozat and Manning
(2018) even draws essentially all of its strength
from its neural core, employing a trivial decoder.
The parser used in this paper is a (slightly modi-
fied) re-implementation of that system developed
by Roxbo (2019), which adds syntactic information
via a simple head feature, along the lines of Peng
et al. (2018).

Paper Structure. After providing some background
in Section 2, we describe the architecture of our
parser in Section 3, and our data and experimental
setup in Section 4. In Section 5 we present our
empirical results and complement them with an
error analysis in Section 6. Section 7 concludes the
paper and provides an outlook on future work.

2 Background

In both semantic and syntactic dependency parsing,
the target structures are directed graphs with lexi-
calized nodes and bilexical arcs. More formally, a
dependency graph for a sentence x = x1, . . . , xn
is an arc-labelled directed graph whose nodes are in
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He tried to take my hand to show me

Figure 1: A sample sentence with a gold-standard
semantic dependency graph in the DM represen-
tation (Flickinger et al., 2016, #41526060) (upper
half-plane) and a predicted syntactic dependency
tree in the Stanford Basic representation (lower
half-plane). (Arc labels omitted in this example.)

one-to-one correspondence to the tokens of x. For
an arc i→ j we refer to the nodes i and j as head
and dependent, respectively. We follow standard
conventions and visualize dependency graphs with
their nodes laid out on a line according to the linear
order of the sentence, and their arcs drawn in the
half-plane above (or sometimes below) the nodes.
An example graph is provided in Figure 1.

In syntactic dependency parsing, target represen-
tations are restricted to trees. Formally, a depen-
dency tree is a dependency graph that is connected,
acyclic, and such that each node except a distin-
guished root node has at most one incoming arc.
The root node has no incoming arc. In a depen-
dency tree we write h(i) to denote the head of the
incoming arc to the (non-root) node i.

3 Parser

We now give a compact description of our parser,
a version of the system of Dozat and Manning
(2018); for more details, we refer to Roxbo (2019).
We use essentially the same architecture for seman-
tic parsing and for predicting the trees over which
we define our syntactic features.

3.1 Neural Network Model
The core of our parser is a bidirectional recur-
rent neural network with Long Short-Term Mem-
ory cells (BiLSTM; Hochreiter and Schmidhu-
ber, 1997). Feeding this network with a sentence
x = x1, . . . , xn in the form of a sequence of (ini-
tially random) word embeddings wi, we obtain a
sequence of context-dependent embeddings ci:

c1, . . . , cn = BiLSTM(w1, . . . ,wn)

The word embeddings can be easily augmented by
additional lexical features, such as pre-trained word
embeddings or embeddings for part-of-speech tags
or lemmas. In this study we add embeddings cre-
ated via character-based LSTMs and 100-dimen-
sional GloVe (Pennington et al., 2014) embeddings.

The network processes the contextual token em-
beddings ci by two parallel feedforward neural net-
works (FNN), which are meant to learn specialized
representations for the potential roles of each word
as head and dependent:

hi = FNNh(ci) di = FNNd(ci)

These embeddings are then used to score each po-
tential arc i→ j via a bilinear model with weight
matrix U that will be learned during training:

score(hi,dj) = h>
i Udj

3.2 Decoding
The matrix of arc scores can be processed by any
type of arc-factored decoder to return the high-
est-scoring graph for the complete sentence. Our
semantic parser greedily selects all arcs with a non-
negative score. The syntactic parser uses the Chu–
Liu/Edmonds (CLE) maximum spanning tree algo-
rithm (Chu and Liu, 1965; Edmonds, 1967) imple-
mented in Uniparse (Varab and Schluter, 2018).

3.3 Adding Labels
To predict labelled arcs, we take two different ap-
proaches: The semantic parser computes, for each
token pair, scores for all potential labels, including
a special NONE label that represents the absence of
an arc between the two tokens; this yields a three-
dimensional score tensor rather than a score matrix.
The syntactic parser factorizes the computation and
predicts a label for each token pair independently
of the arc scorer; this label is only used if an arc is
actually selected by the decoder.

3.4 Adding Syntactic Features
To add syntactic features to our semantic parser,
we follow the same simple approach as Peng et al.
(2018): Before feeding the contextual embedding
of each token to the arc- and label-scoring compo-
nents, we extend it with the contextual embedding
of its syntactic head in the dependency tree:

c′i = [ci; ch(i)]

This simple variation has a minimal impact on the
complexity of the overall model, and makes further
analysis and comparison more straightforward.
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Parameter Value

Embeddings 100
Char LSTM 1 @ 400
Char linear 100
BiLSTM 3 @ 600
Arc/Label FNN 600

Epochs 100
Mini-batch size 50
Adam β1 0
Adam β2 0.95
Learning rate 1 · 10−3

Gradient clipping 5
Interpolation constant 0.025
L2 regularization 3 · 10−9

Table 1: Network sizes and training parameters.

3.5 Training

We train our parser with the Adam optimizer
(Kingma and Ba, 2014) and mini-batching. To
train the arc and label scorers, we use a binary and
a softmax cross-entropy loss, respectively. In the
factorized approach used by the syntactic parser,
the arc- and label-specific losses are summed up
to an overall loss, weighted by an interpolation
constant to emphasize the arc scorer:

losstotal = (1− 0.025) · lossarc + 0.025 · losslabel

Due to the size of the model and its fairly large
number of trainable parameters (see Table 1), it
is prone to overfitting. To address this, we ap-
ply equally large dropout rates to nearly all parts
of the model (see Table 2). We apply variational
dropout (Gal and Ghahramani, 2016) sharing the
same dropout mask between all time steps in a se-
quence. On the LSTM hidden states we use Drop-
Connect (Wan et al., 2013; Merity et al., 2017), a
more general variant of dropout which drops indi-
vidual connections instead of complete nodes of
the computation graph.

Substructure Rate

Embeddings 20%
Char LSTM feedforward 33%
Char LSTM recurrent 33%
Char Linear 33%
BiLSTM feedforward 45%
BiLSTM recurrent 25%
Arc FNN 25%
Arc scorer 25%
Label FNN 33%
Label scorer 33%

Table 2: Dropout rates.

4 Method

In this section we describe our data and the setup
of our experiments.

4.1 Data

The main dataset for our experiments is the English
part of the standard SDP distribution (Flickinger
et al., 2016), which contains semantic dependency
graphs for Sections 00–21 of the venerable Penn
Treebank (Marcus et al., 1993) in a predefined
train/test split, as well as graphs for out-of-domain
test sentences from the Brown Corpus (Francis and
Kučera, 1985). The graphs come in four differ-
ent representation types, of which we use three:
graphs derived from DeepBank (DM, Oepen and
Lønning, 2006; Ivanova et al., 2012); predicate–
argument structures computed by the Enju parser
(PAS, Miyao, 2006); and graphs derived from the
tectogrammatical layer of the Prague Dependency
Treebank (PSD, Hajic et al., 2012). Due to their
structural differences, the three graph types are
more or less difficult to parse into; PSD graphs,
for example, feature a considerably larger label
inventory than the other types.

The graphs in the SDP dataset come with differ-
ent types of gold-standard syntactic analyses, of
which we use Stanford Basic Dependencies (SB,
de Marneffe and Manning, 2008), derived from the
Penn Treebank, and DELPH-IN Syntactic Deriva-
tion Trees (DT, Ivanova et al., 2012), derived from
DeepBank. In addition to those we also use the
English Web Treebank (EWT) from the Universal
Dependencies (UD) project (Nivre et al., 2017),
which contains syntactic dependency trees for text
that does not overlap with the SDP data. We note
that the EWT is considerably smaller than the SDP
dataset.

4.2 Experimental Setup

We train three types of semantic dependency pars-
ing models: no syntactic features (N), features ex-
tracted from gold-standard syntax trees (G), and
features extracted from predicted syntax trees (P).
The models of type N serve as our baseline and per-
form on par with the parser of Dozat and Manning
(2018). For models of type G we use gold trees
as inputs both during training and at test time; for
models of type P, at test time we instead feed the
parser with trees predicted by our syntactic parser.
For the EWT models we use predicted trees during
both training and testing.
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Dataset Our parser StanfordNLP UDPipe

id ood id ood

SB 93.2 89.9 94.2 90.9
DT 94.0 90.3 94.9 91.7
EWT 85.9 85.4

Table 3: Parsing accuracy for our syntactic models
on the in-domain (id) and out-of-domain (ood) test
sets for the SDP data, and the regular test set for
the EWT data.

Our three syntactic models (for SB, DT, and
EWT) were trained using the same architecture and
specifications as the semantic models, but use the
factorized approach with CLE-decoding instead.
Their accuracy is reported in Table 3, with addi-
tional results from StanfordNLP (Qi et al., 2018)
and UDPipe (Straka and Straková, 2017) for ref-
erence. We note that in contrast to those systems’
results, ours were achieved without gold POS tags.

5 Empirical Results

The results for our semantic dependency parsing
models for the three graph types in the SDP dataset
are presented in Table 4. For comparison, we add
results reported by Dozat and Manning (2018) and
Peng et al. (2018), and emphasize for each test set
the overall best-performing model.

Baseline Our baseline using no syntactic features
performs comparable to the systems of Dozat and
Manning (2018) and Peng et al. (2018). We note
that the results reported for Dozat and Manning
(2018) are for models that not only use character
embeddings (which we also use), but also part-of-
speech tag embeddings (which we do not use).1

The results reported for Peng et al. (2018) are for
models that use predicted syntax. The slight advan-
tage of our baseline over the latter models suggests
that the network architecture can provide the same
benefits as additional syntactic information.

Contribution of Syntactic Structure Looking
at the results for the models informed by gold-
standard syntax, we see consistent gains in both
in-domain and out-of-domain settings, with sub-
stantial improvements of 3.1 labelled F1 points for
DM–DT, and 2.2 points for PAS–SB. The models
informed by predicted syntax, on the other hand,
do not achieve any significant improvements over

1The best-performing model of Dozat and Manning (2018)
additionally uses lemma embeddings.

the baseline, and in several cases actually perform
slightly worse than it. We saw the same trend in
additional experiments (not reported here) where
we used predicted trees even during training. Inter-
estingly, while the baseline and the models using
predicted syntax have similar F-scores, for the lat-
ter we observe a reduction of the number of false
negatives (i.e., missing arcs), but also an increase in
the number of false positives (i.e., incorrectly pre-
dicted arcs). The models using EWT trees do not
outperform the baseline, and we omit their further
investigation from the rest of the paper.

6 Error Analysis

To gain a deeper understanding for our empirical
results, we complement them with an error analysis.
For space reasons we will focus our analysis on the
DM models (Figures 2a–2c); however, we will also
discuss results from one PAS model (Figure 2d).

6.1 Error Types
Our analysis is based on a two-dimensional classi-
fication of errors. In the first dimension, for each
semantic parsing model M , we break down all er-
rors relative to the no-syntax baseline model into
the following four types:

1. false negatives of the baseline avoided by M

2. false positives of the baseline avoided by M

3. false negatives of M avoided by the baseline

4. false positives of M avoided by the baseline

Type 1 thus consists of arcs that the baseline incor-
rectly does not and the syntax-informed model M
correctly does predict, and so on.

In the second dimension, for each error type we
distinguish four different sub-categories, based on
the correspondence between the incorrectly pre-
dicted/not predicted arc i → j in the semantic
graph and the structural relation between the head
i and dependent j in the syntactic dependency tree:

(a) the dependency tree has an arc i→ j

(b) the dependency tree has an arc j → i

(c) i and j are siblings in the dependency tree

(d) none of the above

This subclassification allows us to see if there are
systematic correspondences between semantic and
syntactic relations, and to assess the impact of syn-
tactic features on the semantic parser’s ability to
handle difficult arcs.
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Model DM PAS PSD

id ood id ood id ood

N – no syntax (baseline) 92.1 87.4 92.6 89.7 79.7 77.3

DT
G – gold syntax 95.2 90.9 93.2 90.3 80.0 78.3
P – predicted syntax 92.2 89.3 92.4 88.9 79.5 77.5

SB
G – gold syntax 92.7 88.1 94.8 92.1 80.4 79.0
P – predicted syntax 92.0 87.0 92.4 88.9 79.6 77.2

EWT P – predicted syntax 91.8 87.1 92.7 89.3 79.6 77.3

Dozat and Manning (2018) 92.7 87.8 94.0 90.6 80.5 78.6
Peng et al. (2018) 91.6 86.7 78.9 77.1

Table 4: Labeled F1 for our semantic parsers on the in-domain (id) and out-of-domain (ood) test sets.
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Figure 2: Error analysis for various models when informed by syntactic features, broken down by arc
type and PoS pair. The four columns represent the four error types of Section 6.1 and colour distributions
according to gold and predicted syntax features.
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Figure 3: Relation between DM arcs and syntac-
tic features extracted from gold-standard DT trees,
broken down by arc type.

To show how syntactic heads and semantic arcs
correlate independently of the parsing model, we
add Figure 3. As we can see, arcs denoting the first
argument of a semantic predicate (ARG1) occur
mostly with syntactic arcs in the opposite direc-
tion. Similarly, a syntactic arc in the same direc-
tion often accompanies arcs denoting the second
argument of a semantic predicate (ARG2); two in-
stances from the example analysis in Figure 1 are

“take”→ “hand” and “show”→ “me”. Another
example of a clear pattern is with compound and
conjunction ( and c). Both types of arcs connect
mostly nouns, but whereas compound arcs correlate
with opposite syntactic arcs, head and dependent
in a conjunction more typically share the same syn-
tactic head (the conjunction “and”).

6.2 Results
We now explain how to read the graphs with the re-
sults of our two-dimensional error analysis for the
DM parsing models. Figure 2a shows the outcome
of this analysis when the model is informed by
syntactic features extracted from gold-standard DT
trees and evaluated on the development data. More
specifically, it shows results for those five DM arc
types for which adding syntax has the greatest ef-
fect on the absolute difference of mistakes relative
to the baseline. For each arc type we plot four
pairs of bars, one for each of the error types 1–4,
from left to right. Figure 2b breaks down results
by head–dependent part-of-speech pairs instead.
Figure 2c compares the baseline with the model
using predicted syntax, also on DM graphs and DT
trees. Note that, as the ordering follows the abso-
lute difference of mistakes, the arc types shown in
Figure 2c are not the same as the ones in Figure 2a.

In all plots, the two bars in each of the four pairs
of bars show the (colour-coded) distributions of
the types (a)–(d) relative to gold-standard syntax
(first bar) and predicted syntax (second bar); thus
the distribution relative to the syntactic information
actually used by each model is in the first bar in
Figures 2a–2b (models informed by gold-standard
syntax), and in the second bars in Figure 2c (models
informed by predicted syntax).

6.3 Relation between Syntax and Semantics

To directly compare how gold-standard and pre-
dicted syntax relate to semantic arcs, we look at
the differently coloured sub-columns in Figures 2a
and 2b. We recall that these figures compare the no-
syntax baseline to a model informed by syntactic
features extracted from gold-standard analyses.

The errors avoided by the syntax-informed
model (columns 1 and 2) have similar syntactic-
head distributions as the general distribution in Fig-
ure 3 when looking at gold syntax. The distribution
for predicted syntax does not match, due to wrong
predictions when parsing these related substruc-
tures. For example, in the predicted syntax, much
fewer of the avoided false negative ARG1 arcs have
syntactic arcs in the opposite direction, and instead
many more of the false positives (error type 2). Us-
ing a syntactic arc in the opposite direction as an
indicator, fewer false negatives would have been
avoided and more false positives would have been
predicted. This shows that the baseline system and
the syntactic parser have difficulties analyzing the
same substructures.

In Section 6 we stated that the model informed
by predicted syntax increases recall at the cost of
precision. This is illustrated by Figure 2c, and most
pronounced for the ARG1 type, where the number
of baseline false negatives avoided by the syntax-
informed model (column 1) is almost as large as
the number of model false positives avoided by
the baseline (column 4). The error types (a)–(d)
follow the same distribution when the syntax-en-
hanced model improves over the baseline, but di-
verge when not. This finding suggests that, unsur-
prisingly, syntactic information helps when it is
correct, and interferes otherwise. An improved sys-
tem would ideally know when to trust its predicted
syntax and when to rather fall back on the baseline
prediction.
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death in a plane crash of his old boss

will go a long way toward enhancing

Figure 4: Graph fragments for sentences
#22013118 and #22012010. Semantic arcs are
shown in black, syntactic arcs in red. False nega-
tives are drawn with continuous lines, false posi-
tives are drawn with dashed lines.

