
Seeing more than whitespace —
Tokenisation and disambiguation in a North Sámi grammar checker

Linda Wiechetek
UiT The Arctic University of Norway
linda.wiechetek@uit.no

Kevin Brubeck Unhammer
Trigram AS

kevin@trigram.no

Sjur Nørstebø Moshagen
UiT The Arctic University of Norway
sjur.n.moshagen@uit.no

Abstract
Communities of lesser resourced languages
like North Sámi benefit from language tools
such as spell checkers and grammar checkers
to improve literacy. Accurate error feedback
is dependent on well-tokenised input, but tra-
ditional tokenisation as shallow preprocessing
is inadequate to solve the challenges of real-
world language usage. We present an alterna-
tive where tokenisation remains ambiguous un-
til we have linguistic context information avail-
able. This lets us accurately detect sentence
boundaries, multiwords and compound error
detection. We describe a North Sámi grammar
checker with such a tokenisation system, and
show the results of its evaluation.

1 Introduction

Bilingual users frequently face bigger challenges
regarding literacy in the lesser used language than
in the majority language due to reduced access to
language arenas (Outakoski, 2013; Lindgren et al.,
2016). However, literacy and in particular writ-
ing is important in today’s society, both in social
contexts and when using a computer or a mobile
phone. Language tools such as spellcheckers and
grammar checkers therefore play an important role
in improving literacy and the quality of written text
in a language community.

North Sámi is spoken in Norway, Sweden and
Finland by approximately 25,700 speakers (Simons
and Fennig, 2018), and written in a number of in-
stitutions like the daily Sámi newspaper (Ávvir1), a
few Sámi journals, websites and social media of the
Sámi radio and TV (e.g. YleSápmi2). In addition,
the Sámi parliaments, the national governments,
and a Sámi university college produce North Sámi
text.

An open-source spellchecker for North Sámi has
been freely distributed since 2007 (Gaup et al.,

1https://avvir.no/ (accessed 2018-10-08)
2https://yle.fi/uutiset/osasto/sapmi/

(accessed 2018-10-08)

2006).3 However, a spellchecker is limited to look-
ing only at one word contexts. It can only de-
tect non-words, i.e. words that cannot be found
in the lexicon. A grammar checker, however, looks
at contexts beyond single words, and can correct
misspelled words that are in the lexicon, but are
wrong in the given context. In addition, a grammar
checker can detect grammatical and punctuation
errors.

A common error in North Sámi and other com-
pounding languages is to spell compound words as
separate words instead of one. The norm typically
requires them to be written as one word, with the
non-final components being in nominative or geni-
tive case if they are nouns. This reflects a difference
in meaning between two words written separately
and the same two words written as a compound.
Being able to detect and correct such compounding
errors is thus important for the language commu-
nity.

This paper presents and evaluates a grammar
checker framework that handles ambiguous tokeni-
sation, and uses that to detect compound errors, as
well as improve sentence boundary detection after
abbreviations and numeral expressions. The frame-
work is completely open source, and completely
rule-based. The evaluation is done manually, since
gold standards for North Sámi tokenisation have
not been developed prior to this work.

2 Background

The system we present is part of a full-scale gram-
mar checker (Wiechetek, 2017, 2012). Before this
work, there were no grammar checkers for the Sámi
languages although some grammar checker-like
work has been done in the language learning plat-
form Oahpa (Antonsen, 2012). However, there
have been several full-scale grammar checkers for

3 In addition to that, there are syntactic disambiguation
grammars, machine translators, dictionaries and a tagged
searchable online corpus.

https://avvir.no/
https://yle.fi/uutiset/osasto/sapmi/

other Nordic languages, most of them implemented
in the rule-based framework Constraint Grammar
(CG). Lingsoft distributes grammar checkers for
the Scandinavian languages,4 some of which are or
have been integrated into MS Word; a stand-alone
grammar checker like Grammatifix (Arppe, 2000)
is also available from Lingsoft. Another widely
used, mostly rule-based and free/open-source sys-
tem is LanguageTool (Milkowski, 2010), though
this does not yet support any Nordic languages.
Other CG-based checkers are OrdRet (Bick, 2006)
and DanProof (Bick, 2015) for Danish.

2.1 Framework
The central tools used in our grammar checker are
finite state transducers (FST’s) and CG rules. CG
is a rule-based formalism for writing disambigua-
tion and syntactic annotation grammars (Karlsson,
1990; Karlsson et al., 1995). The vislcg3 implemen-
tation5 we use also allows for dependency annota-
tion. CG relies on a bottom-up analysis of running
text. Possible but unlikely analyses are discarded
step by step with the help of morpho-syntactic con-
text.

All components are compiled and built using the
Giella infrastructure (Moshagen et al., 2013). This
infrastructure helps linguists coordinate resource
development using common tools and a common ar-
chitecture. It also ensures a consistent build process
across languages, and makes it possible to propa-
gate new tools and technologies to all languages
within the infrastructure. That is, the progress de-
scribed in this paper is immediately available to all
languages in the Giella infrastructure, barring the
necessary linguistic work.

