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Abstract

We investigate different ensemble learn-
ing techniques for neural morphologi-
cal inflection using bidirectional LSTM
encoder-decoder models with attention.
We experiment with weighted and un-
weighted majority voting and bagging. We
find that all investigated ensemble meth-
ods lead to improved accuracy over a base-
line of a single model. However, contrary
to expectation based on earlier work by
Najafi et al. (2018) and Silfverberg et al.
(2017), weighting does not deliver clear
benefits. Bagging was found to underper-
form plain voting ensembles in general.

1 Introduction

Natural language processing (NLP) systems for
languages which exhibit rich inflectional morphol-
ogy often suffer from data sparsity. The root
cause of this sparsity is a prohibitively high type-
token ratio which is typical for morphologically
complex languages. A common way to allevi-
ate the problem is to incorporate modeling of in-
flectional morphology instead of building purely
word-based NLP systems—by representing word
forms as combinations of a lemma and mor-
phosyntactic description, data sparsity is reduced
both in analysis and generation tasks.

Morphology-aware language generation sys-
tems usually require a component which gen-
erates inflected word forms from lemmas and
morphosyntactic descriptions. Such a compo-
nent is called a morphological inflection (MI)!
model. For example, given the Italian verb man-
giare ’to eat’ and the morphosyntactic description
V;IND;FUT;1;SG, an MI system should gener-
ate the Ist person singular future indicative form
mangero as output.

!Sometimes also called morphological reinflection (Cot-
terell et al., 2016)

Traditionally, rule-based methods have been ap-
plied in morphological inflection and analysis. Re-
cently, machine learning methods have also gained
ground in this task. Especially deep learning
methods have delivered strong results in MI (Cot-
terell et al., 2017, 2018). Starting with the work
by Kann and Schiitze (2016), the predominant
approach has been to use a bidirectional RNN
encoder-decoder system with attention. While
neural encoder-decoder systems have been suc-
cessfully applied to the MI task and many pa-
pers have investigated simple model ensembles us-
ing unweighted majority voting, few studies have
fully investigated ensembles of neural systems.
Weighted model ensembles for MI are proposed
by Najafi et al. (2018) and Silfverberg et al. (2017)
but neither provides a detailed analysis of model
ensembles. This paper compares the performance
of different model ensembles for MI.

We explore methods which use unweighted and
weighted voting strategies to combine outputs of
different models. We also investigate different
ways of training the component models in the en-
semble using both random initialization of model
parameters and varying the training data using
bootstrap aggregation commonly known as bag-
ging (Breiman, 1996). Bagging is a popular en-
semble method where new training sets are created
by resampling from an existing training set. Both
bagging and majority voting are known to reduce
the variance of the model. This makes them suit-
able for neural models which are known to obtain
high variance (Denkowski and Neubig, 2017).

Due to practicality concerns, we limit the scope
of the paper to methods which can combine exist-
ing models without changes to model architecture.
Therefore, we do not explore merging model pre-
dictions during beam search in decoding or aver-
aging model parameters.

We perform experiments on a selection of ten
languages: Arabic, Finnish, Georgian, German,



Hindi, Italian, Khaling, Navajo, Russian, and
Turkish. Our experiments on this morphologi-
cally and areally diverse set of languages show
that model ensembles tend to deliver the best re-
sults confirming results presented in earlier work.
However, our findings for weighted ensembles and
bagging are largely negative. Contrary to expecta-
tion based on the work by Najafi et al. (2018) and
Silfverberg et al. (2017) weighting did not deliver
clear benefits over unweighted model ensembles.
Bagging, in general, does deliver improvements in
model accuracy compared to a baseline of a sin-
gle model but does not outperform plain majority
voting.

2 Related Work

Following Kann and Schiitze (2016) and many
others, we explore learning of MI systems in the
context of bidirectional LSTM encoder-decoder
models with attention. Several papers have em-
ployed straightforward majority voting for the task
of MI (Kann and Schiitze, 2016; Kann et al., 2018;
Makarov and Clematide, 2018; Kementchedjhieva
et al., 2018; Sharma et al., 2018). However, work
on more advanced ensembling methods is scarce
for the MI task.