6.4 Where can Syntax help?
In order to better understand where syntax helps the
semantic dependency parser, we look at the part-of-
speech pairs of head and dependent in Figure 2b.
The five pairs which receive the largest improve-
ment when informed by gold-standard syntax can
be divided into two groups:

(i) arcs between prepositions (IN) and nouns
(NN, NNS)

(ii) arcs between multiple (proper) nouns (NN,
NNS, NNP, NNPS)

Prepositional Attachment The arcs in group (i),
between prepositions and nouns, represent the ma-
jority of baseline errors not only in the case of
DM/DT but also in the case of PAS/SB, where they
correspond (roughly) to the arc type prep ARG1 in
Figure 2d. Figure 4 shows two graph fragments
with arcs from this group; these fragments hap-
pen to be identical for DM/DT and for PAS/SB. In
the two examples the gold-standard syntactic arc
goes into the opposite direction than the semantic
arc (our type b), and this regularity seems to be
learned by the models informed by gold-standard
syntax to such a degree that when the syntactic arc
is incorrectly predicted, the parser also makes a
corresponding mistake on the semantic side: In the
examples, the prepositional phrase “of his old boss”
is wrongly attached to the neighbouring “plane
crash”, while “toward” is attached to the distant
predicate “use” instead of the neighbouring “way”.
Examples of this kind seem to suggest that having
access to gold-standard syntax essentially ‘solves’
the prediction problem on the semantic side.

Compounds and Conjuncts The arcs in
group (ii) include both compounds and conjuncts.
The difficulties with compounds lie in determining
which token is the governing head of the complete
phrase and deciding which tokens are part of
the compound. They naturally appear as part
of conjunctions as well, where the difficulty
of correctly identifying the heads of the two
conjuncts is the same as identifying the heads of
the compounds themselves. Similar to what we
observed for preposition–noun arcs, having the
governing head basically given by a syntactic arc,
essentially eliminates the problem for compounds
and conjuncts.

The example in Figure 5 showcases how failing
to recognize a compound results in a cascade of
follow-up mistakes. While “guerrilla action” is
recognized as a compound, “siege tactics” is not.
The word “tactics” is left out of the compound
and therefore also the conjunct, receiving “use” as
its syntactic head instead. This leads the seman-
tic parser to not only fail to analyse the second
compound and hence also the conjunct, but also
attaching “tactics” as second argument (ARG2) to
the predicate “use”, instead of the actual head of
the complete phrase, “action”.

6.5 Where can Syntax not help?

While syntactic information appears to help the
semantic parser in some cases, there are similar
examples where syntax does not seem to be able
to help at all, two of which are shown in Figure 6.

use guerrilla action and siege tactics

and c / compound

Figure 5: Graph fragments for sentence #22052046.
Semantic arcs are shown above, syntactic arcs be-
low the words. False negatives are shown in blue,
false positives dashed. The blue dashed arc is an
incorrectly labelled arc, annotated with the correct
and the predicted label.
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beheading of Hugo Spadafora

dislike of President Bush’s proposal

Figure 6: Graph fragments for sentences
#22013141 and #22030001. Semantic arcs are
shown in black, syntactic arcs in red. False nega-
tives are drawn with continuous lines, false posi-
tives are drawn with dashed lines.

Both graph fragments contain a nominalized verb
(“beheading” and “dislike”) followed by “of” and
the object of the nominalization (“Spadafora” and

“proposal”). In both cases, the parser has access to
gold-standard syntax that connects the nominaliza-
tion, the preposition and the object left to right. In
the first instance, the parser interprets the nominal-
ization and the object both as arguments of “of”,
instead of directly attaching the object as an argu-
ment to the nominalization. In the second instance,
the intended and observed behaviours are switched.

7 Conclusion

Our re-implementation of the state-of-the-art se-
mantic dependency parsing architecture of Dozat
and Manning (2018) performs on par with that sys-
tem. Surprisingly, adding syntactic features to the
standard lexical and morphological embeddings
does not generally increase parsing accuracy. More
specifically, while gold-standard syntactic informa-
tion is highly beneficial, yielding accuracies signif-
icantly above the state of the art, adding predicted
syntax does not lead to consistent improvements.

Our error analysis shows that there is some over-
lap of the information that syntactic dependency
trees and semantic dependency graphs encode, in
the sense that both tend to mirror each other. We
have provided examples for cases that are difficult
to analyze due to their inherent ambiguity. In some
cases, these examples suggest that adding gold-
standard syntax essentially also reveals the correct
semantic analysis to the parser. This means that
high-precision syntactic parsing holds significant

promises even for semantic parsing, but our experi-
ments suggest that the state of the art in syntactic
dependency parsing may still be too low to fully
capitalize on this potential. We believe however,
that a joint syntactic–semantic parser that is able
to dynamically leverage both structures (trained,
perhaps, using a multi-task objective), would be an
opportunity for further advances in both syntactic
and semantic dependency parsing.
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Abstract

In this paper, we critically evaluate the
widespread assumption that deep learning
NLP models do not require lemmatized
input. To test this, we trained versions
of contextualised word embedding ELMo
models on raw tokenized corpora and on
the corpora with word tokens replaced by
their lemmas. Then, these models were
evaluated on the word sense disambigua-
tion task. This was done for the English
and Russian languages.

The experiments showed that while
lemmatization is indeed not necessary for
English, the situation is different for Rus-
sian. It seems that for rich-morphology
languages, using lemmatized training
and testing data yields small but con-
sistent improvements: at least for word
sense disambiguation. This means that
the decisions about text pre-processing
before training ELMo should consider
the linguistic nature of the language in
question.

1 Introduction

Deep contextualised representations of linguistic
entities (words and/or sentences) are used in many
current state-of-the-art NLP systems. The most
well-known examples of such models are arguably
ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019).

A long-standing tradition if the field of apply-
ing deep learning to NLP tasks can be summarised
as follows: as minimal pre-processing as possible.
It is widely believed that lemmatization or other
text input normalisation is not necessary. Ad-
vanced neural architectures based on character in-
put (CNNs, BPE, etc) are supposed to be able to

∗Both authors contributed equally to the paper.

learn how to handle spelling and morphology vari-
ations themselves, even for languages with rich
morphology: ‘just add more layers!’. Contextu-
alised embedding models follow this tradition: as
a rule, they are trained on raw text collections,
with minimal linguistic pre-processing. Below, we
show that this is not entirely true.

It is known that for the previous generation
of word embedding models (‘static’ ones like
word2vec (Mikolov et al., 2013), where a word
always has the same representation regardless of
the context in which it occurs), lemmatization of
the training and testing data improves their perfor-
mance. Fares et al. (2017) showed that this is true
at least for semantic similarity and analogy tasks.

In this paper, we describe our experiments in
finding out whether lemmatization helps modern
contextualised embeddings (on the example of
ELMo). We compare the performance of ELMo
models trained on the same corpus before and af-
ter lemmatization. It is impossible to evaluate con-
textualised models on ‘static’ tasks like lexical se-
mantic similarity or word analogies. Because of
this, we turned to word sense disambiguation in
context (WSD) as an evaluation task.

In brief, we use contextualised representations
of ambiguous words from the top layer of an
ELMo model to train word sense classifiers and
find out whether using lemmas instead of tokens
helps in this task (see Section 5). We experiment
with the English and Russian languages and show
that they differ significantly in the influence of
lemmatization on the WSD performance of ELMo
models.

Our findings and the contributions of this paper
are:

1. Linguistic text pre-processing still matters in
some tasks, even for contemporary deep rep-
resentation learning algorithms.

2. For the Russian language, with its rich mor-
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English Russian

Source Wikipedia Wikipedia + RNC
Size, tokens 2 174 mln 989 mln
Size, lemmas 1 977 mln 988 mln

Table 1: Training corpora

phology, lemmatizing the training and testing
data for ELMo representations yields small
but consistent improvements in the WSD
task. This is unlike English, where the dif-
ferences are negligible.

2 Related work

ELMo contextual word representations are learned
in an unsupervised way through language mod-
elling (Peters et al., 2018). The general archi-
tecture consists of a two-layer BiLSTM on top
of a convolutional layer which takes character se-
quences as its input. Since the model uses fully
character-based token representations, it avoids
the problem of out-of-vocabulary words. Because
of this, the authors explicitly recommend not to
use any normalisation except tokenization for the
input text. However, as we show below, while
this is true for English, for other languages feed-
ing ELMo with lemmas instead of raw tokens can
improve WSD performance.

Word sense disambiguation or WSD (Navigli,
2009) is the NLP task consisting of choosing a
word sense from a pre-defined sense inventory,
given the context in which the word is used.
WSD fits well into our aim to intrinsically eval-
uate ELMo models, since solving the problem of
polysemy and homonymy was one of the original
promises of contextualised embeddings: their pri-
mary difference from the previous generation of
word embedding models is that contextualised ap-
proaches generate different representations for ho-
mographs depending on the context. We use two
lexical sample WSD test sets, further described in
Section 4.

3 Training ELMo

For the experiments described below, we trained
our own ELMo models from scratch. For En-
glish, the training corpus consisted of the En-
glish Wikipedia dump1 from February 2017. For

1https://dumps.wikimedia.org/

Russian, it was a concatenation of the Russian
Wikipedia dump from December 2018 and the full
Russian National Corpus2 (RNC). The RNC texts
were added to the Russian Wikipedia dump so as
to make the Russian training corpus more compa-
rable in size to the English one (Wikipedia texts
would comprise only half of the size). As Table
1 shows, the English Wikipedia is still two times
larger, but at least the order is the same.

The texts were tokenized and lemmatized with
the UDPipe models for the respective languages
trained on the Universal Dependencies 2.3 tree-
banks (Straka and Straková, 2017). UDPipe yields
lemmatization accuracy about 96% for English
and 97% for Russian3; thus for the task at hand,
we considered it to be gold and did not try to fur-
ther improve the quality of normalisation itself (al-
though it is not entirely error-free, see Section 4).

ELMo models were trained on these corpora us-
ing the original TensorFlow implementation4, for
3 epochs with batch size 192, on two GPUs. To
train faster, we decreased the dimensionality of the
LSTM layers from the default 4096 to 2048 for all
the models.

4 Word sense disambiguation test sets

We used two WSD datasets for evaluation:

• Senseval-3 for English (Mihalcea et al., 2004)

• RUSSE’18 for Russian (Panchenko et al.,
2018)

The Senseval-3 dataset consists of lexical sam-
ples for nouns, verbs and adjectives; we used only
noun target words:

1. argument

2. arm

3. atmosphere

4. audience

5. bank

6. degree

7. difference

8. difficulty
2http://ruscorpora.ru/en/
3http://ufal.mff.cuni.cz/udpipe/

models#universal_dependencies_23_models
4https://github.com/allenai/bilm-tf
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9. disc

10. image

11. interest

12. judgement

13. organization

14. paper

15. party

16. performance

17. plan

18. shelter

19. sort

20. source

An example for the ambiguous word argument
is given below:

In some situations Postscript can be faster than
the escape sequence type of printer control file. It
uses post fix notation, where arguments come first
and operators follow. This is basically the same
as Reverse Polish Notation as used on certain cal-
culators, and follows directly from the stack based
approach.

It this sentence, the word ‘argument’ is used in
the sense of a mathematical operator.

The RUSSE’18 dataset was created in 2018 for
the shared task in Russian word sense induction.
This dataset contains only nouns; the list of words
with their English translations is given in Table 2.

Originally, it includes also the words байка
‘tale/fleece’ and гвоздика ’clove/small nail’, but
their senses are ambiguous only in some inflec-
tional forms (not in lemmas), therefore we decided
to exclude these words from evaluation.

The Russian dataset is more homogeneous com-
pared to the English one, as for all the target words
there is approximately the same number of context
words in the examples. This is achieved by apply-
ing the lexical window (25 words before and after
the target word) and cropping everything that falls
outside of that window. In the English dataset, on
the contrary, the whole paragraph with the target
word is taken into account. We have tried crop-
ping the examples for English as well, but it did
not result in any change in the quality of classi-
fication. In the end, we decided not to apply the

Target word Translation

акция ‘stock/marketing event’
гипербола ‘hyperbola/exaggeration’
град ‘hail/city’
гусеница ‘caterpillar/track’
домино ‘dominoes/costume’
кабачок ‘squash/restaurant’
капот ‘hood (part of a car/clothing)’
карьер ‘mine/fast pace of a horse’
кок ‘cook/hairstyle’
крона ‘crown (tree/coin)’
круп ‘crupper (part of a horse/illness)’
мандарин ‘fruit/a Chinese official’
рок ‘rock (music/destiny)’
слог ‘syllable/text style’
стопка ‘stack/glass’
таз ‘basin/human body part’
такса ‘tariff/dog breed’
шах ‘check/prince’

Table 2: Target ambiguous words for Russian
(RUSSE’18)

lexical window to the English dataset so as not to
alter it and rather use it in the original form.

Here is an example from the RUSSE’18 for
the ambiguous word мандарин ‘mandarin’ in the
sense ‘Chinese official title’:
“...дипломатического корпуса останкам

богдыхана и императрицы обставлено было
с необычайной торжественностью. Тысячи
мандаринов и других высокопоставленных
лиц разместились шпалерами на трех мра-
морных террасах ведущих к...”

‘...the diplomatic bodies of the Bogdikhan and
the Empress was furnished with extraordinary
solemnity. Thousands of mandarins and other dig-
nitaries were placed on three marble terraces lead-
ing to...’.

Table 3 compares both datasets. Before usage,
they were pre-processed in the same way as the
training corpora for ELMo (see Section 3), thus
producing a lemmatized and a non-lemmatized
versions of each.

As we can see from Table 3, for 20 target words
in English there are 24 lemmas, and for 18 tar-
get words in Russian there are 36 different lem-
mas. These numbers are explained by occasional
errors in the UDPipe lemmatization. Another in-
teresting thing to observe is the number of distinct
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Property Senseval-3 RUSSE’18

Target words 20 18
Distinct target forms 39 132
Distinct target lemmas 24 36

Examples per target 171 126
Tokens per example 126 25
Senses per target 6 2

Table 3: Characteristics of the WSD datasets. The
numbers in the lower part are average values.

word forms for every language. For English, there
are 39 distinct forms for 20 target nouns: singu-
lar and plural for every noun, except ‘atmosphere’
which is used only in the singular form. Thus,
inflectional variability of English nouns is cov-
ered by the dataset almost completely. For Rus-
sian, we observe 132 distinct forms for 18 target
nouns, giving more than 7 inflectional forms per
each word. Note that this still covers only half of
all the inflectional variability of Russian: this lan-
guage features 12 distinct forms for each noun (6
cases and 2 numbers).

To sum up, the RUSSE’18 dataset is morpho-
logically far more complex than the Senseval3, re-
flecting the properties of the respective languages.
In the next section we will see that this leads to
substantial differences regarding comparisons be-
tween token-based and lemma-based ELMo mod-
els.

5 Experiments

Following Gorman and Bedrick (2019), we de-
cided to avoid using any standard train-test splits
for our WSD datasets. Instead, we rely on per-
word random splits and 5-fold cross-validation.
This means that for each target word we randomly
generate 5 different divisions of its context sen-
tences list into train and test sets, and then train
and test 5 different classifier models on this data.
The resulting performance score for each target
word is the average of 5 macro-F1 scores produced
by these classifiers.

ELMo models can be employed for the WSD
task in two different ways: either by fine-tuning
the model or by extracting word representations
from it and then using them as features in a down-
stream classifier. We decided to stick to the sec-
ond (feature extraction) approach, since it is con-
ceptually and computationally simpler. Addition-

Model English Russian

Baselines

Random ≈ 0.138 ≈ 0.444
MFS 0.119 0.391

Tokens

SGNS (averaged) 0.299 0.851
ELMo (averaged) 0.362 0.885
ELMo (target) 0.463 0.875

Lemmas

SGNS (averaged) 0.300 0.854
ELMo (averaged) 0.365 0.888
ELMo (target) 0.452 0.907

Table 4: Averaged macro-F1 scores for WSD

ally, Peters et al. (2019) showed that for most NLP
tasks (except those focused on sentence pairs) the
performance of feature extraction and fine-tuning
is nearly the same. Thus we extracted the single
vector of the target word from the ELMo top layer
(‘target’ rows in Table 4) or the averaged ELMo
top layer vectors of all words in the context sen-
tence (‘averaged’ rows in Table 4).