The North Sámi CG analysers take morpho-
logically ambiguous input, which is the output
from analysers compiled as FST’s. The source of
these analysers is written in the Xerox twolc6 and
lexc (Beesley and Karttunen, 2003) formalisms,
compiled and run with the free and open source
package HFST (Lindén et al., 2011).

We also rely on a recent addition to HFST, hfst-
pmatch (Hardwick et al., 2015) (inspired by Xerox
pmatch (Karttunen, 2011)) with the runtime tool
hfst-tokenise. Below we describe how this lets us

4http://www2.lingsoft.fi/doc/swegc/
errtypes.html (accessed 2018-10-08)

5http://visl.sdu.dk/constraint_grammar.
html (accessed 2018-10-08), also Bick and Didriksen (2015)

6Some languages in the Giella infrastructure describe their
morphophonology using Xfst rewrite rules; both twolc and
rewrite rules are supported by the Giella infrastructure.

analyse and tokenise in one step, using FST’s to
identify regular words, multiword expressions and
potential compound errors.

It should be noted that the choice of rule-based
technologies is not accidental. The complexity
of the languages we work with, and the general
sparsity of data, makes purely data-driven methods
inadequate. Additionally, rule-based work leads
to linguistic insights that feed back into our gen-
eral understanding of the grammar of the language.
We chose a Constraint Grammar rule-based system
since it is one we have long experience with, and
it has proven itself to be competitive both in high-
and low-resource scenarios. For example, Dan-
Proof (Bick, 2015, p.60) scores more than twice
that of Word2007 on the F1 measure (72.0% vs
30.1%) for Danish grammar checking. CG also
compares favourably to modern deep learning ap-
proaches, e.g. DanProof ’s F0.5 (weighting preci-
sion twice as much as recall) score is 80.2%, versus
the 72.0% reported by Grundkiewicz and Junczys-
Dowmunt (2018).

In addition, most current approaches rely very
much on large-scale manually annotated corpora,7

which do not exist for North Sámi. It makes sense
to reuse large already existing corpora for training
language tools. However, in the absence of these,
it is more economical to write grammars of hand-
written rules that annotate a corpus linguistically
and/or do error detection/correction. As no other
methods for developing error detection tools exist
for North Sámi or similar languages in compara-
ble situations (low-resourced in terms of annotated
corpus, weak literacy, higher literacy in the major-
ity languages), it is impossible for us to provide a
comparison with other technologies.

2.2 Motivation

This section describes some of the challenges
that lead to the development of our new grammar
checker modules.

A basic feature of a grammar checker is to cor-
rect spelling errors that would be missed by a spell
checker, that is, orthographically correct words that
are nevertheless wrong in the given context.

(1) Beroštupmi
interest

gáktegoarrun|gursii
costume.sewing|course.ILL

‘An interest in a costume sewing course’

7“Automatic grammatical error correction (GEC) progress
is limited by corpora available for developing and evaluating
systems.” (Tetreault et al., 2017, p.229)

http://www2.lingsoft.fi/doc/swegc/errtypes.html
http://www2.lingsoft.fi/doc/swegc/errtypes.html
http://visl.sdu.dk/constraint_grammar.html
http://visl.sdu.dk/constraint_grammar.html

In the North Sámi norm, generally (nominal) com-
pounds are written as one word; it is an error to
insert a space at the compound border. Ex. (1)
marks the compound border with a pipe.

(2) *Beroštupmi gáktegoarrun gursii

If the components of a compound are separated
by a space as in ex. (2) (cf. the correct spelling
in ex (1)), the grammar checker should detect a
compound spacing error.

Compound errors can not be found by means of
a non-contextual spellchecker, since adjacent nom-
inals are not automatically compound errors. They
may also have a syntactic relation. Our lexicon
contains both the information that gáktegoarrun-
gursii would be a legal compound noun if written
as one word, and the information needed to say that
gáktegoarrun gursii may have a syntactic relation
between the words, that is, they are independent
tokens each with their own analysis.8 We there-
fore assume ambiguous tokenisation. In order to
decide which tokenisation is the correct one, we
need context information.

In addition, there is the issue of combinatorial
explosion. For example, the bigram guhkit áiggi
‘longer time’ may be a compound error in one con-
text, giving an analysis as a single noun token. But
it is also ambiguous with sixteen two-token read-
ings, where the first part may be adjective, adverb
or verb. We want to include these as alternative
readings.