Najafi et al. (2018) and Silfverberg et al. (2017)
explored weighted variants of majority voting.
Both of these approaches are based on weighting
models according to their performance on a held-
out development set. Silfverberg et al. (2017) use
sampling-based methods for finding good weight-
ing coefficients for the component models in an
ensemble. Najafi et al. (2018) instead simply
weight models according to their accuracy on the
development set. We opt for using the latter
weighing scheme in our experiments because Sil-
fverberg et al. (2017) report that the sampling-
based method can sometimes overfit the develop-
ment set which leads to poor performance on the
test set. Najafi et al. (2018) combined different
types of models, both neural and non-neural, in
their ensemble but we apply their technique in a
purely neural setting.

Ensemble learning has received more atten-
tion in the field of neural machine translation.
A common approach is to combine predictions
of several models in beam search during decod-
ing (Denkowski and Neubig, 2017). Another ap-
proach is to train several models and then distill
them into a single model (Denkowski and Neu-

big, 2017). The simplest approach to distillation is
to average the parameters of the different models.
While these techniques could be applied in MI, the
focus of this paper is to explore ensemble methods
which do not require any changes to the underly-
ing model architecture. Therefore, such methods
fall outside of the scope of our work.

3 Task and Methods

We formulate the MI task as a sequence-to-
sequence translation task. The input to our model
consists of the characters in the lemma of a word
and the grammatical tags in its morphosyntactic
description. The output form is the inflected word
form represented as a sequence of characters. For
example:

Input:
Output:

m, a, n, g1, a, 1, e, +V, +IND, +FUT, +1, +SG
m,a,n,ge,r,o

The remainder of this section describes the neu-
ral encoder-decoder models used in our experi-
ments, the ensemble learning methods and our
approach to weighting the component models of
model ensembles.

3.1 Encoder-Decoder Architecture

We use a standard bidirectional LSTM encoder-
decoder with attention. The character embed-
dings for input and output characters are 100-
dimensional. The embeddings are processed by a
1-layer bidirectional LSTM encoder (BRNN) with
hidden state size 300. The encoder representations
are then fed into a 1-layer LSTM attention decoder
with hidden state size 300.

3.2 Ensembles

An ensemble consists of a set of individually
trained models whose predictions are combined
when classifying novel instances or generating se-
quences. The aim is to combine the models in a
way which delivers better performance than any
of the models individually.

Majority Voting Our first ensemble learning
technique is majority voting. We train /N models
on the entire training data with different random
initializations of model parameters. During test
time, we apply each of the models on a given test
input form and then perform voting among model
outputs. In case of a tie, the final output is chosen
randomly among the most frequent predictions.



ARA FIN GEO GER HIN ITA KHA NAV RUS TUR

Best baseline model 9340 94.00 99.10 91.60 100.00 98.00 99.90 9130 91.50 98.00
Baseline mean 9274 9345 98.69 90.78 100.00 9727 99.44 89.63 90.60 97.43

MV 10.NMV *94.60 *95.40 *99.40 *92.70 100.00 *98.00 *99.80 *94.00 *92.60 *98.40

MV 10.WMV *94.80 *94.90 *99.40 *92.80 100.00 *98.00 *99.80 *94.20 *92.80 *98.40

High Bagging 10.NMV 9390 9530 99.10 9210 100.00 97.60 99.70 91.10 92.10  98.00
Bagging 10.WMV 94.00 9520 99.10 92,50 100.00 97.80 99.60 91.40 91.90 98.00
Bagging 100.NMV 9450 9530 9890 92.80 100.00 97.70 99.50 9250 9240  98.00
Bagging 100.WMV 9450 9540 9890 9290 100.00 9770 9950 9250 9240 98.20

Best baseline model 76.80 75.60 9250 78.60 98.10 92.10 90.00 47.30 78.00 86.90
Baseline mean 7413 71.89 92.14 7580 9691 90.21 8895 43.68 76.60 84.95

MV 10.NMV *80.80 *80.70 *93.50 *80.30 *98.50 *93.10 *91.70 *52.50 *83.00 *88.70

MV 10.WMV *80.80 *80.80 *93.40 *80.70 *98.60 *93.00 *91.50 *52.70 *82.90 *88.60
Medium Bagging 10.NMV 7440 7290 93,50 7770 97.80 9150 84.00 4650 76.50  86.80
Bagging 10.WMV 75.60  74.00 9340 78.00 97.80 92.00 84.10 4730 76.60 87.10
Bagging 100.NMV 7890 7450 9320 79.00 9770 9150 8520 51.80 7850  88.40
Bagging 100.WMV 79.10 7450 9320 79.10 9770 9140 8550 52.10 7850  88.40