For comparison, we also report the scores of
the ‘averaged vectors’ representations with Con-
tinuous Skipgram (Mikolov et al., 2013) embed-
ding models trained on the English or Russian
Wikipedia dumps (‘SGNS’ rows): before the ad-
vent of contextualised models, this was one of the
most widely used ways to ‘squeeze’ the mean-
ing of a sentence into a fixed-size vector. Of
course it does not mean that the meaning of a sen-
tence always determines the senses all its words
are used in. However, averaging representations
of words in contexts as a proxy to the sense of one
particular word is a long established tradition in
WSD, starting at least from Schütze (1998). Also,
since SGNS is a ‘static’ embedding model, it is of
course not possible to use only target word vectors
as features: they would be identical whatever the
context is.

Simple logistic regression was used as a classifi-
cation algorithm. We also tested a multi-layer per-
ceptron (MLP) classifier with 200-neurons hidden
layer, which yielded essentially the same results.
This leads us to believe that our findings are not
classifier-dependent.

Table 4 shows the results, together with the ran-
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Figure 1: Word sense disambiguation perfor-
mance on the English data across words (ELMo
target models).

dom and most frequent sense (MFS) baselines for
each dataset.

First, ELMo outperforms SGNS for both lan-
guages, which comes as no surprise. Second, the
approach with averaging representations from all
words in the sentence is not beneficial for WSD
with ELMo: for English data, it clearly loses to
a single target word representation, and for Rus-
sian there are no significant differences (and using
a single target word is preferable from the com-
putational point of view, since it does not require
the averaging operation). Thus, below we discuss
only the single target word usage mode of ELMo.

But the most important part is the comparison
between using tokens or lemmas in the train and
test data. For the ‘static’ SGNS embeddings, it
does not significantly change the WSD scores for
both languages. The same is true for English
ELMo models, where differences are negligible
and seem to be simple fluctuations. However, for
Russian, ELMo (target) on lemmas outperforms
ELMo on tokens, with small but significant5 im-
provement. The most plausible explanation for
this is that (despite of purely character-based in-
put of ELMo) the model does not have to learn id-
iosyncrasies of a particular language morphology.
Instead, it can use its (limited) capacity to better
learn lexical semantic structures, leading to better
WSD performance. The box plots 1 and 2 illus-
trate the scores dispersion across words in the test
sets for English and Russian correspondingly (or-
ange lines are medians). In the next section 6 we

5At p value of 0.1, according to the Welch’s t-test.

Figure 2: Word sense disambiguation perfor-
mance on the Russian data across words (ELMo
target models).

Word Tokens Lemmas STD

акция 0.876 0.978 0.050
крона 0.978 1.000 0.018
круп 0.927 1.000 0.070

домино 0.910 0.874 0.057

Table 5: F1 scores for target words from
RUSSE’18 with significant differences between
lemma-based and token-based models

analyse the results qualitatively.

6 Qualitative analysis

In this section we focus on the comparison of
scores for the Russian dataset. The classifier for
Russian had to choose between fewer classes (two
or three), which made the scores higher and more
consistent than for the English dataset. Overall,
we see improvements in the scores for the major-
ity of words, which proves that lemmatization for
morphologically rich languages is beneficial.

We decided to analyse more closely those words
for which the difference in the scores between
lemma-based and token-based models was statisti-
cally significant. By ‘significant’ we mean that the
scores differ by more that one standard deviation
(the largest standard deviation value in the two sets
was taken). The resulting list of targets words with
significant difference in scores is given in Table 5.

We can see that among 18 words in the dataset
only 3 exhibit significant improvement in their
scores when moving from tokens to lemmas in the
input data. It shows that even though the over-
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all F1 scores for the Russian data have shown the
plausibility of lemmatization, this improvement is
mostly driven by a few words. It should be noted
that these words’ scores feature very low standard
deviation values (for other words, standard devia-
tion values were above 0.1, making F1 differences
insignificant). Such a behaviour can be caused by
more consistent differentiation of context for var-
ious senses of these 3 words. For example, with
the word кабачок ‘squash / small restaurant’, the
contexts for both senses can be similar, since they
are all related to food. This makes the WSD scores
unstable. On the other hand, for акция ‘stock,
share / event’, крона ‘crown (tree / coin)’ or круп
‘croup (horse body part / illness)’, their senses are
not related, which resulted in more stable results
and significant difference in the scores (see Table
5).

There is only one word in the RUSSE’18
dataset for which the score has strongly decreased
when moving to lemma-based models: домино
‘domino (game / costume)’. In fact, the score dif-
ference here lies on the border of one standard de-
viation, so strictly speaking it is not really signifi-
cant. However, the word still presents an interest-
ing phenomenon.

Домино is the only target noun in the
RUSSE’18 that has no inflected forms, since it is a
borrowed word. This leaves no room for improve-
ment when using lemma-based ELMo models: all
tokens of this word are already identical. At the
same time, some information about inflected word
forms in the context can be useful, but it is lost
during lemmatization, and this leads to the de-
creased score. Arguably, this means that lemmati-
zation brings along both advantages and disadvan-
tages for WSD with ELMo. For inflected words
(which constitute the majority of Russian vocab-
ulary) profits outweigh the losses, but for atypical
non-changeable words it can be the opposite.

The scores for the excluded target words бай-
ка ‘tale / fleece’ and гвоздика ’clove / small nail’
are given in Table 6 (recall that they were excluded
because of being ambiguous only in some inflec-
tional forms). For these words we can see a great
improvement with lemma-based models. This, of
course stems from the fact that these words in dif-
ferent senses have different lemmas. Therefore,
the results are heavily dependent on the quality of
lemmatization.

Word Tokens Lemmas STD

байка 0.421 0.627 0.099
гвоздика 0.553 0.619 0.038

Table 6: F1 scores for the excluded target words
from RUSSE’18.

7 Conclusion

We evaluated how the ability of ELMo contextu-
alised word embedding models to disambiguate
word senses depends on the nature of the train-
ing data. In particular, we compared the models
trained on raw tokenized corpora and those trained
on the corpora with word tokens replaced by their
normal forms (lemmas). The models we trained
are publicly available via the NLPL word embed-
dings repository6 (Fares et al., 2017).

In the majority of research papers on deep learn-
ing approaches to NLP, it is assumed that lemma-
tization is not necessary, especially when using
powerful contextualised embeddings. Our experi-
ments show that this is indeed true for languages
with simple morphology (like English). However,
for rich-morphology languages (like Russian), us-
ing lemmatized training data yields small but con-
sistent improvements in the word sense disam-
biguation task. These improvements are not ob-
served for rare words which lack inflected forms;
this further supports our hypothesis that better
WSD scores of lemma-based models are related
to them better handling multiple word forms in
morphology-rich languages.

Of course, lemmatization is by all means not
a silver bullet. In other tasks, where inflectional
properties of words are important, it can even hurt
the performance. But this is true for any NLP sys-
tems, not only deep learning based ones.

The take-home message here is twofold: first,
text pre-processing still matters for contemporary
deep learning algorithms. Their impressive learn-
ing abilities do not always allow them to infer nor-
malisation rules themselves, from simply optimis-
ing the language modelling task. Second, the na-
ture of language at hand matters as well, and dif-
ferences in this nature can result in different deci-
sions being optimal or sub-optimal at the stage of
deep learning models training. The simple truth
‘English is not representative of all languages on
Earth’ still holds here.

6http://vectors.nlpl.eu/repository/
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In the future, we plan to extend our work by
including more languages into the analysis. Us-
ing Russian and English allowed us to hypothe-
sise about the importance of morphological char-
acter of a language. But we only scratched the
surface of the linguistic diversity. To verify this
claim, it is necessary to analyse more strongly
inflected languages like Russian as well as more
weakly inflected (analytical) languages similar to
English. This will help to find out if the inflection
differences are important for training deep learn-
ing models across human languages in general.
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Abstract

The multilingual BERT model is trained
on 104 languages and meant to serve as a
universal language model and tool for en-
coding sentences. We explore how well
the model performs on several languages
across several tasks: a diagnostic classifi-
cation probing the embeddings for a par-
ticular syntactic property, a cloze task test-
ing the language modelling ability to fill in
gaps in a sentence, and a natural language
generation task testing for the ability to
produce coherent text fitting a given con-
text. We find that the currently available
multilingual BERT model is clearly infe-
rior to the monolingual counterparts, and
cannot in many cases serve as a substitute
for a well-trained monolingual model. We
find that the English and German models
perform well at generation, whereas the
multilingual model is lacking, in particu-
lar, for Nordic languages.1

1 Introduction

The language representation model BERT (Bidi-
rectional Encoder Representations from Trans-
formers) has been shown to achieve state-of-the-
art performance when fine-tuned on a range of
downstream tasks related to language understand-
ing (Devlin et al., 2018), and recently also lan-
guage generation. In addition to downstream
applications, many recent studies have explored
more directly how various types of linguistic in-
formation is captured in BERT’s representations.

However, all such studies we are aware of
are conducted for English using the monolin-

∗The marked authors contributed equally to this paper.
1The code of the experiments in the paper is available at:

https://github.com/TurkuNLP/bert-eval

gual BERT model as the availability of pre-
trained BERT models for other languages is ex-
tremely scarce. For the vast majority of languages,
the only option is the multilingual BERT model
trained jointly on 104 languages. In “coffee break”
discussions, it is often mentioned that the multi-
lingual BERT model lags behind the monolingual
models in terms of quality and cannot serve as a
drop-in replacement.

In this paper, we therefore set out to test
the multilingual model on several tasks and sev-
eral languages (primarily Nordic), to establish
whether, and to what extent this is the case, as well
as to establish at least an order-of-magnitude ex-
pectation of the performance of the present mul-
tilingual BERT model on these tasks and lan-
guages. It must be stressed that this paper deals
with the particular multilingual model distributed
by the BERT creators, rather than the more general
question of comparison of the multilingual and
monolingual training schedule. Studying those
questions would necessitate training multilingual
BERT models with resource requirements far be-
yond those at our disposal.

We put a particular focus on the natural lan-
guage generation (NLG) task, which we hypoth-
esize requires a deeper understanding of the lan-
guage in question on the side of the model. We
take English and German, for which monolingual
versions of BERT are available, as reference lan-
guages, in order to compare how they perform in
the mono- vs. multilingual settings. Furthermore,
we perform experiments with the Nordic lan-
guages of Danish, Finnish, Norwegian (Bokmål
and Nynorsk) and Swedish, with in-depth eval-
uations on Finnish and Swedish, as well as the
abovementioned two reference languages.

2 Related Work

A BERT model is comprised of several layers of
stacked Transformer networks (Vaswani et al.,
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2017), each providing representations of both the
input sequence and its individual tokens. The
model incorporates a tokenizer that splits an input
sentence into words, or subword units for words
or word forms that are relatively infrequent in the
training data.

Several recent studies have explored how BERT
captures linguistic information in English, and
how it is distributed across layers. (Tenney et al.,
2019; Jawahar et al., 2019; Clark et al., 2019)
A particular line of inquiry has focused on how
much hierarchical understanding of a language
and knowledge of the syntactic structure is cap-
tured in the word representations of the monolin-
gual English BERT model. In Goldberg (2019),
the BERT models are shown to perform well on
capturing several syntactic phenomena of the En-
glish language. The paper shows the model to
favor the correct subject-verb agreement over the
wrong one even if the input is crafted to mislead
the model with agreement attractors, i.e. an inter-
vening subordinate clause with opposite number
of the subject. BERT is also shown to perform
well on the agreement task even if tokens are ran-
domly substituted from the same part-of-speech
category, making the input semantically meaning-
less while preserving the syntactic structure.

Similarly, Ettinger (2019) evaluates the BERT
model on several English psycholinguistic
datasets, where the model is shown generally
being able to distinguish a good completion
from a bad one, while still failing in some more
complex categories, for example being insensitive
to negation.

Lin et al. (2019) uses a diagnostic classifier to
study to which extent syntactic or positional infor-
mation can be predicted from the English BERT
embeddings, and how this information is carried
through the different layers.

The multilingual BERT model is studied in the
context of zero-shot cross-lingual transfer, where
it is shown to perform competitively to other trans-
fer models. (Pires et al., 2019; Wu and Dredze,
2019)

Text generation with BERT is introduced by
Wang and Cho (2019), who demonstrate several
different algorithms to generate language with a
BERT model. They demonstrate that BERT even
though not being trained on an explicit language
generation objective, is capable of generating co-
herent, varied language.

Language BERT Test acc. Baseline
English mono 86.03 54.93

multi 87.82 54.44
German mono 97.27 69.61

multi 95.29 69.19
Danish multi 89.96 53.25
Finnish multi 93.20 50.54
Nor. (Bokmål) multi 93.67 56.19
Nor. (Nynorsk) multi 94.44 53.18
Swedish multi 93.00 62.09

Table 1: Diagnostic classifier results. Auxiliary
classification task accuracies and majority class
baselines for all languages.

3 Experiments

We evaluate the BERT models on 6 languages,
English, German, Swedish, Finnish, Danish, and
Norwegian (Bokmål and Nynorsk), and three dif-
ferent tasks. In addition to automatic metrics, the
generated output is manually evaluated for En-
glish, German, Swedish, and Finnish, the four lan-
guages that at least one of the authors is fluent in,
and therefore comfortable evaluating. For English
and German there are monolingual BERT mod-
els available, which we use as references to eval-
uate the performance of the multilingual BERT
model.2 We further compare performance among
these languages and the four Nordic languages in
order to assess its utility for such relatively low-
resource languages. In all evaluation tasks, we use
data from the Universal Dependencies (UD) ver
2.4 treebanks (Nivre et al., 2016, 2019) for the lan-
guages in question.3

3.1 Diagnostic Classifier
As an initial experiment, we train a diagnostic
classifier to predict whether an auxiliary is the
main auxiliary of its sentence, in order to assess
how well the BERT encodings represent elemen-
tary linguistic information including hierarchical
understanding of a sentence. The task is inspired
by Lin et al. (2019) who use it as one way of
testing what kind of linguistic knowledge BERT

2For multilingual and English monolingual experi-
ments we used the official models by the original BERT
authors, namely bert-base-multilingual-cased
and bert-base-uncased. For German monolin-
gual experiments we use the model provided by Deepset
(bert-base-german-cased).

3Treebanks are English-EWT, German-HDT (part a),
Swedish-Talbanken, Finnish-TDT, Danish-DDT, Norwegian-
Bokmaal, and Norwegian-Nynorsk.
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is able to encode. Specifically, they use it as a
proxy for assessing whether BERT has a hierar-
chical representation of sentences, as it is neces-
sary information for differentiating between main
and subordinate clause or coordinate clause auxil-
iaries.

All words marked with the part-of-speech tag
AUX in the treebank data are taken as prediction
candidates, where the target is a binary classifica-
tion as to whether the auxiliary is dependent on
the root token of the sentence or not. The input of
the classifier is the final-layer BERT embedding
for the auxiliary. In case the auxiliary token is
tokenized into multiple subword units, each sub-
word representation is fed as a separate instance,
and thus classified independently. We expect each
subword embedding to encode the relevant knowl-
edge of both the whole word and its function in the
sentence.

The classifier consists of 768 input units corre-
sponding to the BERT base embedding size and a
softmax layer. The model is trained separately for
all languages and available BERT model configu-
rations, using treebank training sections, and SGD
otimizer for 50 epochs. For improved comparabil-
ity, the train set size is capped for all languages to
that of the smallest treebank (Swedish), for which
we were able to extract 3031 training examples.
The treebank test sets yield 1002–1217 examples,
with the exception of Danish with 515 examples.

The results evaluated on the treebank test sets
are listed in Table 1, where we measure subword
classification accuracy. The majority class base-
line frequencies are listed as reference; they tend
to be relatively balanced, although somewhat tilted
towards main auxiliaries. There is a notable 2 per-
centage point decrease for German with multilin-
gual BERT, whereas English exhibits a 1.8 point
increase. Comparison between languages is prob-
lematic, but we observe that all perform relatively
well on the task.4 Albeit our results not being
directly comparable with Lin et al., our findings
are in line with their work, indicating BERT being
able to encode hierarchical sentence information
in all languages, and most interestingly, the same
holds also for the multilingual BERT model.

4The slight variation in baseline between models for the
same language is likely influenced by differing tokenization.

Mono Multi
English 45.92 33.94
German 43.93 28.10
Swedish 22.30
Finnish 14.56
Danish 25.07
Norwegian (Bokmål) 25.21
Norwegian (Nynorsk) 22.28

Table 2: Results for the cloze test in terms of sub-
word predictions accuracy.