A naïve solution to getting multiple, ambiguous
tokenisations of a string like guhkit áiggi would be
to insert an optional space in the compound border
in the entry for dynamic compounds, with an error
tag. But if we analyse by longest match, the error
reading would be the only possible reading. We
could make the error tag on the space be optional,
which would make the entry ambiguous between
adjective+noun and compound, but we’d still be
missing the adverb/verb+noun alternatives, which
do not have a compound border between them. To
explicitly encode all correct alternatives to com-
pound errors in the lexicon, we would need to enter
readings for e.g. verb+noun bigrams simply be-
cause they happen to be ambiguous with an error
reading of a nominal compound.

Manually adding every bigram in the lexicon

8 The non-head noun sometimes has an epenthetic only
when used as a compound left-part, information which is also
encoded in the lexicon.

that happens to be ambiguous with an error would
be extremely tedious and error-prone. Adding it
automatically through FST operations turns out to
quickly exhaust memory and multiply the size of
the FST. Our solution would need to avoid this
issue.

(3) omd.
for.example

sámeskuvllas
Sámi.school.LOC

‘for example in the Sámi school’

(4) omd.
for.example

Álttás
Alta.LOC

sámeskuvllas
Sámi.school.LOC

‘for example in Alta in the Sámi school’

In the fragment in ex. (3)–(4) above, the pe-
riod after the abbreviation omd. ‘for example’ is
ambiguous with a sentence boundary. In the first
example, we could use the local information that
the noun sámeskuvllas ‘Sámi school (Loc.)’ is low-
ercase to tell that it is not a sentence boundary.
However, the second sentence has a capitalised
proper noun right after omd. and the tokenisation
is less straightforward. We also need to know that,
if it is to be two tokens instead of one, the form
splits before the period, and the tags belonging
to "<omd>" go with that form, and the tags be-
longing to "<.>" go with that form. That is, we
need to keep the information of which substrings
of the form go with which readings of the whole,
ambiguously-tokenised string.

As this and the previous examples show, we need
context information to resolve the ambiguity; this
means we need to defer the resolution of ambiguous
tokenisation until after we have some of the mor-
phological/syntactic/semantic analysis available.

(5) Itgo
not.SG2.Q

don
you

muitte
remember

‘Don’t you remember’

(6) It
not.SG2

go
Q

don
you

muitte
remember

‘Don’t you remember’

Ex. (5) and (6) above are equivalent given the
context – the space is just a matter of style, when
used in this sense – but go appearing as a word on
its own is locally ambiguous, since the question
particle go may in other contexts be a conjunction
(meaning ‘when, that’). We want to treat Itgo ‘don’t
you’ as two tokens It+go; having equal analyses for
the equal alternatives (after disambiguation) would
simplify further processing. This can be encoded in
the lexicon as one entry which we might be able to

split with some postprocessing, but before the cur-
rent work, our tools gave us no way to show what
parts of the form corresponded to which tokens. A
typical FST entry (here expanded for simplicity)
might contain

ii+V+Sg2+TOKEN+go+Qst:itgo

Now we want to encode that the form splits be-
tween ‘it’ and ‘go’, and that ‘ii+V+2Sg’ belongs to
‘it’, and that ‘go+Qst’ belongs to ‘go’. But inserting
a symbol into the form would mean that the form
no longer analyses; we need to somehow mark the
split-point.

Our system solves all of the above issues – we
explain how below.

3 Method

Below we present our grammar checker pipeline,
and our method to analyse and resolve ambiguous
tokenisation. We first describe the system architec-
ture of the North Sámi grammar checker, then our
morphological analysis and tokenisation method,
and finally our method of finding errors by disam-
biguating ambiguous tokenisation.

3.1 System architecture

The North Sámi grammar checker consists of dif-
ferent modules that can be used separately or in
combination, cf. Figure 1.

The text is first tokenised and morphologically
analysed by the descriptive morphological ana-
lyser tokeniser-gramcheck-gt-desc.pmhfst, which
has access to the North Sámi lexicon with both er-
ror tags and lexical semantic tags. The following
step, analyser-gt-whitespace.hfst, detects and tags
whitespace errors. It also tags the first words of
paragraphs and other whitespace delimited bound-
aries, which can then be used by the boundary de-
tection rules later on, which enables detecting e.g.
headers based on their surrounding whitespace.

The valency annotation grammar valency.cg3
adds valency tags to potential governors. Then
follows the module that disambiguates ambigu-
ous tokenisation, mwe-dis.cg3, which can select
or remove compound readings of multi-word ex-
pressions based on the morpho-syntactic context
and valencies. It can also decide whether punc-
tuation is a sentence boundary or not. The next
module, divvun-cgspell, takes unknown words and
runs them through our spell checker, where sugges-
tions include morphological analyses.

The next module is the CG grammar grc-disam-
biguator.cg3, which performs morpho-syntactic
analysis and disambiguation, except for the speller
suggestions, which are left untouched. The
disambiguator is followed by a CG module,
spellchecker.cg3, which aims to reduce the sug-
gestions made by the spellchecker by means of the
grammatical context. The context is now partly dis-
ambiguated, which makes it easier to decide which
suggestions to keep, and which not.9

The last CG module is grammarchecker.cg3,
which performs the actual error detection and cor-
rection – mostly for other error types than spelling
or compound errors. The internal structure of gram-
marchecker.cg3 is more complex; local case error
detection takes place after local error detection,
governor-argument dependency analysis, and se-
mantic role mapping, but before global error detec-
tion.