Best baseline model 0.40 1.30 4026 2138 21.78 13.29 6.59 1.70 8.29 7.29
Baseline mean 0.23 0.80 33.18 1592 15.81 8.72 3.16 1.39 5.93 2.77

MV 10.NMV 020 *1.40 *49.80 *25.67 *22.58 *15.00 *430 *1.80 1030  *5.20

MV 10.WMV 020 *1.50 *49.50 *26.07 *22.98 *17.38 *559 *1.80 *11.30 *7.39

Low Bagging 10.NMV 0.09 0.00 9.79 1.30 8.49 0.30 0.80 0.70 0.80 0.00
Bagging 10.WMV 0.01 0.00  13.89 2.50 8.99 1.10 0.30 0.80 0.90 0.20
Bagging 100.NMV 0.00 0.00 17.18 230 1059 0.80 1.10 0.60 2.60 0.20
Bagging 100.WMV 0.00 0.00 19.20 4.00 1229 1.40 1.30 0.80 2.90 0.60

Table 1: Accuracies (%) of bagging and majority voting ensembles and best baseline models, and baseline model means for
Arabic (ARA), Finnish (FIN), Georgian (GEO), German (GER), Hindi (HIN), Italian (ITA), Khaling (KHA), Navajo (NAV),
Russian (RUS) and Turkish (TUR). Ensemble size (10 or 100) and majority voting type (NMV or WMV) are marked after the
ensemble type (Majority voting (MV) or Bagging). Significant improvements over the baseline mean at the 95% confidence
level as measured by a two-sided t-test are indicated by asterisk (¥).

Bagging Our second ensemble learning tech-
nique is bagging. Here we resample N new train-
ing sets from our existing training set and use
those to train N models. The aim is to create
a more diverse collection of models than can be
accomplished simply by varying model initializa-
tion. After training the N models, we then apply
majority voting on their output during test time.
A standard way to create a bagging ensemble is
to generate each of the new training sets by draw-
ing | D| samples with replacement from the origi-
nal training set D. It can be shown that this gives
on average 0.63|D| different examples in each of
the new data sets (Efron and Tibshirani, 1993).

Weighting Models We compare straightforward
majority voting and bagging to weighted voting.
The key difference here is that models now get a
fractional vote in the interval [0, 1] based on the
model weight. The model weight is determined
by the accuracy of the model on a held-out set.
For example, if a model’s accuracy is 87%, its
weight in voting is 0.87. Regular majority vot-
ing corresponds to assigning the weight 1 to each
model. We denote the two different voting strate-
gies by NMV for naive majority voting and WMV
for weighted majority voting.

4 Experiments

4.1 Data

We use data for 10 different languages from
CoNLL-SIGMORPHON 2017 Task 1 dataset
(Cotterell et al., 2017) to train and evaluate mod-
els. The languages are Arabic (ARA), Finnish
(FIN), Georgian (GEO), German (GER), Hindi
(HIN), Italian (ITA), Khaling (KHA), Navajo
(NAV), Russian (RUS) and Turkish (TUR). The
language set is diverse in terms of morphological
structure and encompasses diverse morphological
properties and inflection processes.

The shared task data sets are tab separated files
with three columns: lemma, inflected form, and
morphosyntactic description. For example,

iberbewerten iliberbewerteten V;IND;PST;3;PL

The data sets are sparse in the sense that they in-
clude only a few inflected forms for each lemma
instead of complete inflectional paradigms.

For all languages, we perform experiments us-
ing the official shared task data splits. We train
for the high training data setting (10,000 training
examples), medium setting (1,000 training exam-
ples) and low setting (100 training examples). Ad-
ditionally, we use the official shared task develop-



ment set to tune models and the test sets for final
evaluation.

4.2 Experimental Setup

Baseline For baseline experiments, 10 inflection
models were trained for each language with dif-
ferent random initial values for the model param-
eters. We trained models both for the high and
medium training data settings. Model parameters
were optimized using the Adam optimization al-
gorithm (Kingma and Ba, 2014) and we used mini-
batches of 64 examples during training.