3.2 Cloze Test

Moving towards natural language generation, and
to evaluate the BERT models with respect to their
original training objective, we employ a cloze test,
where words are randomly masked and predicted
back. We mask a random 15% of words in each
sentence, and, in case a word is composed of sev-
eral subwords, all subwords are masked for an eas-
ier and more meaningful evaluation. All masked
positions are predicted at once in the same man-
ner as done in the BERT pretraining (i.e. no itera-
tive prediction of one position per time step). As a
source of sentences, we use the training sections of
the treebanks, limited to sentences of 5–50 tokens
in length.

The results are shown in Table 2, where we
measure subword level prediction accuracy, i.e.
how many times the model gives the highest con-
fidence score for the original subword. Over-
all, we find that the multilingual model substan-
tially lags behind the monolingual variants (at 15–
34% vs. 44–45% accuracy), even though the per-
formance at worst is far from trivial. We also
observe a notable difference in performance of
the multilingual model across the languages, be-
ing able to correctly predict between 15% and
34% of the masked subwords. English and Ger-
man score highest also in the multilingual set-
ting, whereas the Scandinavian languages perform
somewhat worse, but similarly among themselves.
Finnish stands out as the most challenging.

In order to gain a better understanding of the
predictions, we perform a manual evaluation on
four languages to observe whether the model is
able to fill the gaps with plausible predictions
although differing from the original. We manually
categorize each predicted word into one of the
following categories:
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match mismatch copy gibb
Eng mono 88% 9% 1% 1%

multi 72% 15% 8% 6%
Ger mono 82% 12% 1% 5%

multi 69% 15% 6% 10%
Fin multi 42% 15% 3% 39%
Swe multi 56% 19% 2% 23%

Table 3: Manual evaluation of words generated in
the cloze test.

• match: A real word fitting the context both
grammatically and semantically

• mismatch: A real word that does not fit the
context

• copy: An unnatural repetition of a word ap-
pearing in the nearby context

• gibberish: Subwords do not form a real
word, or the prediction forms a meaningless
sequence of tokens (e.g. sequence of punctu-
ation tokens)

An example prediction of each category is given
in Figure 1 and the evaluation results are summa-
rized in Table 3. These even further demonstrate
the capability of the monolingual models, with
82–88% of the generated words fitting the context
both syntactically and semantically, i.e. being an
acceptable substitution for the masked word in the
given context.

By contrast, the matches decrease for German
and English, using the multilingual model, to 69%
and 72% respectively. Finnish and Swedish per-
form significantly worse, with match rates at 42%
and 56%. The evaluation is based on 50–100 sen-
tences per language and model, and about 100–
200 predicted words in each case.

The other categories display similar trends: the
semantically or syntactically mismatching words
increase for the multilingual model, and in partic-
ular the amount of gibberish surges for the Nordic
languages. The fact that prediction in Finnish
exhibits almost twice as much gibberish as in
Swedish is likely influenced by the morphological
richness of Finnish, resulting in words to gener-
ally be composed of more subword units and the
likelihood of predicting non-existent words being
higher. An interesting trend for the two Nordic
languages, especially strongly seen in Finnish, is
the predictions mostly falling into two distinct

on-top off-top copy gibb
Eng mono 50% 21% 5% 24%

multi 7% 2% 38% 53%
Ger mono 67% 28% 3% 2%

multi 17% 13% 48% 22%
Fin multi 19% 2% 37% 43%
Swe multi 10% 5% 47% 37%

Table 4: Manual evaluation of generated text from
the mono- and multilingual models. The cate-
gories are, in order, on-topic original text, off-
topic original text, copy of the context, and gib-
berish. N is 55–60 for all tests.

ends of the evaluation scale, 42% being perfectly
acceptable substitutions, while 39% being gibber-
ish. The likely explanation noticed during man-
ual evaluation is the model being quite capable
predicting natural output in the place of masked
function words, while completely failing to pre-
dict anything reasonable for masked content words
forming longer subword sequences.

Examples of the model predictions in this
task are given in Figure 2 for English, German,
Swedish and Finnish, generated using both mono-
lingual and multilingual models.

4 Sentence Generation

To evaluate and compare the text generation abili-
ties of the models, we employ the method recently
introduced by Wang and Cho (2019) which en-
ables BERT to be used for text generation.5 In par-
ticular, we use the Gibbs-sampling-based method,
reported in the paper to give the best results. In
this method, a sequence of [MASK] symbols is
generated and BERT is used for a number of itera-
tions to generate new subwords at random individ-
ual positions of this sequence until the maximum
number of iterations (500 by default), or conver-
gence are reached. This method is shown by Wang
and Cho to produce varied output of good quality,
even though not entirely competitive with the fa-
mous GPT-2 model (Radford et al., 2019). Most
importantly for our objective, this method allows
us to probe the model’s ability to generate longer
sequences of the language and to compare the rela-
tive differences between the monolingual and mul-
tilingual pre-trained BERT models.

5Note that some of the underlying assumptions of this pa-
per were later corrected by the authors http://tiny.cc/
cho-correction
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Labels Generated

match Question[ing∼about] the sinking of the Titanic?
mismatch Those [they∼ones] are quite small.
match, copy I [felt∼understand] that it is a [process∼competitive] process. . .
gibberish A full [- of and∼substantive] reconciliation of cash and funding accounts

Figure 1: Example generation of each category used in the manual evaluation of Cloze task predic-
tions. Examples are generated by the English multilingual model. The format of the masked words is
[predicted∼gold]. Examples for other languages and models are shown in Figure 2.

Lang Model Generation

Eng mono regarding [the∼those] rumors about [people∼wolves] living in yellowstone prior to
the official reintroduction?

multi Regarding [the∼those] rumors about [thes∼wolves] living in Yellowstone prior to
the official reintroduction?

mono we [went∼got] to [work∼talking] and he got me set up and i [just∼test] drove
with craig and i fell head over heels for this car [and∼all] i kept saying, ”[but∼was]
i gotta have it [.∼!]”

multi We [went∼got] to [Craig∼talking] and he got me set up and I [went∼test]
drove with Craig and I fell head over heels for this car [and∼all] I kept saying,
”[And∼was] I gotta have it [.∼!]”

Ger mono [Voraussetzung∼Kennzeichen] für eine [intensivere∼krankhafte] Nutzung des
Internets sei unter anderem ein deutlicher Rückzug [aus∼aus] dem sozialen Leben.

multi [Ein Vorsetzung∼Kennzeichen] für eine [gewise∼krankhafte] Nutzung des Inter-
nets sei unter anderem ein deutlicher Rückzug [aus∼aus] dem sozialen Leben.

mono ”[Es∼Das] ist eine Revolution für die mobile Kommunikation”, meint
[Professor∼Vizepräsident] Mike Zafirovski.

multi ”[Es∼Das] ist eine Revolution für die mobile Kommunikation”, meint
[der -er∼Vizepräsident] Mike Zafirovski.

Fin multi Stokessa Gallagher [oli∼pelasi] enimmäkseen laiturina, joka ei ollut hänen
[valäaäa∼lempipaikkojaan].

multi Nykyhetki laajenee vauhdilla, joka [johtaa∼saa] tulevaisuuden kutistumaan lähes
menneisyyden kaltaiseksi [. .ksi . . , ,∼makrokääpiöksi] [joka∼joka] vierittää
kvarkkia alas leskenlehden terää salaiseen maailmaansa.

Swe multi Men du [måste∼kan] få ett givande grepp på staden [från∼och] dess [, och∼miljö]
också från andra utgångspunkter.

multi År 1951 [stod∼gjorde] den engelske [psnologen .∼läkaren] J. Bowlby för WHO:s
[forsknings för en∼räkning] en sammanställning av dittills gjorda undersökningar
över hur [barnär barn∼späda] och små barn, som för någon tid helt skilts
[från∼från] sin mor, utvecklas.

Figure 2: Example generations of the cloze prediction task for English, German, Finnish and Swedish.
The format of the masked words is [predicted∼gold].
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Model Judgement Generated text in context
Mono on-topic It came out better than I even imagined . how did this tattoo artist come up

with the idea of a quality tattoo ? I would highly recommend this shop to
anyone looking to get a quality tattoo done .

Multi copy It came out better than I even imagined . . . this shop to anyone looking
to get a quality tattoo done . I would highly recommend this shop to anyone
looking to get a quality tattoo done .

Mono on-topic Halbleiter-Riese National hatte die zwei Jahre zuvor akquirierte Chipschmiede
Cyrix kürzlich an den taiwanischen Chipsatzproduzenten VIA weiter verkauft
. VIA ist die weltweit tätige Tochter von Cyrix ( GM ) . 130-Nanometer-
Chipfertigung läuft an

Multi copy Halbleiter-Riese National hatte die zwei Jahre zuvor akquirierte Chipschmiede
Cyrix kürzlich an den taiwanischen Chipsatzproduzenten VIA weiter verkauft
. 128 - Nanometer - Chipfertigung läuft an - an - an . 130-Nanometer-
Chipfertigung läuft an

Multi on-topic Keskuspankki sitoi Islannin kruunun kurssin euroon kaksi päivää sitten , jol-
loin eurolla sai 131 kruunua . 1900 - luvun alkuvuonna eurolla sai 140 kru-
unua . Käytännössä tämä merkitsi vakavaa iskua Islannin taloudelle .

Multi on-topic I stadsmiljön utgör parker och grönområden en viktig del i våra dagar . Stallar
i naturen utgör också en viktig del i våra dagar . Men naturen låg i omedel-
bar närhet , och stallar och ladugårdar var långt in på 1800-talet vanliga i den
agrara svenska småstaden

Figure 3: Example sentence generations (in bold) together with the manual quality judgements and the
context provided in generation, for English, German, Finnish and Swedish.

For each language, we randomly sample 30
documents from the Universal Dependencies ver-
sion 2.4 training data, and from each document we
randomly select 2 sentences. For each of these
sentences, we provide on input the preceding and
following sentence as the left and right context for
the model. Between these contexts, we use the
parallel-sequential method of Wang and Cho to
generate text which is as long, in terms of subword
count, as the original sentence, restricting never-
theless to a minimum of 5 subwords and a maxi-
mum of 15 subwords. The maximum of 15 sub-
words was selected in preliminary experiments,
as for considerably longer sequences, the model
starts deviating from the seeded context and often
fails to even stick to the language of the seed, ow-
ing to the fact that BERT is not trained to deal with
long sequences of consecutive masked positions.

Subsequently, we manually evaluate the gener-
ated texts in context, and classify them into the
following categories:

• on-topic: original, intelligible sentence or
phrase without excessive errors, essentially
fitting the context

• off-topic: original, intelligible sentence or
phrase without excessive errors, not fitting
the context

• copy: unoriginal text composed for the most
part of verbatim copied sections of the con-
text, often containing grammatical and flow
errors

• gibberish: unintelligible sequence of words
and characters, text with excessive grammat-
ical and flow errors

The results of the evaluation are shown in Ta-
ble 4. A comparison against an existing monolin-
gual model is possible only for English and Ger-
man. Both for English and German, there is a
striking difference, where the monolingual models
generate a substantially larger proportion of orig-
inal on-topic text, compared to the multilingual
model which, for the most part, copies sections of
the context or produces gibberish. Especially for
German, the monolingual model generates a sub-
jectively very good output, with next to no copy-
ing and gibberish. For Finnish and Swedish, we
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can only report on the multilingual model, show-
ing the same tendencies to copy or produce gibber-
ish as for English and German. Overall, the results
in Table 4 demonstrate that the multilingual model
is clearly inferior to the monolingual counterparts
and unsuitable for the generation task.

Figure 3 lists a few examples of generated sen-
tences for the four languages and the available
models. For English and German it illustrates the
comparably worse performance of the multilin-
gual model, as the generation is mostly copying
from the context rather than creating original and
fluent text that fits the context. For Finnish and
Swedish, it shows cases where the generation has
been able to fill in sentences that are correct and
that to some extent relates to the context.

5 Discussion and Conclusions

In this paper, we set out to establish whether the
multilingual BERT model, as distributed, is of suf-
ficient quality to be considered an effective sub-
stitute for a dedicated, monolingual model for the
given language. We tested the model on three
tasks of increasing difficulty: a simple syntactic
classification task, a cloze test, and full text gen-
eration. We found that the multilingual model no-
tably lags behind the available monolingual mod-
els and the gap opens as the complexity of the
task increases. While on the syntactic classifica-
tion task, all models perform comparatively well,
in the cloze test there is a notable difference. In
the full text generation the multilingual model out-
puts are practically useless, while the monolingual
models produce very good, and in the case of Ger-
man rather impressive output. We can also observe
major differences across languages in the multilin-
gual model where, for instance, in the cloze test
the model is considerably more likely to produce
gibberish in Finnish than e.g. in German. It is not
clear, however, to what extent this reflects the sim-
ple fact that Finnish has fewer “easy” functional
words, providing for a harder task.

These results allow us to conclude that the cur-
rent multilingual BERT model as distributed is
not able to substitute a well-trained monolingual
model in more challenging tasks. This, however,
is unlikely due to the multilinguality of the model,
rather, we believe it is due to the simple fact that
each language is a mere 1/100th of the training
data and training effort of the model. In other
words, the model seems undertrained w.r.t. to in-

dividual languages. This is, for example, hinted
at in the text generation task where the multilin-
gual model mostly copies from the context or pro-
duces gibberish, while the monolingual models
produce a considerably higher proportion of orig-
inal text. Intuitively, this would fit a pattern where
one would expect the model, as it is being trained,
to first produce gibberish, then learn to understand
and copy, and finally learn to generate.

The primary practical conclusion of this paper
is that it is indeed necessary to invest the neces-
sary computational effort to produce well-trained
BERT models for other languages instead of re-
lying on the present multilingual model as dis-
tributed. We also established baseline results on
several tasks across several languages, allowing a
better intuitive estimation of the applicability of
the multilingual model in different situations.
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Abstract

Encoders that generate representations
based on context have, in recent years,
benefited from adaptations that allow for
pre-training on large text corpora. Ear-
lier work on evaluating fixed-length sen-
tence representations has included the use
of ‘probing’ tasks, that use diagnostic clas-
sifiers to attempt to quantify the extent to
which these encoders capture specific lin-
guistic phenomena. The principle of prob-
ing has also resulted in extended evalua-
tions that include relatively newer word-
level pre-trained encoders. We build on
probing tasks established in the literature
and comprehensively evaluate and analyse
– from a typological perspective amongst
others – multilingual variants of existing
encoders on probing datasets constructed
for 6 non-English languages. Specifi-
cally, we probe each layer of a multiple
monolingual RNN-based ELMo models,
the transformer-based BERT’s cased and
uncased multilingual variants, and a vari-
ant of BERT that uses a cross-lingual mod-
elling scheme (XLM).

1 Introduction

Recent trends in NLP have demonstrated the
utility of pre-trained deep contextual representa-
tions in numerous downstream NLP tasks, where
they have almost consistently resulted in signifi-
cant performance improvements. Detailed evalu-
ations have naturally followed: these have either

been follow-up works to papers describing contex-
tual representation systems, such as Peters et al.
(2018b), or novel works evaluating a broad class
of encoders on a broad variety of tasks (Perone
et al., 2018). This paper is an example of the lat-
ter sort; we perform a comprehensive, large-scale
evaluation of what linguistic phenomena these se-
quential encoders capture across a diverse set of
languages. This has often been referred to in
the literature as probing; we use this terminology
throughout this work.

Briefly, our goals are to probe our encoders in
a multilingual setting – i.e., we use a series of
probing tasks to quantify what sort of linguistic
information our encoders retain, and how this in-
formation varies across language, across encoder,
and across task. As such, our experiments do not
attempt to attain ‘state-of-the-art’ results; instead,
we attempt to use a comparable experimental set-
ting across each experiment, to quantify differ-
ences between settings rather than absolute results.

In Section 2, we describe prior work in multiple
strands of research: specifically, on deep neural
pre-training, on multilingualism in pre-training,
and on evaluation. Section 3 describes both the
linguistic features we probe our representations
for, and how we generated our probing corpus. In
Section 4, we describe and motivate our choice of
encoders, as well as describe our infrastructural
details. The bulk of our contribution is in Sec-
tion 5, where we describe and analyse our results.
Finally, we conclude with a discussion of the im-
plications of these results and future work in Sec-
tion 6.
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2 Background

2.1 Deep pre-training

A watershed moment in NLP has been the re-
cent innovation spree in deep pre-training; it has
represented a considerable step up from shallow
pre-training methods, that have been used in NLP
since the introduction of contextual word embed-
ding models such as word2vec (Mikolov et al.,
2013). Whilst deep pre-training has been used
in non-NLP, image-oriented tasks, where the stan-
dard paradigm is to pre-train deep convolutional
networks on datasets like ImageNet (Russakovsky
et al., 2014), and then fine-tune on task-specific
data, their introduction to textual domains has
been considerably slower, yet has been picking up
rapidly in recent years.