Finally, the correct morphological forms are gen-
erated from tag combinations suggested in gram-
marchecker.cg3 by means of the normative mor-
phological generator generator-gt-norm.hfstol, and
suggested to the user along with a short feedback
message of the identified error.

3.2 Ambiguous tokenisation

A novel feature of our approach is the support for
different kinds of ambiguous tokenisation in the
analyser, and how we disambiguate ambiguous to-
kens using CG rules.

We do tokenisation as part of morphological
analysis using the hfst-tokenise tool, which does
a left-to-right longest match analysis of the input,
where matches are those given by a pmatch anal-
yser. This kind of analyser lets us define tokenisa-
tion rules such as “a word from our lexicon may
appear surrounded by whitespace or punctuation”.
The pmatch analyser imports a regular lexical trans-
ducer, and adds definitions for whitespace, punc-
tuation and other tokenisation hints; hfst-tokenise
uses the analyser to produce a stream of tokens
with their morphological analysis in CG format.

As an example, hfst-tokenise will turn the input
ii, de ‘not, then’ into three CG cohorts:

9 In later work done after the submission, we tried using
grc-disambiguator.cg3 again after applying spellchecker.cg3,
this time allowing it to remove speller suggestions. Given that
the context was now disambiguated, and problematic speller
suggestion cases had been handled by spellchecker.cg3, it
disambiguated the remaining speller suggestions quite well,
and left us with just one or a few correct suggestions to present
to the user.

Figure 1: System architecture of the North Sámi grammarchecker

"<ii>"
"ii" V IV Neg Ind Sg3 <W:0>

"<,>"
"," CLB <W:0>

:
"<de>"

"de" Adv <W:0>
"de" Pcle <W:0>

The space between the words is printed after
the colon. The analyses come from our lexical
transducer.

Define morphology @bin"analyser.hfst" ;
Define punctword morphology &

[Punct:[?*]] ;
Define blank Whitespace |

Punct ;
Define morphoword morphology

LC([blank | #])
RC([blank | #]) ;

regex [morphoword | punctword];

The above pmatch rules say that a word from the
lexicon (analyser.hfst) has to be surrounded by a
"blank", where a blank is either whitespace or punc-

tuation. The LC/RC are the left and right context
conditions. We also extract (intersect) the subset
of the lexicon where the form is punctuation, and
allow that to appear without any context conditions.

We insert re-tokenisation hints in the lexicon at
places where we assume there is a possible tokeni-
sation border, and our changes to hfst-tokenise let
the analyser backtrack and look for other tokenisa-
tions of the same input string. That is, for a given
longest match tokenisation, we can force it to redo
the tokenisation so we get other multi-token read-
ings with shorter segments alongside the longest
match. This solves the issue of combinatorial ex-
plosion.

As a simple example, the ordinal anal-
ysis of 17. has a backtracking mark be-
tween the number and the period. If
the lexicon contains the symbol-pairs/arcs:
1:1 7:7 ε:@PMATCH_BACKTRACK@
ε:@PMATCH_INPUT_MARK@ .:A ε:Ord

then, since the form-side of this analysis is 17.,
the input 17. will match, but since there was a
backtrack-symbol, we trigger a retokenisation. The
input-mark symbol says where the form should be
split.10 Thus we also get analyses of 17 and . as
two separate tokens.
"<17.>"

"17" A Ord Attr
"." CLB "<.>"

"17" Num "<17>"

To represent tokenisation ambiguity in the CG
format, we use vislcg3 subreadings,11 where
deeper (more indented) readings are those that
appeared first in the stream, and any reading
with a word-form-tag ("<.>" above) should
(if chosen by disambiguation) be turned into
a cohort of its own. Now we may run a
regular CG rule to pick the correct reading
based on context, e.g. SELECT (".") IF (1
some-context-condition) ...; which
would give us
"<17.>"

"." CLB "<.>"
"17" Num "<17>"

Then a purely mechanical reformatter named cg-
mwesplit turns this into separate tokens, keeping
the matching parts together:
"<17>"

"17" Num
"<.>"

"." CLB

We also handle possible compound errors with
the above scheme. When compiling the lexical
transducer, we let all compound boundaries option-
ally be realised as a space. Two successive nouns
like illu sáhka ‘happiness news (i.e. happy news)’
will be given a compound analysis which includes
an error tag. We also insert a backtracking sym-
bol with the space, so that the tokenisation tool
knows that the compound analysis is not necessar-
ily the only one (but without having to explicitly
list all possible alternative tokenisations). If the re-
tokenisation finds that the nouns can be analysed
and tokenised independently, then those tokens and
analyses are also printed.
"<illu sáhka>"

10This also means we cannot reshuffle the input/output
side of the FST. In practice, we use a flag diacritic in the
lexicon, which will keep its place during minimisation, and
after the regular lexicon is compiled, we turn the flag into the
ε:@PMATCH_INPUT_MARK@ symbol-pair.