According to preliminary experiments, the de-
velopment accuracy and perplexity for each lan-
guage converged around 6,000-10,000 training
steps for each dataset, where one training step cor-
responds to updating on model parameters for a
single minibatch (64 items). To ensure conver-
gence for all languages, we therefore trained all
models for 12,500 training steps. We do not em-
ploy character dropout. All our models are im-
plemented using the OpenNMT neural machine
translation toolkit (Klein et al., 2017).

Ensembles The 10 baseline models of each lan-
guage and training data setting were used to form
voting ensembles. We applied both naive majority
voting and weighted majority voting.

For bagging, two experiments are conducted on
the high, medium and low training data setting. In
the first experiment, we form 10 training sets by
resampling from the original training sets. In the
second one, we form 100 new training sets by re-
sampling. Each of the sampled training sets has
the same size as the original training set for the
high, medium and low setting, respectively. Sub-
sequently, we train models on each of the newly
formed training sets. In addition to using different
data for training, diversity between the ensemble
members is ensured by different random initial-
ization of model parameters. In each experiment,
both naive majority voting and weighted major-
ity voting are applied to outputs of each model to
form two ensembles for each language.

4.3 Results

Table 1 shows results for all experiments. On the
whole, ensembles delivered improvements with
regard to the baseline of a single model. This
holds true both when comparing to the mean ac-
curacy of the 10 individual baseline models and
when comparing to the best individual baseline

model. In general, the best accuracies were ob-
tained by naive and weighted majority voting en-
sembles. For the high, medium and low settings,
we obtain small improvements by weighting both
majority voting and bagging ensembles. However,
in most cases these improvements are not statisti-
cally significant at the 95% confidence level.

In most cases, the results of the bagging ex-
periments were worse than results for both naive
and weighted majority voting ensembles. For the
high training data setting, accuracies delivered by
bagging ensembles were similar or slightly worse
than results for plain naive and weighted majority
voting ensembles. However, in the medium data
setting, differences in accuracy between majority
voting and bagging ensembles are larger. For ex-
ample, the difference between the best bagging
model and best plain voting model is greater than
2%-points for three languages (KHA, NAV, RUS).
For the medium data setting, bagging did not de-
liver consistent improvements over the baseline of
a single model although we do get an improve-
ment for 5 languages (ARA, GEO, GER, NAYV,
RUS and TUR). For the low training data set-
ting, the bagging ensembles clearly underperform
weighted and unweighted majority voting and the
baselines for all languages. In general, bagging
ensembles consisting of 100 models did deliver
improvements upon ensembles consisting of 10
models.

5 Discussion and Conclusions

Our results demonstrate that an ensemble of mod-
els trained in parallel nearly always outperforms
a single model. Contrary to earlier findings by
Najafi et al. (2018) and Silfverberg et al. (2017),
we do not see clear improvements from weight-
ing models in ensembles. One reason for this dis-
crepancy may be that Najafi et al. (2018) trained
a diverse ensemble of both non-neural and neural
models, whereas, all of our models have the same
underlying architecture.

Bagging does not deliver clear improvements
over majority voting in the high and medium train-
ing data setting. Instead it often underperforms
the baseline of a single model on medium training
sets of 1,000 training examples. For larger training
sets of 10,000 examples, bagging typically out-
performs the baseline models but its performance
still lags behind weighted and unweighted major-
ity voting ensembles. This can partly be explained



by the fact that each individual model in a bagging
ensemble is trained on a subset containing approx-
imately 60% of all training examples. Therefore,
individual models in the ensemble are likely to be
weaker than models trained on the entire training
set because even our largest training set of 10,000
examples is still relatively small.

In the low training data setting of 100 training
examples, bagging substantially underperforms
the baselines. Here overfitting becomes a severe
problem. Each of the component models in the en-
semble, therefore, delivers very poor performance
compared to the baselines resulting in poor perfor-
mance for the entire ensemble.

We observe moderate improvements when the
number of models in the bagging ensemble was
increased from 10 to 100. Therefore, we believe
that bagging could eventually outperform major-
ity voting in the high and medium data setting
when the number of models in the ensemble is in-
creased. However, the moderate gains suggest that
the number of models that is required may be quite
large.
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