An early paper in this theme was CoVe (Mc-
Cann et al., 2017), that pre-trained contextual
encoders on seq2seq machine translation mod-
els. Another earlier seminal work that addressed
numerous technical issues with pre-training
was Howard and Ruder’s ULMFiT (2018). Not
long after, the principle of deep pre-training saw
widespread adoption with ELMo (Peters et al.,
2018a), that consisted of several innovations over
CoVe: critically, the use of an unsupervised (albeit
structured) task – language modelling – for pre-
training, and the use of a linear combination of all
encoder layers, instead of just the top layer. Ar-
chitecturally, ELMo used two-layer bidirectional
LSTMs along with character-level convolutions,
to model word probabilities given the history.

With deep pre-training having been established
as a valid strategy in NLP, alternative models with
different underlying architectures were proposed.
The OpenAI GPT (Radford et al., 2018) was one
such model; instead of LSTMs, it used the decoder
of an attention-based transformer (Vaswani et al.,
2017) as its underlying encoder – the justification
being that using the transformer’s encoder would
lead to each token having access to succeeding to-
kens. The GPT also achieved (then) state-of-the-
art results by plugging generated fixed-length vec-
tors into downstream classifiers.

Another system that represented a significant
innovation was BERT (Devlin et al., 2018). BERT
introduced a language modelling variant, dubbed
masked language modelling, that allowed them to
use transformer encoders as their underlying en-
coding mechanism.

2.2 Multilingual pre-training

Multilingual variants of pre-trained encoders
that provide contextual representations for non-
English languages have also been studied; there
is, however, some diversity in precisely how they
are generated.

Che et al. (2018) provide ELMo models (Fares
et al., 2017) for 44 languages; all of these were
trained on data provided as part of the CoNLL
2018 shared task on dependency parsing Univer-
sal Dependencies treebanks (Zeman et al., 2018).
This makes ‘multilingual’ a bit of a misnomer:
whilst this is the most obvious approach to multi-
lingual support, these models are all monolingual.
This also leads to other issues downstream, such
as a complete inability to deal with true multilin-
gual phenomena like code-switching. Throughout
this text, however, when not specifically referring
to ELMo, our use of the term ‘multilingual’ is in-
clusive of ELMo’s quasi-multilingualism.

This is contrasted with BERT’s approach to
(true) multilingualism, which trains a single model
that can handle all languages. The authors use
WordPiece, a variant of BPE (Sennrich et al.,
2016), for tokenisation, using a 110K-size vocabu-
lary, and proceed to train a single gigantic model;
they perform exponentially smoothed weighting
of their data to avoid biasing their model towards
better-resourced languages.

Finally, XLM (Lample and Conneau, 2019) is
another cross-lingual encoder based on BERT that
implements a number of modifications. Along
with BERT’s masked language modeling or Cloze
task-based modelling (Devlin et al., 2018; Taylor,
1953), XLM training uses another similar objec-
tive during training that the authors call transla-
tion language modeling. Here, two parallel sen-
tences are concatenated and words masked in both
source and target sentences words are predicted
using context from both. The authors here also use
their own implementation of BPE – FastBPE, for
which they provide a vocabulary of around 120K

entries. This vocabulary is shared across all of the
languages and thus improves the alignment of em-
bedded spaces, as shown in Lample et al. (2017).

2.3 On evaluation

Evaluation of contextual representations goes be-
yond merely deep representations; not too far in
the past, work on evaluating shallow sentence
representations was encouraged by the release of
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the SentEval toolkit (Conneau and Kiela, 2018),
which provided an easy-to-use framework that
sentence representations could be ‘plugged’ into,
for rapid downstream evaluation on numerous
tasks: these include several classification tasks,
textual entailment and similarity tasks, a para-
phrase detection task, and caption/image retrieval
tasks. Relevant to our paper is Conneau et al.’s
(2018a) set of ‘probing tasks’, a variant on the
theme of diagnostic classification (Hupkes et al.,
2017; Belinkov et al., 2017; Adi et al., 2016; Shi
et al., 2016), that would attempt to quantify pre-
cisely what sort of linguistic information was be-
ing retained by sentence representations. Based in
part on Shi et al. (2016), Conneau et al. (2018a)
focus on evaluating representations for English;
they provide Spearman correlations between the
performance of a particular representation mecha-
nism on being probed for specific linguistic prop-
erties, and the downstream performance on a va-
riety of NLP tasks. Along similar lines, and con-
temporaneously with this work, Liu et al. (2019)
probe similar deep pre-trained to the ones we do,
on a set of ‘sixteen diverse probing tasks’. (Ten-
ney et al., 2018) probe deep pre-trained encoders
for sentence structure.

On a different note, Saphra and Lopez (2018)
present a CCA-based method to compare repre-
sentation learning dynamics across time and mod-
els, without explicitly requiring annotated corpora.

A visible limitation of the datasets provided by
these probing tasks is that most of them were cre-
ated with the idea of evaluating representations
built for English language data. Within the realm
of evaluating multilingual sentence representa-
tions, Conneau et al. (2018b) describe the XNLI
dataset, a set of translations of the development
and test portions of the multi-genre MultiNLI in-
ference dataset (Williams et al., 2018). This, in a
sense, is an extension of a predominantly mono-
lingual task to the multilingual domain; the au-
thors evaluate sentence representations derived by
mapping non-English representations to an En-
glish representation space.

2.4 BERTology

Relevant to the probing theme of this paper is the
sudden recent growth in papers studying precisely
what is retained with the internal representations
of pre-trained encoders like BERT. These include,
for instance, analyses of BERT’s attentions heads,

such as Michel et al. (2019), where the authors
prune heads, often reducing certain layers to single
heads, without a significant drop in performance in
certain scenarios. Clark et al. (2019) provide a per-
head analysis and attempt to quantify what infor-
mation each head retains; they discover that spe-
cific aspects of syntax are well-encoded per head,
and find heads that correspond to certain linguis-
tic properties, such as heads that attend to direct
objects of verbs. Other papers provide analyses
of BERT’s layers, such as Tenney et al. (2019),
who discover that BERT’s layers roughly corre-
spond to the notion of the classical ‘NLP pipeline’,
with lower level tasks such as tagging lower down
the layer hierarchy. Hewitt and Manning (2019)
define a structural probe over BERT representa-
tions, that extracts notions of syntax that corre-
spond strongly to linguistic notions of dependency
syntax.

3 Corpora

3.1 Probing

Our data consists of training, development and test
splits for 9 linguistic tasks, that can broadly be
grouped into surface, syntactic and semantic tasks.
These are the same as the ones described in Con-
neau et al. (2018a), with minor modifications. Due
to the differences in corpus domain, we alter some
of their word-frequency parameters. We also ex-
clude the top constituent (TopConst) task; we no-
ticed that Wikipedia tended to have far less diver-
sity in sentence structure than the original Toronto
Books corpus, due to the more encyclopaedic style
of writing. A brief description of the tasks follows,
although we urge the reader to refer to the original
paper for more detailed descriptions.

1. Sentence length: In SentLen, sentences are
divided into multiple bins based on their
length; the job of the classifier is to predict
the appropriate bin, creating a 6-way classifi-
cation task.

2. Word count: In WC, we sample sentences
that feature exactly one amongst a thousand
mid-frequency words, and train the classifier
to predict the word: this is the most ‘difficult’
task, in that it has the most possible classes.

3. Tree depth: The TreeDepth task simply asks
the representation to predict the depth of the
sentence’s syntax tree. Unlike the original
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paper, we use the depth the of the dependency
tree instead of the constituency tree.

4. Bigram shift: In BiShift, for half the sen-
tences in the dataset, the order of words in
a randomly sampled bigram is reversed. The
classifier learns to predict whether or not the
sentence contains a reversal.

5. Subject number: The SubjNum task asks the
classifier to predict the number of the sub-
ject of the head verb of the sentence. Only
sentences with exactly one subject (annotated
with the nsubj relation) attached to the root
verb were considered.

6. Object number: ObjNum, similar to the sub-
ject number task, was annotated with the
number of the direct object of the head verb
(annotated with the obj relation).

7. Coordination inversion: In CoordInv, two
main clauses joined by a coordinating con-
junction have their orders reversed, with a
probability of one in two. Only sentences
with exactly two top-level conjuncts are con-
sidered.

8. (Semantic) odd man out: SOMO, one of the
more difficult tasks in the collection, replaces
a randomly sampled word with another word
with comparable corpus bigram frequencies.

9. Tense prediction: The Tense prediction asks
the classifier to predict the tense of the main
verb: we compare the past and present tenses.

3.2 Data

Languages
Our choice of languages was motivated by three
factors: i) the availability of a Wikipedia large
enough to extract data from; ii) the availability of a
reasonable dependency parsing model, and iii) ty-
pological diversity. The former, in particular, was
a bit of a restriction, since not all sentences were
valid candidates for extraction per task. Our fi-
nal set of languages include an additional corpus
for English, as well as French, German, Spanish,
Russian, Turkish and Finnish. Whilst not nearly
representative of the diversity of world languages,
this selection includes morphologically agglutina-
tive, fusional and (relatively) isolating languages,
and it includes two scripts, Latin and Cyrillic.

The languages also represent three families (Indo-
European, Turkic and Uralic).

We build our probing datasets using the relevant
language’s Wikipedia dump as a corpus. Our mo-
tivation for doing so was that it a freely available
corpus for numerous languages, large enough to
extract the sizeable corpora that we need. Specif-
ically, we use Wikipedia dumps (dated 2019-02-
01), which we process using the WikiExtractor
utility1.

Preprocessing

We use the Punkt tokeniser (Kiss and Strunk,
2006) to segment our Wikipedia dumps into dis-
crete sentences. For Russian, which lacked
a Punkt tokenisation model, we used the UD-
Pipe (Straka and Straková, 2017) toolkit to per-
form segmentation.

Having segmented our data, we used the
Moses (Koehn et al., 2007) tokeniser for the ap-
propriate language, falling back to English tokeni-
sation when unavailable.

Next, we obtained dependency parses for our
sentences, again using the UDPipe toolkit’s pre-
trained models, trained on Universal Dependen-
cies treebanks (Nivre et al., 2015). We then pro-
cessed these dependency parsed corpora to ex-
tract the appropriate sentences; while in princi-
ple, each task was meant to have 120K sentences,
with 100K/10K/10K training/validation/test splits,
often, for the rarer linguistic phenomena, we ran
out of source data, in particular with Turkish and
Finnish, although to a smaller extent with Russian
as well. In these situations, we ensured an equiva-
lent split ratio.

Our use of non-gold-standard dependency
parses implies inaccuracies that, in principle,
would propagate to our training data. A valid
counterargument, however, is that we do not rely
on complete parse accuracies for all our tasks; sev-
eral tasks do not require dependency or POS anno-
tation, and the ones that do rely on a fixed subset
of dependency relations, such as nsubj or obj.
Having said that, we do acknowledge the diver-
gences in parsing performance across language;
unfortunately, given the substantial corpus sizes
these experiments require, we could not use gold-
standard parsed corpora.

1https://github.com/attardi/
wikiextractor/
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4 Implementation

4.1 Encoders

We probe several popular pre-trained encoders (or,
specifically, their multilingual variants). These in-
clude:

ELMo, monolingual We use Che et al.’s (2018)
pre-trained monolingual ELMo models for
each of our languages. Training was simi-
lar to the original English language ELMo,
but allows for Unicode, and uses a sample
softmax (Jean et al., 2014) to deal with large
vocabularies. We probed four variants of
each ELMo model - the character embed-
dings layer, the two LSTM layers, and an
average of all three. For obtaining a fixed-
length sentence representation, we use av-
erage pooling over the sequence of hidden
states.

BERT We use the two multilingual variants -
cased and uncased. Both variants have 12
layers, 768 hidden units, 12 heads and 110M

parameters; the former includes 104 lan-
guages and fixes normalisation issues, whilst
the latter includes 102 languages. For further
classification, we use the first hidden state,
represented by the [CLS] token.

XLM We probe only one variant of this encoder
- i.e., the models fine-tuned on XNLI (Con-
neau et al., 2018b) data. Due to there being
no XNLI data for Finnish, we do not probe
our Finnish dataset with XLM. Unlike BERT,
XLM uses 1024 hidden units and 8 heads.

Unfortunately, all our encoders did include
Wikipedia dumps in their training data. Given that
pretrained encoders tend to use as much easily ac-
cessible data as possible in pre-training, however,
it is difficult to avoid using a completely unseen
corpus for probing task extraction.

4.2 Implementation

Our probing procedure for each of our languages
and encoders is relatively similar: we use a multi-
layer perceptron based classifier to assign the ap-
propriate class label to each input sentence. Dur-
ing training, the encoders remain static, with all
learning restricted to the classifier. In an attempt
to avoid excessively complex classifiers, and to en-
sure consistency across tasks and languages, we

use predetermined fixed hyperparameters – specif-
ically, a sigmoid activation function, on top of a
size 50 dense layer. We use a training batch size
of 32, optimised using Adam (Kingma and Ba,
2014), and train for 10 epochs, allowing for early
stopping.

We implement our system using the AllenNLP
toolkit (Gardner et al., 2018), which crucially pro-
vides the ability to use the appropriate tokenisation
schema, along with the appropriate vocabulary, for
each encoder. Training and evaluation were car-
ried out on NVIDIA RTX 2080 Ti GPUs, with
10GiB GPU memory.

5 Results

Due to our large experiment space, there are sev-
eral dimensions along which our results can be
analysed and discussed. For ease of analysis, all
our figures are presented as heatmaps.

We have presented our results in two ways, for
easy visualisation. The first of these is dividing
them up by task, as in Figure 1. We present an
alternative set of results for three of our encoders,
in Figure 2.

5.1 Encoder

An observation that instantly stands out is the sig-
nificant difference in performance on WC: consis-
tently, across every language, all our transformer-
based architectures see results very close to 0. Fur-
ther, whilst not instantly visible in Figure 2, a
quick look at Figure 1 shows that the same ap-
pears to hold (albeit to a lesser extent) for SentLen,
TreeDepth and BiShift, all of which are either
surface or syntactic phenomena. This appears to
heavily imply that recurrent, sequential processing
appears to retain lower level linguistic phenomena
better than self-attentive mechanisms (that do not
see the same drop in informativity for semantic
tasks). This is perhaps a bit easy to justify with
SentLen, which is a phenomenon that is directly
proportional to recurrence depth.

The next phenomenon of interest is the differ-
ence between each of ELMo’s layers. Interest-
ingly, these do not appear to be as drastic as one
would imagine, given the differences in perfor-
mance on downstream tasks. The difference be-
tween raw word representations and actual con-
textual representations is fairly noticeable, partic-
ularly on the strongly syntactic BiShift. How-
ever, the differences between higher layers is rela-
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Figure 1: Detailed results per task, per language per encoder. Each task’s result heatmap has its own
scale. All results mentioned in this paper refer to classification accuracies in [0.0, 1.0]. Henceforth, ‘co’
refers to probing results on Conneau et al.’s (2018a) original corpus.

tively murkier, and whilst the average of the three
does appear to represent some phenomena better
(such as CoordInv), it isn’t clear that this differ-
ence is meaningful. Notably, SentLen appears
to be poorly represented in higher layers, which
ties in with other analyses of ELMo (Peters et al.,
2018b), that imply that higher layers are likelier to
learn more semantic features.

BERT’s cased variant appears to retain informa-
tion slightly better than the uncased one, which is
in line with the authors’ descriptions of their own
models.

Finally, and perhaps most interestingly, we turn
our attention towards XLM. Despite being based
on BERT (and indeed showing similar patterns
in performance), XLM appears to perform a lot
worse than all our other encoders on virtually ev-
ery task. It is not immediately clear why: how-
ever, given that this drop in performance is visi-
ble in every language, our conjecture is that due
to the translation-based modelling employed by
XLM, the encoder does indeed succeed at learn-
ing language-independent representations, or ‘uni-

versal’ representations. However, this universal-
ity comes at a cost: in an attempt to adequately
represent a variety of typologically diverse lan-
guages, XLM appears to lose its ability to retain
specific linguistic phenomena pertaining to spe-
cific languages; in a sense, it is incapable of build-
ing a representation for a language that adequately
captures a specific phenomenon in that language
and no other. This follows intuitively from the
method used training on the TLM objective: the
authors concatenate aligned parallel sentences and
predict masked words in the source and the tar-
get sentence, using context from both sentences
at the same time to predict each masked word.
This is likely to have had a detrimental effect on
XLM’s ability to retain characteristics specific to
each language. In Figure 3, we show the relative
performance of BERT and XLM per probing task.
There is a clear trend towards BERT’s enhanced
retention of linguistic features being less promi-
nent for the more semantic tasks, which fits our
hypothesis, as semantics are likelier to hold cross-
linguistically.
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Figure 2: Results for select encoders, per language per task. All results use the same scale, [0.0, 1.0].