11https://visl.sdu.dk/cg3/chunked/
subreadings.html (accessed 2018-10-10)

"illusáhka" N Sg Nom Err/SpaceCmp
"sáhka" N Sg Nom "< sáhka>"

"illu" N Sg Nom "<illu>"

Given such an ambiguous tokenisation, CG rules
choose between the compound error and the two-
token readings, using context information from the
rest of the sentence. If the non-error reading was
chosen, we get:
"<illu sáhka>"

"sáhka" N Sg Nom "< sáhka>"
"illu" N Sg Nom "<illu>"

which cg-mwesplit reformats to two cohorts:
"<illu>"

"illu" N Sg Nom
"< sáhka>"

"sáhka" N Sg Nom

3.3 Rule-based disambiguation of ambiguous
tokenisation

As mentioned above, disambiguation of ambigu-
ous tokenisation is done after morphological analy-
sis. Consequently, this step has access to undisam-
biguated morphological (but not full syntactical)
information. In addition, lexical semantic tags and
valency tags are provided. The rules that resolve
sentence boundary ambiguity are based on transi-
tivity tags of abbreviations, lexical semantic tags,
and morphological tags. Some of them are specific
to one particular abbreviation.

Bi- or trigrams given ambiguous tokenisation
can either be misspelled compounds (i.e. in North
Sámi typically two-part compounds are the norm)
or two words with a syntactic relation. The as-
sumption is that if a compound is lexicalised, two
or more adjacent words may be analysed as a com-
pound and receive an errortag (Err/SpaceCmp), us-
ing a CG rule such as the following:

SELECT SUB:* (Err/SpaceCmp) IF (NEGATE
0/* Err/MissingSpace OR Ess);

This rule selects the error reading unless any sub-
reading of this reading (0/*) already has another
error tag or is an essive case form.

This is the case unless any other previously ap-
plied rule has removed the error reading. Version
r172405 of the tokenisation disambiguation gram-
mar mwe-dis.cg3 has 40 REMOVE rules and 8
SELECT rules.

Compound errors are ruled out for example if
the first word is in genitive case as it can be the first
part of a compound but also a premodifier. The
simplified CG rule below removes the compound

https://visl.sdu.dk/cg3/chunked/subreadings.html
https://visl.sdu.dk/cg3/chunked/subreadings.html

error reading if the first component is in genitive
unless it receives a case error reading (nomina-
tive/accusative or nominative/genitive) or it is a
lesser used possessive reading and a non-human
noun. The rule makes use of both morphological
and semantic information.

REMOVE (Err/SpaceCmp) IF (0/1 Gen -
Allegro - Err/Orth-nom-acc - Err/
Orth-nom-gen - PX-NONHUM);

(7) Gaskavahku
Wednesday.GEN

eahkeda
evening.ACC

‘Wednesday evening’

(8) áhpehis
pregnant

nissonolbmuid
woman.ACC.PL

‘pregnant women’

In ex. (7), gaskavahku ‘Wednesday’ is in genitive
case. The context to rule out a compound error
is very local. In ex. (8), áhpehis ‘pregnant’ the
first part of the potential compound is an attributive
adjective form. Also here compound errors are
categorically discarded.

(9) Paltto
Paltto

lea
is

riegádan jagi
born.PRFPRC year.ACC

1947
1947

‘Paltto was born in 1947’

(10) galggai
should

buot
all

báikkiin
place.LOC.PL

dárogiella
Norwegian.NOM

oahpahusgiellan
instructing.language in all places
‘Norwegian had to be the instructing lan-
guage’

Other cases of compound error disambiguation,
however, are more global. In ex. (9), riegádan jagi
‘birth year (Acc.)’ is a lexicalized compound. How-
ever as it is preceded by a finite verb, which is also
a copula, i.e. lea ‘is’, the perfect participle form
riegádan ‘born’ is part of a past tense construction
(‘was born’), and the compound error needs to be
discarded.

In ex. (10), on the other hand, the relation be-
tween the first part of the bigram (dárogiella ‘Nor-
wegian’) and the second part (oahpahusgiellan ‘in-
structing language (Ess.)’) is that of a subject to
a subject predicate. The disambiguation grammar
refers to a finite copula (galggai ‘should’) preced-
ing the bigram.

4 Evaluation

In this section we evaluate the previously described
modules of the North Sámi grammar checker.

Firstly, we evaluate the disambiguation of com-
pound errors in terms of precision and recall. Then
we compare our system for sentence segmentation
with an unsupervised system. Since a corpus with
correctly annotated compound and sentence bound-
ary tokenisation for North Sámi is not available, all
evaluation and annotation is done from scratch. We
use the SIKOR corpus (SIKOR2016)),12 a descrip-
tive corpus which contains automatic annotations
for linguistic research purposes, but no manually
checked/verified tags. We selected a random cor-
pus of administrative texts for two reasons. We had
a suspicion that it would have many abbreviations
and cases of ambiguous tokenisation. Secondly,
administrative texts stand for a large percentage of
the total North Sámi text body, and the genre is
thus important for a substantial group of potential
users of our programs.

4.1 Compound error evaluation

For the quantitative evaluation of the disambigua-
tion of potential compound errors we calculated
both precision (correct fraction of all marked er-
rors) and recall (correct fraction of all errors).
The corpus used contains 340,896 space separated
strings, as reported by the Unix tool wc. The exact
number of tokens will vary depending on tokenisa-
tion techniques, as described below.

The evaluation is based on lexicalised com-
pounds as potential targets of ambiguous tokeni-
sation. A previous approach allowed ambiguous
tokenisation of dynamic compounds too, solely us-
ing syntactic rules to disambiguate. However, this
led to many false positives (which would require
more rules to avoid). Since our lexicon has over
110,000 lexicalised compounds (covering 90.5 %
of the compounds in the North Sámi SIKOR corpus)
coverage is acceptable without the riskier dynamic
compound support.13

Table 1 contains the quantitative results of the
compound error evaluation. Of the 340.895 run-
ning bigrams in the text, there were a total of 4.437
potential compound errors, i.e. 1.30 % of running
bigrams are analysed as possible compounds by
our lexicon. On manually checking, we found 458
of these to be true compound errors (0.13 % of run-
ning bigrams, or 10.3 % of potential compound
errors as marked by the lexicon). So the table

12SIKOR contains a range of genres; the part used for eval-
uation contains bureaucratic texts.

13For less developed lexicons, the trade-off may be worth
it.

True positives 360
False positives 110
True negatives 3,869
False negatives 98
Precision 76.6%
Recall 78.6%

Table 1: Qualitative evaluation of CG compound error
detection

indicates how well our Constraint Grammar dis-
ambiguates compound errors from words that are
supposed to be written apart, and tells nothing of
the work done by the lexicon in selecting possible
compound errors (nor of possible compound errors
missed by the lexicon).14

Precision for compound error detection is well
above the 67% threshold for any error type in a
commercial grammar checker mentioned by Arppe
(2000, p.17), and the F0.5 (weighting precision
twice as much as recall) score is 77.0%, above
e.g. Grundkiewicz and Junczys-Dowmunt (2018)’s
72.0%.15

False positives occur for example in cases where
there is an internal syntactic structure such as in
the case of ex. (11), where both bálvalus ‘service’
and geavaheddjiide ‘user (Ill. Pl.)’ are participants
in the sentence’s argument structure. Since there
is no finite verb, the syntactic relation could only
be identified by defining the valency of bálvalus
‘service’.

(11) Buoret
Better

bálvalus
service.NOM.SG

geavaheddjiide
user.ILL.PL

‘Better service to the users’

A number of the false negatives (cf. ex. (12)) are
due to frequent expressions including lágan (i.e.
iešgud̄etlagan ‘different’, dánlágan ‘this kind of’,
etc.), which need to be resolved by means of an
idiosyncratic rule. Dan and iešgud̄et are genitive
or attributive pronoun forms and not typically part
of a compound, so a syntactic rule only does not
resolve the problem.

14We have also not calculated the number of actual com-
pounds in the evaluation corpus, so the ratio of compound
errors to correct compounds is unknown.

15 We would like to compare performance on this task with
a state-of-the-art machine learning method, but have seen
no references for this particular task to use as an unbiased
baseline. However, the gold data set that was developed for
evaluating our method is freely available to researchers who
would like to experiment with improving on the results.

(12) *iešgud̄et
different

lágan
kinds

molssaeavttut
alternative.PL

‘Different kinds of alternatives’

(13) *Láhka
law.NOM;lacquer.GEN

rievdadusaid
changing.ACC.PL

birra
about
‘About the law alterations’

In ex. (13), there is a compound error. However,
one of the central rules in the tokeniser disambigua-
tion grammar removes the compound error reading
if the first part of the potential compound is in the
long genitive case form. However, in this case
láhka can be both the genitive form of láhkka ‘lac-
quer’ and the nominative form of láhka ‘law’. This
unpredictable lexical ambiguity had not been taken
into account by the disambiguation rule, which is
why there is a false negative. In the future it can
be resolved by referring to the postposition birra
‘about’, which asks for a preceding genitive.