Figure 3: BERT (cased) scores divided by the cor-
responding XLM scores. Tasks are ordered, from
surface to syntax to semantic level tasks.

A point to be made here is that despite Sub-
jNum, ObjNum and Tense being classified as se-
mantic tasks, it isn’t clear that they are truly be-
ing probed for semantic information: all three
phenomena tend to be visible with morphologi-
cal marking. This gives us an alternative justifica-
tion for XLM’s relative improvement in retention:
XLM is likely capable of storing each language’s
individual morphological information in different
internal subspaces de, as each language is likely to
reflect morphology purely orthographically, and in
mutually exclusive ways.

Our observations on the differences between en-
coders are also easily visible in Figure 4, where
multiple ‘belts’ of varying performances emerge.

5.2 Language

To motivate one of the main focuses of this paper
– our analysis of our results along linguistic lines
– we present Figure 5, which displays what one
might call the net ‘informativity’ of an encoder,
i.e. an average of how much information each en-
coder retains averaged over tasks. The most no-
ticeable effect here is the drop in informativity for
Russian and Turkish. While this is perhaps under-
standable for Turkish – which has smaller prob-
ing corpora, and a less reliable Wikipedia than the
other languages – Russian’s opaqueness cannot be
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Figure 4: Linguistic information retained per en-
coder, per task; scores are averaged over language.

as easily explained away, particularly when con-
trasted with Finnish, which tends to have fewer re-
sources.

We further introduce Figure 6, which displays
the averaged results of three systems – ELMo’s
multilayer variant, BERT’s cased variant and (ab-
sent for Finnish) XLM. Most linguistic differences
appear to be clustered in the semantic part of this
heatmap. There are numerous possible factors that
could explain these divergences, not the least of
which is the actual probing corpus itself: however,
we attempt to provide a justification, from a typo-
logical perspective, for some of these results.

When averaged across encoders, the Tense task
stands out as fairly easy to probe for all languages.
It thus seems that information about verbal tempo-
ral properties is retained in the sentence represen-
tation. For the tasks of subject and object number,
however, we observe clear differences between the
languages. Here, French and Spanish appear to
be somewhat easier to probe than other languages.
We hypothesise that this is due to both languages
marking nominal number, not just with verb agree-
ment, but also with plural articles, resulting in rep-
resentations that are more informative regarding
number. Contrast this with English and German,
which either do not have plural articles, or have
plural articles that morphologically overlap with
non-plural forms, or with Russian, that tends to
avoid articles in general.

Other interesting observations are German’s rel-
ative ability at retaining information on CoordInv
and Tense, as well as Finnish’s extraordinarily
high performance on Tense. Further, SentLen ap-
pears to be retained better, counter-intuitively, in
Russian, Turkish and Finnish; a brief look at Fig-

Figure 5: Net encoder ‘informativity’ per lan-
guage; results averaged over all tasks.

ure 1 shows that, interestingly, this is likely due to
BERT.

Finally, we note that our results do not seem
to indicate that English is somehow better repre-
sented in our multilingual systems, nor does it ap-
pear to perform significantly better than other lan-
guages in general, indicating that none of our mod-
els are ‘learning’ English first and then adapting to
other languages.

5.3 Task

From a monolingual perspective, most of what
needs to be said regarding the choice of probing
tasks has already been said in the original (Con-
neau et al., 2018a). There are however several dif-
ferences, induced both by our modifications to the
original framework, and by our corpus’s multilin-
gualism.

The first of these is the apparently consistent
differences in performance on certain tasks which
include, amongst others, CoordInv, where our
variant appears to be more easily retained than the
original. This can be explained away by minor is-
sues we faced during implementation, using de-
pendency trees instead of constituency trees. Due
to more complicated representation of conjuncts in
UD-style dependency trees, some of our sentences
had issues with using the appropriate casing after
swapping conjuncts, as well as ensuring consistent
punctuation. While we attempted to avoid these by
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writing filtering rules, these were imperfect, and it
is likely that stray punctuation and the like might
have informed our representations about the con-
juncts being swapped, in some instances.

Another task with minor differences is our
implementation of SOMO; we attribute this to
not being able to accurately reproduce Conneau
et al.’s (2018a) modified corpus-frequency range
(40-400) to adequately fit all our corpora.

We note that there do not appear to be signifi-
cant differences in the TreeDepth task, despite our
using dependency trees instead of constituency,
and despite our tree depth/sentence length de-
correlation procedure being markedly simpler.

6 Discussion

6.1 Implications

Having elaborated our results, it becomes crucial
to contextualise their importance. ‘Probing’ an en-
coder, or more correctly, using diagnostic classi-
fiers to attempt to quantify what information an en-
coder stores, appears to be a reasonable approach
to qualifying this information. However, there has
been some critique of this approach. To para-
phrase Saphra and Lopez (2018), the architecture
of a diagnostic classifier does affect the perfor-
mance of a probing task; further, lower layers of
encoders may represent information in ways de-
signed to be picked up on by their own higher lay-
ers; this might prove difficult for simple classifiers
to truly probe.

This is an excellent critique of the principle
using absolute probing performance, or absolute
numbers representing performance on an abstract
insight task, as a yardstick. Critically, this work
is focussed, both practically and in principle, on
elucidating relative results, in a wide space of lan-
guages and encoders. The relative underparame-
terisation of the classifier and the use of one con-
stant set of hyperparameters across experiments is
an attempt to minimise the relative interference of
the classifier. i.e., our goal is to keep the classi-
fier’s interference – its lens – as consistent as pos-
sible.

6.2 Future work

One potential strand of research relates directly
to the tasks themselves: our choice of tasks was
fairly restrictive, and does not include many tasks
that are truly semantic, which does not provide us
with enough information to draw conclusions sim-

Figure 6: Linguistic insight per language per task,
averaged over one variant of every encoder: multi-
layer ELMo, cased BERT, and XLM (bar Finnish).

ilar to Liu et al. (2019), which is that pretrained
models encode stronger syntax than semantics. An
obvious goal, therefore, is the more careful de-
sign of tasks, particularly within a multilingual
context: the tasks proposed by Liu et al. (2019)
and Tenney et al. (2018) are not strictly easy to
motivate cross-linguistically due to the burden of
annotation. This could include more semantic-
level probing by means of existing cross-lingual
semantic resources, such as the Parallel Meaning
Bank (Abzianidze et al., 2017).
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dro Lenci, Nikola Ljubešić, Teresa Lynn, Christo-
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Abstract

Due to the differences between re-
views in different product categories,
creating a general model for cross-
domain sentiment classification can
be a difficult task. This paper pro-
poses an architecture that incorporates
domain knowledge into a neural senti-
ment classification model. In addition
to providing a cross-domain model,
this also provides a quantifiable rep-
resentation of the domains as numeric
vectors. We show that it is possible
to cluster the domain vectors and pro-
vide qualitative insights into the inter-
domain relations. We also a) present a
new data set for sentiment classifica-
tion that includes a domain parameter
and preprocessed data points, and b)
perform an ablation study in order to
determine whether some word groups
impact performance.

1 Introduction

In recent years the amount of text data
has been growing exponentially. With the
growth of social media and the success of e-
commerce, large websites such as Amazon
have developed great interest in online user re-
views, which the users are able to write about
every product. The task of classifying review
sentiments poses little challenge for humans.

However, with large amount of data comes the
necessity of automating such tedious classifi-
cation tasks, which proves to be a challenge
that needs careful development and consider-
ation.

This challenge arises because reviewers
use different registers when writing reviews
across product domains. Consequently, ma-
chines are not well equipped to catch those
differences. The differences are easy to detect
when users reference domain-specific words
or other products in the same category. This
belongs to a domain-specific knowledge that a
neural network needs to learn in order to fully
understand the differences and the similarities
within the context of the reviews. Thus, for a
classifier to perform well at this task, it may be
important to include a way for it to represent
these domains.

In this paper, we propose a novel, yet effec-
tive way of representing domains in sentiment
classification. Using this representation we
will show that it is possible to visualize rela-
tions between domains. This will allow clus-
tering of similar product categories in the fea-
ture space of the domain representations. We
also attempt to evaluate whether these group-
ings are similar to those made by humans.

Implementing the domain representations
as a vector embedding provides a simple and
elegant solution compared to previous solu-
tions like Peng et al. (2018) and Liu et al.
(2018). The aim of this paper is to de-
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velop a cross-domain sentiment classification
model achieving comparable performance to
those of existing methods, with the added
benefit of insights into the inter-domain re-
lations. Additionally we have developed a
small but interesting data set building on top
of McAuley et al. (2015). Our main contri-
bution being balancing and preprocessing the
data, as well as adding the domain in an easy
to parse way. The data set is available at
https://static.nfz.dk/data.zip.

2 Related Work

Sentiment classification is a well-established
and -researched field within natural language
processing. Pang et al. (2002) tested three
machine learning algorithms for performing
sentiment classification on sampled movie re-
view data. Go et al. (2009) also tested three
machine learning algorithms. However, they
wanted to test the performance on documents
that include emoticons which are sampled
from Twitter data.

Including domain knowledge in models is
nothing new either. Alumäe (2013) has used
domain information to train a language model
that responds differently in different domains.
Tilk and Alumäe (2014) presented a Recur-
rent Neural Language model used for train-
ing an Automatic Speech Recognition system.
Ammar et al. (2016) presented a multilingual
model for parsing sentences, in which lan-
guages are encoded in their own variable.

Peng et al. (2018) presented a method for
performing cross-domain sentiment classifi-
cation on sparse labeled domains using do-
main adaption. The paper proposes a co-
learned model which uses target specific fea-
tures and domain invariant features to classify
sentiment. Performing multi-domain classifi-
cation has received little attention within Nat-
ural Language Processing. Nam and Han
(2016) used multi-domain classification for

visual tracking. More recently Jia et al. (2019)
performed cross-domain NER by using a pa-
rameter generation network to learn domain
and task correlations. They did this in an un-
supervised setting and achieved state-of-the-
art results among the supervised counterparts.

Li and Zong (2008) proposed two differ-
ent ways of performing multi-domain senti-
ment classification. One was combining the
domains at the feature level and the other was
combining it at the classifier level. When
combining at the classifier level, one could
also think of using a multiple classifier sys-
tem (MCS). Li et al. (2011) proposed using
an MCS for performing multi-domain senti-
ment classification. Here they applied both
fixed and trained rules for combining the out-
put of the classifiers. Liu et al. (2018) pro-
posed that multi-domain sentiment classifica-
tion can be done for both abundant and sparse
labeled domains, using domain specific rep-
resentations. They produced domain general
representations using a Bi-LSTM and learn-
ing domain descriptors using an attention net-
work. Moreover, they trained a separate do-
main classifier using the domain general rep-
resentations. The whole model was trained us-
ing a minimax game.

The model proposed in this paper uses a
structure similar to the latter but distinguishes
itself by being simpler, allowing for faster
training or training on more modest hard-
ware. The proposed architecture excludes the
domain classifier and approaches the task of
learning domain specific features using vec-
tor embeddings. In addition, great emphasis
is put on the embedded vectors produced dur-
ing training and what they can tell us about the
relations of the domains.

3 Methodology

The proposed model is composed of three
blocks, as shown in Figure 1.
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Domain Encoder Ed(d)

Domain Embeddings

Review Encoder Er(r)

LSTM

Word Embeddings
Sentiment Classifier F (x)

Dense Layers

ŷ[0, 1]

Figure 1: Our proposed model architecture

• Domain encoder Ed(d)

• Review encoder Er(r)

• Sentiment classifier F (x)

Two of the blocks, Ed(d) and Er(r), work
as encoders, encoding the incoming data and
making it usable for the final classifier. The
classifier is a simple feed forward neural net-
work that uses the encoded data to classify
the review as either positive or negative. The
blocks are described in more details in Sec-
tions 3.2 to 3.4.

3.1 Data set generation
The data used in this paper has been collected
from Amazon (McAuley et al., 2015). All of
the collected reviews are in English.

12 domains were selected and 200,000 re-
views were sampled from each (100,000 pos-
itives and 100,000 negatives). The reviews
were sampled at random. In total, 2.4 million
reviews were collected from the 12 domains
(See Table 1). The data set is structured such
that each data point consists of the follow-
ing four attributes: y, review, topic, length.

Here y corresponds to the correct sentiment
label, review is the tokenized review which
is also segmented into sentences, topic is the
domain label and length denotes the number
of sentences in the review.

Category Negative Positive Total
Automotive 100K 100K 200K
Baby 100K 100K 200K
Beauty 100K 100K 200K
CD’s and Vinyl 100K 100K 200K
Cell Phones 100K 100K 200K
Electronics 100K 100K 200K
Personal Care 100K 100K 200K
Movies and TV 100K 100K 200K
Office Products 100K 100K 200K
Sports 100K 100K 200K
Toys and Games 100K 100K 200K
Video Games 100K 100K 200K

Table 1: List of domains sampled from
(McAuley et al., 2015)

First and foremost, we concatenate each re-
view text onto its summary text, effectively
treating the summary text as the first sentence.
This is done to use all of the data available.
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When the review and summary have been
concatenated, we segment the text into sen-
tences using a sentence segmenter from
NLTK.1 The segmenter is trained on the full
data set in order to fit the style and abbrevia-
tions used in the reviews. This enables identi-
fication of a part-of-speech (POS) tag for each
word using a pre-trained POS tagger. The
POS tagger is from NLTK and uses the Penn
Treebank tagset. Using these tags it is possi-
ble to create new data sets with certain word
groups ablated. Each sentence is subsequently
tokenized into words with the exception of
digits and some punctuation.2 The sentence
split is not used in this model but is available
in the data set for future research.

Data set Unique tokens
Full data set 27,112
Ablated adjectives 24,225
Ablated stop words 26,962

Table 2: Vocab sizes of the constructed data
sets

Lastly, we choose to only include words
that occur more than 100 times in the vocab-
ulary and represent the discarded tokens with
an <UNK> token. This is done purely to limit
the size of the vocabulary. The vocabulary
size for each of the three data sets can be seen
in Table 2. The three vocabularies mentioned
here are the full set with all word groups: the
set where adjectives have been removed and
the set where stop words have been removed.
The stop word list used is from NLTK.

3.2 Domain Encoder
The Domain Encoder takes one of the 12 do-
mains presented in Table 1 and encodes it into
its own internal representation. The idea be-
hind this architecture is to make the model

1
http://www.nltk.org

2Included punctuation: ... : ; , ( ) ! ? ” ’

learn its own representations for each domain
(Mikolov et al., 2013) and how they relate to
each other. There are several ways of imple-
menting this representation, but the choice to
use vector embeddings was made because it
is simple and because they are easy to inter-
pret compared to some of the more abstract
methods of representation. Each domain is
represented by a 50-dimensional vector that
is learned during training. A 50-dimensional
vector is chosen to match the size of the pre-
trained word vectors in the Review Encoder
(Section 3.3). The domain representations are
randomly initialized using a uniform distribu-
tion.

3.3 Review Encoder

This encoder takes a vector of variable length
for the input layer, meaning that the layer
adapts itself continuously according to the
sentence given as input. We set a threshold to
500 tokens, effectively truncating sequences
longer than this. Each token in the sequence is
represented by pre-trained GloVe embeddings
(Pennington et al., 2014). The output of the
Review Encoder is an LSTM layer with 64
neurons (Hochreiter and Schmidhuber, 1997).

3.4 Sentiment Classifier

The two previous outputs (from the Domain
Encoder and the Review Encoder) are con-
catenated together, resulting in a vector of
length 114 as input for the Sentiment Clas-
sifier. The Sentiment Classifier is a standard
feed forward neural network, where the first
hidden layer consists of 128 neurons, which
is followed by a second hidden layer consist-
ing of 64 neurons. Finally, we have a sin-
gle neuron which outputs the probability of
the sentence being positive. The probability
is rounded to the nearest integer, where 1 is
considered positive and 0 is negative.
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3.5 Hyper Parameters

The model’s hyper parameters are tuned using
random search. The implementation is pro-
vided by an open source project (Autonomio,
2019).