4.2 Sentence boundary evaluation
A common method for splitting sentences in a com-
plete pipeline (used e.g. by LanguageTool) is to
tokenise first, then do sentence splitting, followed
by other stages of linguistic analysis. Here a stan-
dalone tokeniser would be used, e.g. PUNKT (Kiss
and Strunk, 2006), an unsupervised model that uses
no linguistic analysis, or GATE16 which uses regex-
based rules. The Python package SpaCy17 on the
other hand trains a supervised model that predicts
sentence boundaries jointly with dependency struc-
ture. Stanford CoreNLP18 uses finite state automata
to tokenise, then does sentence splitting.

In contrast, our method uses no statistical infer-
ence. We tokenise as the first step, but the tokenisa-
tion remains ambiguous until part of the linguistic
analysis is complete.

Below, we make a comparison with PUNKT19,
which, although requiring no labelled training data,
has been reported20 to perform quite well compared
to other popular alternatives.

As with the above evaluation, we used bureau-
cratic parts of the SIKOR corpus. We trained the
PUNKT implementation that comes with NLTK on

16http://gate.ac.uk/ (accessed 2018-10-08)
17https://spacy.io/ (accessed 2018-10-08)
18http://www-nlp.stanford.edu/software/

corenlp.shtml (accessed 2018-10-08)
19https://www.nltk.org/_modules/nltk/

tokenize/punkt.html (accessed 2018-10-08)
20https://tech.grammarly.com/blog/

how-to-split-sentences (accessed 2018-10-08)

http://gate.ac.uk/
https://spacy.io/
http://www-nlp.stanford.edu/software/corenlp.shtml
http://www-nlp.stanford.edu/software/corenlp.shtml
https://www.nltk.org/_modules/nltk/tokenize/punkt.html
https://www.nltk.org/_modules/nltk/tokenize/punkt.html
https://tech.grammarly.com/blog/how-to-split-sentences
https://tech.grammarly.com/blog/how-to-split-sentences

System PUNKT Divvun
True pos. 1932 1986
False pos. (split mid-sent) 39 29
True neg. 474 484
False neg. (joined sents) 55 1
Precision 98.02% 98.56%
Recall 97.23% 99.95%

Table 2: Sentence segmentation errors per system on
2500 possible sentences.22

287.516 "words" (as counted by wc), and manu-
ally compared the differences between our system
(named divvun below) and PUNKT. We used a
trivial sed script s/[.?:!] */&\n/g to cre-
ate a "baseline" count of possible sentences, and
ran the evaluation on the first 2500 potential sen-
tences given by this script (as one big paragraph),
counting the places where the systems either split
something that should have been one sentence, or
treated two sentences as one; see table 2.

Of the differences, we note that PUNKT often
treats abbreviations like nr or kap. as sentence
boundaries, even if followed by lower-case words
or numbers (st. meld. 15 as three sentences).
Our system sometimes makes this mistake too, but
much more rarely. Also, PUNKT never treats colon
as sentence boundaries. The colon in Sámi is used
for case endings on names, e.g. Jönköping:s, but
of course also as a clause or sentence boundary.
Thus many of the PUNKT errors are simply not
marking a colon as a sentence boundary. On the
other hand, our system has some errors where an
unknown word led to marking the colon (or period)
as a boundary. This could be fixed in our system
with a simple CG rule.

There are also some odd cases of PUNKT not
splitting on period even with following space and
title cased word, e.g. geavahanguovlluid. Rád-
jegeassin. Where the baseline sed script creates
the most sentence boundaries in our evaluation test
set (2500), our system creates 2015 sentences, and
PUNKT 1971.

Our system is able to distinguish sentence bound-
aries where the user forgot to include a space, e.g.
buorrin.Vuoigatvuod̄at is correctly treated as a sen-
tence boundary. This sort of situation is hard to
distinguish in general without a large lexicon. Our
system does make some easily fixable errors, e.g.
kap.1 was treated as a sentence boundary due to a
wrongly-written CG rule (as such, this evaluation

has been helpful in uncovering silly mistakes). Be-
ing a rule-based system, it is easy to support new
contexts when required.

5 Conclusion

We have introduced the North Sámi grammar
checker presenting its system architecture and de-
scribed its use and necessity for the North Sámi
language community. Tokenisation is the first step
in a grammar checker when approaching frequent
spelling error types that cannot be resolved without
grammatical context. We are questioning the tradi-
tional concept of a token separated by a space, not
only in terms of multiwords, but also in terms of po-
tential compound errors. Our experiment showed
that our system outperforms a state-of-the-art un-
supervised sentence segmenter. Disambiguation
of compound errors and other two-word combina-
tions give good results both in terms of precision
and recall, i.e. both are above 76%. Our method
of ambiguous tokenisation and ambiguity resolu-
tion by means of grammatical context allows us
to improve tokenisation significantly compared to
the standard approaches. The integration of the
grammar checker framework in the Giella infras-
tructure ensures that this approach to tokenisation
is directly available to all other languages using
this infrastructure.