The data set used for the hyper parame-
ter tuning consists of 150,000 samples, which
were sampled from the full training set. From
this, 50,000 samples are sampled for valida-
tion and the remaining 100,000 samples are
used for training. This split is performed 5
times resulting in 5 different validation/train
splits. When sampling we make sure the re-
sulting data sets are balanced between the sen-
timent labels. For each run, one of the splits
is selected at random in order not to fit to a
specific data set. We evaluate each set of pa-
rameters based on the accuracy score achieved
by the model on the sampled validation set.

3.6 Experiments

We analyze the relevance that the domain em-
bedding has in our model by testing our model
twice, once with the Domain Encoder and
once without. These two experiments are run
4 times and the mean is reported. Further-
more, we test the proposed architecture by ab-
lating adjectives and stop words separately. In
total we conduct 4 different experiments on
the model. We split the data set such that
we have around 2 million reviews for train-
ing, 200,000 for validation and 200,000 as a
hidden test set. In all four cases we run 10
epochs of training while validating in between
epochs. Finally, we evaluate on the hidden test
set.

The experiments are executed on a machine
with an NVIDIA Tesla T4 GPU, 8 CPUs,
16GB of RAM, Keras 2.2.4 and TensorFlow
1.13.1.

4 Results

In this section the results of our experiments
will be presented.

4.1 Domain Encoder

In this section, we will outline the perfor-
mance of the model with and without the do-
main encoder.

Model Accuracy Recall Precision F1
W/ domains 0.8910 0.8914 0.8992 0.8953
W/o domains 0.8929 0.9143 0.8752 0.8943

Table 3: Model performance with and without
the domain encoder

The performance impact of the domain en-
coder is outlined in Table 3. The results in
the table are mean accuracy, recall, precision
and F1 for 4 runs of 10 epochs for both con-
figurations. As can be seen, the inclusion of
the domain encoder does not seem to signifi-
cantly impact performance, with the exception
of slightly slower convergence as visualized in
Figure 2. The shaded areas around the curves
denote mean ± 1 standard deviation.

The model with the domain encoder has a
smoother learning curve (fewer jumps) during
the first couple of epochs. The spike in stan-
dard deviation around epoch 5 is caused by a
single outlier run.

The accuracy and recall with the domain
encoder are slightly worse, whereas the pre-
cision is slightly improved. Moreover, when
looking at the F1 score we see a slight favor
for using the domain encoder. This, in com-
bination with the small differences, makes it
hard to determine if performance is impacted
either way. This will be discussed further in
section 5.

4.2 Ablation Studies

During our research, we wanted to study the
impact of ablating certain features of the re-
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(a) The mean loss learning curves for the two con-
figurations of the model

(b) The mean accuracy learning curves for the two
configurations of the model

Figure 2: Loss and accuracy of the model with and without the domain encoder

(a) Using all features (b) Ablating adjectives (c) Ablating stop words (d) Ablating domains

Figure 3: Confusion matrices

view data. We wanted to do this to understand
which word groups are particularly important
for performing sentiment classification across
multiple domains.

We hypothesized that adjectives and stop
words were two important feature groups for
determining sentiment and thus performed an
ablation study on these.

The hypothesis for the stop words was
based on the knowledge that the list of stop
words used contains many negations such as
’not’, which will distort the data. The rea-
son for choosing adjectives was that certain
descriptors of products might be negative or
positive and that we may therefore see an im-
pact in performance once those have been re-
moved.

The domain encoder is included during the
ablation experiments. The performance of a
model in each of the studies plus a baseline,
which is a model using all features of the
data, can be found in tabular form in Table 4.
These performance metrics are calculated on
an unseen test set after training each model.
For comparison the model without domain en-
coder is included as well.

Model Loss Accuracy
Using all features 0.2940 0.8910
Ablating stop words 0.4015 0.8185
Ablating adjectives 0.3803 0.8605
Without domain encoder 0.2943 0.8929

Table 4: Final performance on hidden test set
in ablation studies
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To further investigate these results, confu-
sion matrices have been produced. They can
be seen in Figure 3.

4.3 Domain Representations

The learned domain representations are ex-
tracted from the model and reduced in dimen-
sionality using the PCA algorithm. To inter-
pret the similarities between the representa-
tions, we employ hierarchical clustering anal-
ysis using ward linkage. In Figure 4 the result
of the clustering analysis is displayed in a den-
drogram.

5 Discussion

In this section, the implications of Section 4
will be discussed.

5.1 Domain Encoder

As discussed in Section 4.1, the performance
does not seem to be greatly impacted by the
addition of the domain encoder. In this sec-
tion, we will attempt to highlight a few inter-
esting observations about the architecture that
could be potential points of further research.

Table 5 shows that the difference in accu-
racy is small. The accuracy after adding the
domain encoder is slightly worse for almost
all classes, but there does not appear to be a
large inter-class difference in performance im-
pact.

In Figure 5, we see the standard deviation
of accuracy during training. The lower this
value, the more consistent the model performs
across runs.

What we see here is that the model with the
domain encoder has a lower standard devia-
tion initially. This suggests that the model is
more consistent. Here we can also study the
impact of the outlier observed in Section 4.1.
We see clearly that the outlier has a large im-
pact and that the rest of the runs are much
more in agreement.

Domain W/ domains W/o domains
Automotive 0.8945 0.8957
Baby 0.9140 0.9140
Beauty 0.9041 0.9046
CD’s and Vinyl 0.8534 0.8564
Cell Phones 0.9053 0.9079
Electronics 0.9024 0.9051
Personal Care 0.8931 0.8940
Movies and TV 0.8602 0.8635
Office Products 0.9013 0.9029
Sports 0.8943 0.8969
Toys and Games 0.8945 0.8941
Video Games 0.8792 0.8816

Table 5: Per domain accuracy performance
with and without the domain encoder

Based on these results it could be argued
that stability is increased, but without ensur-
ing that the outlier observed is as rare as we
assume, this cannot be concluded with any
certainty. In addition, this stability seems to
be inconsequential in this case as convergence
is reached around the same time anyway.

5.2 Ablation Studies

Since we are developing a new model, and
subsequently a new data set, we want to inves-
tigate whether or not all features (word groups
in this case) of the data are important for sen-
timent classification across domains. In the
case of this research, we theorized that both
stop words and adjectives would be important
for the performance. The aim of this part of
the study is to verify some assumptions about
the data set.

As shown in Table 4, the feature with
the largest impact on performance is stop
words. Negations are part of our stop word
list. Therefore the distinction between classes
will become less obvious for a model to see.
The confusion matrix in Figure 3c shows that
when stop words are removed the model pre-
dicts that positive samples are negative. In
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Figure 4: Dendrogram showing the clusters created by the HCA algorithm

Figure 5: Standard deviation over time (DE =
Domain Encoder)

fact, it predicts that 32% of all positive sam-
ples in the test set are negative. This is a ma-
jor flaw with this model, as it predicts negative
samples very well.

In Table 4, we see that ablating adjectives
has less impact than ablating stop words. Also
when looking at Figure 3b we see that ablating

adjectives decreases overall performance thus
not penalizing one class over the other.

These observations lead us to believe that
our initial hypothesis of certain adjectives be-
ing used as a polarity marker, seems to not
hold. However, the overall performance with-
out adjectives is worse than with, so there
might be some specific words that could be
found during further research.

5.3 Domain Representations

As mentioned in Section 4.3, we use Hierar-
chical Cluster Analysis (HCA) to get insights
into the similarities of the domain representa-
tions.

Doing this we get statistical insights into
the similarities between the generated domain
representations. These insights are presented
in the dendrogram in Figure 4. The clustering
provides us with three groups of domains that
it finds the most similar. These three are the
“green” (group 1), “red” (group 2) and “light
blue” (group 3) groups.

Group 1 consists of digital media con-
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tent domains: “Movies and TV”, “CD’s and
Vinyls” and “Video Games”. It seems reason-
able from a human point of view that these
domains would be closely related. However,
as can be seen in Figure 4, “Video Games” is
the most distant domain in Group 1, merging
with the others late in the clustering process.

Group 2 consists mainly of consumer elec-
tronics, with the odd one out being cars. It
makes sense that cars is the least close of the
bunch, but with the recent trend of adding a lot
of electronics to cars, it is certainly not unrea-
sonable that automotive reviews would share
a lot of language with consumer electronics.
Moreover, a lot of accessories, such as phone
holders and chargers, are sold in the automo-
tive category, leading to higher similarity.

Group 3 is definitely the most diverse of
the three, containing seemingly unrelated do-
mains like “Beauty” and “Toys and Games”.
What the results suggest is that these cate-
gories may share some language characteris-
tics at least in the context of determining the
sentiment of the reviews. As we see though,
the category of “Toys and Games” is less sim-
ilar to any of the other domains within the
group than the rest of the domains are to each
other. However, it is more similar to the do-
mains within its own group than to domains
in other groups. We also see that the similar-
ity between the two inner clusters of group 3
is small.

6 Conclusion

In the present work we have presented a model
which represents domains as vectors and a
way of understanding how the classifier is dis-
criminating between different domains. The
results seem to suggest that the model accu-
rately captures the inter-domain relationships.

The model achieves performance compara-
ble to that of a model without the proposed
domain encoder, with hints at possible stabil-

ity gains early in training.
Moreover, we find that stop words is an im-

portant feature group when performing sen-
timent classification. This is especially true
when comparing to the importance of adjec-
tives. While the performance does take a hit
by removing the adjectives, it is not nearly as
bad as with the stop words.

The convergence characteristics of the
model would be an interesting point of further
research. Moreover, looking into the use of
the domain embeddings as a way of doing do-
main adaptation would also be a logical next
step for this model.
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Tanel Alumäe. 2013. Multi-domain neural net-

work language model. In INTERSPEECH-
2013, pages 2182–2186.

Waleed Ammar, George Mulcaire, Miguel Balles-
teros, Chris Dyer, and Noah A. Smith. 2016.
Many languages, one parser. Transactions of
the Association for Computational Linguistics,
4:431–444.

Autonomio. 2019. Talos. Retrieved from
http://github.com/autonomio/talos.

Alec Go, Richa Bhayani, and Lei Huang. 2009.
Twitter sentiment classification using distant
supervision. CS224N Project Report, Stanford,
1(12):2009.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Chen Jia, Xiaobo Liang, and Yue Zhang. 2019.
Cross-domain ner using cross-domain language
modeling. In Proceedings of the 57th Confer-
ence of the Association for Computational Lin-
guistics, pages 2464–2474.

Shou-Shan Li, Chu-Ren Huang, and Cheng-Qing
Zong. 2011. Multi-domain sentiment classifi-
cation with classifier combination. Journal of
Computer Science and Technology, 26(1):25–
33.

Shoushan Li and Chengqing Zong. 2008. Multi-
domain sentiment classification. In Proceed-
ings of the 46th Annual Meeting of the Associa-
tion for Computational Linguistics on Human
Language Technologies: Short Papers, HLT-
Short ’08, pages 257–260, Stroudsburg, PA,
USA. Association for Computational Linguis-
tics.

Qi Liu, Yue Zhang, and Jiangming Liu. 2018.
Learning domain representation for multi-
domain sentiment classification. Proceedings
of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computa-
tional Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers).

Julian McAuley, Christopher Targett, Qinfeng Shi,
and Anton Van Den Hengel. 2015. Image-
based recommendations on styles and substi-
tutes. In Proceedings of the 38th International

ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 43–
52. ACM.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013. Distributed
representations of words and phrases and their
compositionality. In Advances in neural infor-
mation processing systems, pages 3111–3119.

Hyeonseob Nam and Bohyung Han. 2016. Learn-
ing multi-domain convolutional neural net-
works for visual tracking. In Proceedings of the
IEEE conference on computer vision and pat-
tern recognition, pages 4293–4302.

Bo Pang, Lillian Lee, and Shivakumar
Vaithyanathan. 2002. Thumbs up?: Senti-
ment classification using machine learning
techniques. In Proceedings of the ACL-02
Conference on Empirical Methods in Natural
Language Processing - Volume 10, EMNLP
’02, pages 79–86, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Minlong Peng, Qi Zhang, Yu-gang Jiang, and Xu-
anjing Huang. 2018. Cross-domain sentiment
classification with target domain specific infor-
mation. In Proceedings of the 56th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages
2505–2513.

Jeffrey Pennington, Richard Socher, and Christo-
pher Manning. 2014. Glove: Global vectors
for word representation. In Proceedings of
the 2014 conference on empirical methods in
natural language processing (EMNLP), pages
1532–1543.

Ottokar Tilk and Tanel Alumäe. 2014. Multi-
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Abstract

This paper discusses methods to improve
the performance of text classification on
data that is difficult to classify due to a
large number of unbalanced classes with
noisy examples. A variety of features
are tested, in combination with three dif-
ferent neural-network-based methods with
increasing complexity. The classifiers
are applied to a songtext–artist dataset
which is large, unbalanced and noisy. We
come to the conclusion that substantial
improvement can be obtained by remov-
ing unbalancedness and sparsity from the
data. This fulfils a classification task
unsatisfactorily—however, with contem-
porary methods, it is a practical step to-
wards fairly satisfactory results.

1 Introduction

Text classification tasks are omnipresent in natu-
ral language processing (NLP). Various classifiers
may perform better or worse, depending on the
data they are given (eg. Uysal and Gunal, 2014).
However, there is data where one would expect to
find a correlation between (vectorised) texts and
classes, but the expectation is not met and the clas-
sifiers achieve poor results. One example for such
data are songtexts with the corresponding artists
being classes. A classification task on this data is
especially hard due to multiple handicaps:

First, the number of classes is extraordinarily
high (compared to usual text classification tasks).
Second, the number of samples for a class varies
between a handful and more than a hundred. And
third, songtexts are structurally and stylistically
more diverse than, e.g., newspaper texts, as they
may be organised in blocks of choruses and verses,
exhibit rhyme, make use of slang language etc.
(cf. Mayer et al., 2008). In addition, we try to

predict something latent, since there is no direct
mapping between artists and their songtexts. A lot
of the texts are not written by the singers them-
selves, but by professional songwriters (Smith
et al., 2019, p. 5). Hence the correlation that a
classifier should capture is between songtexts that
the writers think to fit a specific artist and the artist.
All these points make the task difficult; still, it is
a task needed for nowadays’ NLP systems, e.g., in
a framework that suggests new artists to a listener
based on the songtexts s/he likes. Thus, to tackle
the challenges given is a helpful step for any task
in the field of NLP that might come with similarly
difficult data.

For the artist classification, we investigate three
neural-network-based methods: a one-layer per-
ceptron, a two-layer Doc2Vec model and a multi-
layer perceptron. (A detailed description of the
models shall follow in section 2.) Besides the
model, the representation of the instances in a fea-
ture space is important for classification, thus we
also aim to find expressive features for the partic-
ular domain of songtexts. (See section 4 for a list
of our features.)1

2 Methods

The following sections shall provide an overview
of our classifiers in order of increasing complexity.

2.1 Perceptron

A perceptron is a very simple type of neural net-
work that was first described in Rosenblatt (1958).
It contains only one layer, which is at the same
time the input and output layer. The input is a
feature vector ~x extracted from a data sample x.
Every possible class y ∈ Y is associated with a
weight vector ~wy. A given sample x is classified
as ŷx as follows:

1The code will be made available at https://
github.com/ebaharilikult/DL4NLP.
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ŷx = argmax
y∈Y

~x · ~wy (1)

During training, every training sample is clas-
sified using the perceptron. If the classification is
incorrect, the weights of the incorrectly predicted
class are decreased, whereas the weights of the
class that would have been correct are reinforced.

Additions to this basic system include shuffling
of the training data, batch learning and a dynamic
learning rate. The shuffling of the training data
across multiple epochs shall prevent the order of
the samples from having an effect on the learn-
ing process. Batch learning generally improves
the performance of a perceptron (e.g. McDonald
et al., 2010); hereby all updates are jointly per-
formed after each epoch instead of each sample.
This removes a strong preference for the last seen
class if the information in the features of multiple
samples overlaps greatly. A dynamic learning rate
improves the convergence of the weights. It gives
updates that happen later during training less im-
pact and allows a closer approximation to optimal
weights.

2.2 Doc2Vec

Doc2Vec (Le and Mikolov, 2014) is a two-layer
neural network model which learns vector repre-
sentations of documents, so-called paragraph vec-
tors. It is an extension of Word2Vec (Mikolov
et al., 2013) which learns vector representations
of words. Thereby, context words, represented
as concatenated one-hot vectors, serve as input
and are used to predict one target word. After
training, the weight matrix of the hidden layer
becomes the word matrix, containing the well-
known Word2Vec word embeddings.

The extension in Doc2Vec is that a unique doc-
ument/paragraph id is appended to each input n-
gram, as if it was a context word. Since paragraph
ids have to be different from all words in the vo-
cabulary, the weight matrix can be separated into
the word matrix and the paragraph matrix, the lat-
ter containing document embeddings.2

In a document classification task, labels instead
of paragraph ids are used. By doing so, the

2The described version of Word2Vec and Doc2Vec is
commonly referred to as “continuous bag of words” (DBOW)
model. If the input and output are swapped, i.e. a single word
(Word2Vec) or document (Doc2Vec) is used to predict several
context words, the architecture is called “skip-gram” (SG) or
“distributed memory” (DM) model, respectively.

Doc2Vec model learns vectors of each label in-
stead of each document. If one wants to predict the
label of an unseen document, a vector representa-
tion for this document needs to be inferred first.
Therefore, a new column/row is added to the para-
graph matrix. Then the n-grams of the document
are iteratively fed to the network (as in training).
However, the word matrix as well as the weight
matrix of the output layer are kept fixed, and so
only the paragraph matrix is updated. The result-
ing paragraph vector for the unseen document is
finally compared to the paragraph vectors repre-
senting labels; and the label of the most similar
vector is returned as the prediction.

2.3 MLP
A multi-layer perceptron (Beale and Jackson,
1990), also referred to as feed forward neural net-
work, is a deep neural network consisting of mul-
tiple hidden layers with neurons which are fully
connected with the neurons of the next layer, and
an output layer with as many neurons as classes.
The number of layers and the number of neurons
in each hidden layer depends on the classification
tasks and are therefore hyperparameters. For mul-
ticlass classification, the softmax function is used
in the output layer. During training, the back-
propagation learning algorithm (Rumelhart et al.,
1985) based on the gradient descent algorithm, up-
dates the weights and reduces the error of the cho-
sen cost function, such as mean squared error or
cross-entropy.

To prevent overfitting in neural networks,
dropout (Srivastava et al., 2014) is commonly
used. It omits hidden neurons with a certain prob-
ability to generalise more during training and thus
enhances the model.3

3 Data

We use a dataset of 57,647 English songtexts with
their corresponding artist and title, which has been
downloaded from Kaggle4. The data was shuffled
uniformly and 10% were held out for validation
and test set, respectively.

There are 643 unique artists in the data. Table 1
shows the distribution of artists and songtexts for

3It should be noted here that advanced deep learning mod-
els such as CNNs and RNNs exist and have been successfully
used in text classification tasks (Lee and Dernoncourt, 2016),
but have not been used in the context of this work and are
therefore not explained in detail.

4https://www.kaggle.com/mousehead/
songlyrics
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Dataset Artists Songs Avg. songs

Training 642 46,120 71.8 (44.0)
Validation 612 5,765 9.4 (5.7)
Test 618 5,765 9.3 (6.0)

Table 1: Number of unique artists (classes), num-
ber of songtexts and average number of songtexts
per artist (standard deviation in parentheses) for
each dataset.

Figure 1: A histogram showing the distribution of
songtexts in the training set.

each subset. The training set contains most of
the unique artists (642) whereas less artists appear
in the validation (612) and test set (618). Also,
the standard deviation of average songs per artists
is relatively high (i.e. more than half the aver-
age) which indicates that the number of songs per
artists is spread over a large range.

The distribution of songs per artists in the train-
ing set can be seen in Figure 1. It shows similar
counts for classes (artists) with many and classes
with only a few samples (songtexts), i.e. unbal-
anced training data. The bandwidth goes from one
artist with 159 songs to four artists with only one
song which also illustrates the sparsity for some
classes.

Besides the issues caused by the distribution
of songtexts per artist, the quality of the texts is
less than perfect. Nonsense words and sequences,
such as tu ru tu tu tu tu, as well as spelling varia-
tions, such as Yeaaah, Hey-A-Hey and aaaaaaalll-
lllright!, are very common.

4 Feature Extraction

For both the (single-layer) perceptron and the
multi-layer perceptron we use the same prepro-
cessing and features which are described below.
(The Doc2Vec model uses its own integrated to-
keniser and Word2Vec-based features.)

The songtexts are tokenised by whitespace.

Within a token, all non-initial letters are lower-
cased and sequences of repeating letters are short-
ened to a maximum of three. To further re-
duce noise, punctuation is removed. The texts
are tagged with parts-of-speech (POS) using the
Apache OpenNLP maximum entropy tagger5.

Stylometric features Generic information
about the text, i.e. the number of lines, the number
of tokens, the number of tokens that appear only
once, the number of types and the average number
of tokens per line.

Rhyme feature Number of unique line endings
(in terms of the last two letters), normalised by the
number of lines. This should serve as a simple
measure for how well the lines rhyme.

Word count vectors Every unique word in the
training corpus is assigned a unique dimension. In
each dimension, the number of occurrences of the
word in the sample are denoted. Term-frequency
(tf) weighting is implemented, but can be switched
on and off. As a minimal variant, only nouns can
be taken into account; in this case we speak of
noun count vectors.

POS count vectors The same as word count
vectors after replacing all words with their POS
tag.

Word2Vec embeddings 300-dimensional em-
beddings created from the Google news corpus.6

The embedding of a text is hereby defined as the
average of the embeddings of all the words in the
text. As a minimal variant, only nouns can be
taken into account.

Bias A feature with a constant value of 1 (to
avoid zero vectors as feature vectors).

5 Experiments

This section lists the concrete parameter settings
of the methods described in section 2. Since our
models can only predict classes which have been
encountered during training, only the 612 artists
occurring in all subsets are kept for all evalua-
tions. For another series of experiments, only the
40 unique artists with more songs than 140 in the
training set are kept to reduce the impact of unbal-
ancedness and sparsity (numbers in Table 2).

5https://opennlp.apache.org/docs/1.8.
0/manual/opennlp.html\#tools.postagger

6GoogleNews-vectors-negative300.bin.gz from https:
//code.google.com/archive/p/word2vec/
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Dataset Artists Songs Avg. songs

Training 40 5,847 146.2 (4.6)
Validation 40 646 16.2 (3.6)
Test 40 714 17.9 (5.0)

Table 2: Number of unique artists (classes), num-
ber of songtexts and average number of songtexts
per artist (standard deviation in parentheses) for
each dataset, keeping only the 40 unique artists
with more songs than 140 in the training set.

5.1 Experimental Settings

Perceptron We train and test two versions of
the perceptron. The minimal version (Perceptron)
only uses noun count vectors without tf-weighting
and the bias. The maximal version (Perceptron+)
uses all features. All add-ons described in sec-
tion 2.1 (shuffling, batch learning, dynamic learn-
ing rate) are used for both versions since they led
to an increasing performance on the validation set
in preliminary tests. For the decay of the learning
rate, a linear decrease starting from 1 and ending
at 1

number of epochs is chosen.

Doc2Vec For the Doc2Vec implementation, we
use deeplearning4j7 version 0.9. The hyper-
paramters are a minimum word frequency of 10,
a hidden layer size of 300, a maximum window
size of 8, and a learning rate starting at 0.025 and
decreasing to 0.001. Tokenisation is performed by
the incorporated UIMA tokeniser. The model is
trained for 100 epochs with batch learning.8

MLP The implementation of MLP and MLP+ is
done with Keras (Chollet et al., 2015). MLP+ uses
all feature groups from section 4 and one bias fea-
ture for every group. The MLP+ model is shown in
Figure 2. Each feature group uses multiple stacked
layers that are then merged with a concatenation
layer. The sizes of the dense layers are manually
selected by trial and error. Several dropout layers
with a constant probability of 0.2 are included. In
contrast, MLP uses only the noun count vectors
(as Perceptron) and thus only one input branch.

For both models, Adadelta, an optimisation

7See https://deeplearning4j.org/docs/
latest/deeplearning4j-nlp-doc2vec for a
quick example.

8Since deeplearning4j does not document the possibility
to get intermediate evaluation results during training, 10 mod-
els are trained separately for 10, 20, 30 etc. epochs to obtain
data points for the learning progress analysis.

Figure 2: Model of the MLP+ model: Layers
with corresponding number of neurons. The input
layers correspond to the following feature groups
(f.l.t.r.): word count vectors, stylometric features,
rhyme feature, POS count vectors, Word2Vec em-
beddings.

function with adaptive learning rate, a batch size
of 32 and categorical cross-entropy as the loss
function are used. For the activation functions,
rectified linear units are used in the hidden layer
and softmax in the output layer. The model trains
for 250 epochs and stores the weights that led to
the best accuracy on the validation set through a
checkpoint mechanism.

5.2 Evaluation measures

Given a (test) set X , each sample x ∈ X has a
class yx and a prediction ŷx. Based on the predic-
tions, we can calculate class-wise precision (P ),
recall (R) and F -score as follows:

P (y) =
|{x ∈ X | yx = y ∧ yx = ŷx}|

|{x ∈ X | ŷx = y}| (2)

61



R(y) =
|{x ∈ X | yx = y ∧ yx = ŷx}|

|{x ∈ X | yx = y}| (3)

F (y) =
2 · P (y) ·R(y)

P (y) +R(y)
(4)

The macro-averaged F -score of all classes is
the average of the class-wise F -scores:

Fmacro =
1

|Y | ·
∑

y∈Y
F (y) (5)

For the overall precision and recall, the nom-
inators and denominators are summed up for all
y ∈ Y , resulting in:

P = R =
|{x ∈ X | yx = ŷx}|

|{x ∈ X}| (6)

And the formula for the micro-averaged F -
score:

Fmicro =
2 · P ·R
P +R

= P = R (7)

The identity of overall P and R causes their
identity with Fmicro. This measure is identical
with the overall accuracy (correct predictions di-
vided by all predictions). Since Fmacro gives ev-
ery class the same weight, but we deal with an un-
balanced dataset, we choose Fmicro as evaluation
measure and only show Fmacro in some graphs for
comparison.

5.3 Results
Table 3 shows the micro-averaged F -score for all
models. MLP+ performs best, followed by Per-
ceptron and Doc2Vec. The use of additional fea-
tures significantly decreases the performance of
the perceptron (Perceptron+), but increases it for
the multi-layer network (MLP+). This observation
is discussed in section 5.4.

Figures 3–5 show the performance of Percep-
tron, Doc2Vec and MLP+ in dependence of the
number of training epochs. The Perceptron (Fig-
ure 4) shows a generally increasing learning curve,
i.e. more epochs lead to better results. Peaks like
the one after the 51st epoch are ignored since the
model uses a fixed number of 100 training epochs.
Doc2Vec (Figure 5) reaches its best performance
with 20 epochs and does not show any learning
progress after that, even if trained for 100 epochs.
The MLP+ model (Figure 3) exhibits increasing
performance until around 100 training epochs and

Model MST
final best
F ep. F ep.

Perceptron 0 .066 100 .069 94
Perceptron+ 0 .003 100 .006 23
Doc2Vec 0 .032 100 .033 70
MLP 0 .023 97 .025 114
MLP+ 0 .079 97 .089 80

Perceptron 140 .146 100 .160 51
Perceptron+ 140 .021 100 .055 54
Doc2Vec 140 .101 100 .120 20
MLP 140 .050 201 .088 46
MLP+ 140 .182 105 .193 109

Table 3: Micro-averaged F -score for each model
on the test set after training (final) and during
training (best), together with the corresponding
training epochs. Lower part: only artists with
more songs than (MST) 140 are kept in the train-
ing and the test set.

then reaches a plateau. Since the model uses that
number of epochs which works best on the valida-
tion set (i.e. 105), it misses the best performance
at the 109th epoch but gets a final score close to it.

5.4 Error Analysis

In this section, we shall focus on the confu-
sion matrices produced by our three main models
which are depicted in Figure 6 and to be read as
follows: The x-axis and the y-axis represent artists
in the same order (labels are omitted due to leg-
ibility). Each cell indicates how often the artist
on the x-axis was classified as the artist on the
y-axis (darker colours are higher numbers). The
cells on the main diagonal correspond to the cases
where a class was classified correctly hence a vis-
ible diagonal correlates with good results. Darker
cells outside of the diagonal are significant mis-
classifications9 and might be interesting to look
into.

As is clearly visible in Figure 6 (a), something is
wrong with the predictions of the Doc2Vec model.
There are hints of a diagonal showing at the top-
left—however, there are entire columns of dark
colour. This means that there are classes that are
almost always predicted, no matter which class a
sample actually belongs to. Interestingly, we ob-

9Such mis-classifications will be denoted as outliers in the
following, since we are talking about the correlation of the
axes here.
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Figure 3: Micro-averaged (above) and macro-averaged (below) F -score of the MLP+ model on the test
set (MST=140) after each training epoch.

Figure 4: Micro-averaged (above) and macro-
averaged (below) F -score of the Perceptron model
on the test set (MST=140) after each training
epoch.

served the same behaviour with our perceptron im-
plementation in preliminary tests which changed
when we started using batch learning. However,
our Doc2Vec implementation already uses batch
learning and mini-batch learning did not improve
the performance in postliminary tests.

Figure 6 (b) shows that the perceptron performs
well on most classes. However, there are very few
classes where it actually recognises (almost) all of
the samples. There are three major outliers and
many outliers overall. This explains the rather low
scores the model achieves, even though the diag-
onal is clearly visible. Looking at the three big
outliers and engineering new features specifically
for those could improve the performance. How-
ever, the informativeness of features can behave

Figure 5: Micro-averaged (above) and macro-
averaged (below) F -score of the Doc2Vec model
on the test set (MST=140) for different numbers
of training epochs.

differently from what one might expect. Addi-
tional stylometric features that were specifically
designed for the task lead to significantly worse
results than the simple noun count vectors (Per-
ceptron+ vs. Perceptron). However, this does not
tell anything about the perceptron’s performance
when using other feature combinations.

The error distribution of the multi-layer percep-
tron is displayed in Figure 6 (c). Compared to the
perceptron, most of the classes are predicted much
better and there are less outliers overall. However,
there are more major outliers which explains the
still rather low performance. In further contrast to
the perceptron, the use of all features leads to a
performance increase (MLP+ vs. MLP). This is
probably the case because the multi-layer percep-
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(a) Doc2Vec (b) Perceptron (c) MLP+

Figure 6: Confusion matrices of different models on the test set (MST=140).

tron can learn individual weights for the different
feature groups through multiple branches and lay-
ers much better than the single-layer perceptron.

6 Summary & Conclusion

Songtext–artist classification is an example of
multiclass text classification on unbalanced,
sparse and noisy data. Three neural network mod-
els have been investigated on this specific task. 1)
A single-layer perceptron which can be used for
all kinds of classification on vectorised data. 2)
Doc2Vec which is a contemporary tool for text
classification. And 3) an extended multi-layer per-
ceptron which we designed specifically for this
task. While the third and most complex model
achieves the best results, it becomes also visible
that the choice of features has a significant ef-
fect on the classification performance. Here, too,
the multi-layer network with its advanced combi-
nation of different, stylometric as well as count/
embedding-based, feature groups outperforms the
other models.

We come to the conclusion that a vast number
of and unbalanced classes as well as sparse and
not directly correlated data do not allow for a per-
fect performance. Thus, given a text classification
task where the data is as difficult, it makes sense
to reduce the data to something that is manage-
able and meaningful. Sparse classes in a noisy
sample space are little more than guesswork which
might confuse the classifier and decrease the per-
formance on more important classes. While it is
somewhat obvious that removing difficult cases
from the data improves the overall results, it is
not something that one would usually do in a real-
world application. We argue, that it can be a prac-
tical step to approach such a classification task, for
elaborating the complexity of the classifier and en-

gineering good features.

7 Future Work

A general clustering-based topic model encoded
in new features could potentially improve the per-
formance of songtext classifiers. Looking at our
multi-layer perceptron, new features seem to be a
good way to handle such difficult data. Other net-
work architectures such as CNNs and RNNs can
be considered worth a look as well since they im-
proved (noisy) text classification in previous stud-
ies (e.g. Lai et al., 2015; Apostolova and Kreek,
2018).

Another way of dealing with imbalanced data is
to apply oversampling to raise the number of sam-
ples for sparse classes, or undersampling to reduce
the number of samples for frequent classes.
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