Acknowledgments

We especially would like to thank Thomas Omma
for testing rules and checking examples within the
above discussed modules, and our colleagues in
Divvun and Giellatekno for their daily contributions
to our language tools and the infrastructure.

References
Lene Antonsen. 2012. Improving feedback on l2 mis-

spellings - an fst approach. In Proceedings of the
SLTC 2012 workshop on NLP for CALL; Lund; 25th
October; 2012, 80, pages 1–10. Linköping Univer-
sity Electronic Press; Linköpings universitet.

Antti Arppe. 2000. Developing a grammar checker
for Swedish. In Proceedings of the 12th Nordic
Conference of Computational Linguistics (NoDaL-
iDa 1999), pages 13–27, Department of Linguistics,
Norwegian University of Science and Technology
(NTNU), Trondheim, Norway.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite
State Morphology. CSLI Studies in Computational
Linguistics. CSLI Publications, Stanford.

Eckhard Bick. 2006. A constraint grammar based
spellchecker for Danish with a special focus on
dyslexics. In Mickael Suominen, Antti Arppe, Anu
Airola, Orvokki Heinämäki, Matti Miestamo, Urho
Määttä, Jussi Niemi, Kari K. Pitkänen, and Kaius
Sinnemäki, editors, A Man of Measure: Festschrift
in Honour of Fred Karlsson on his 60th Birth-
day, volume 19/2006 of Special Supplement to SKY
Jounal of Linguistics, pages 387–396. The Linguis-
tic Association of Finland, Turku.

Eckhard Bick. 2015. DanProof: Pedagogical spell and
grammar checking for Danish. In Proceedings of the
10th International Conference Recent Advances in
Natural Language Processing (RANLP 2015), pages
55–62, Hissar, Bulgaria. INCOMA Ltd.

Eckhard Bick and Tino Didriksen. 2015. CG-3 – be-
yond classical Constraint Grammar. In Proceedings
of the 20th Nordic Conference of Computational Lin-
guistics (NoDaLiDa 2015), pages 31–39. Linköping
University Electronic Press, Linköpings universitet.

Børre Gaup, Sjur Moshagen, Thomas Omma, Maaren
Palismaa, Tomi Pieski, and Trond Trosterud. 2006.
From Xerox to Aspell: A first prototype of a north
sámi speller based on twol technology. In Finite-
State Methods and Natural Language Processing,
pages 306–307, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Roman Grundkiewicz and Marcin Junczys-Dowmunt.
2018. Near human-level performance in grammati-
cal error correction with hybrid machine translation.
arXiv preprint arXiv:1804.05945.

Sam Hardwick, Miikka Silfverberg, and Krister Lindén.
2015. Extracting semantic frames using hfst-
pmatch. In Proceedings of the 20th Nordic Con-
ference of Computational Linguistics, (NoDaLiDa
2015), pages 305–308.

Fred Karlsson. 1990. Constraint Grammar as a Frame-
work for Parsing Running Text. In Proceedings
of the 13th Conference on Computational Linguis-
tics (COLING 1990), volume 3, pages 168–173,
Helsinki, Finland. Association for Computational
Linguistics.

Fred Karlsson, Atro Voutilainen, Juha Heikkilä, and
Arto Anttila. 1995. Constraint Grammar: A
Language-Independent System for Parsing Unre-
stricted Text. Mouton de Gruyter, Berlin.

Lauri Karttunen. 2011. Beyond morphology: Pattern
matching with FST. In SFCM, volume 100 of Com-
munications in Computer and Information Science,
pages 1–13. Springer.

Tibor Kiss and Jan Strunk. 2006. Unsupervised mul-
tilingual sentence boundary detection. Computa-
tional Linguistics, 32(4):485–525.

Krister Lindén, Miikka Silfverberg, Erik Axel-
son, Sam Hardwick, and Tommi Pirinen. 2011.

Hfst—framework for compiling and applying mor-
phologies. In Cerstin Mahlow and Michael
Pietrowski, editors, Systems and Frameworks for
Computational Morphology, volume Vol. 100 of
Communications in Computer and Information Sci-
ence, pages 67–85. Springer-Verlag, Berlin, Heidel-
berg.

Eva Lindgren, Kirk P H Sullivan, Hanna Outakoski,
and Asbjørg Westum. 2016. Researching literacy
development in the globalised North: studying tri-
lingual children’s english writing in Finnish, Nor-
wegian and Swedish Sápmi. In David R. Cole
and Christine Woodrow, editors, Super Dimensions
in Globalisation and Education, Cultural Studies
and Transdiciplinarity in Education, pages 55–68.
Springer, Singapore.

Marcin Milkowski. 2010. Developing an open-source,
rule-based proofreading tool. Softw., Pract. Exper.,
40(7):543–566.

Sjur N. Moshagen, Tommi A. Pirinen, and Trond
Trosterud. 2013. Building an open-source develop-
ment infrastructure for language technology projects.
In NODALIDA.

Hanna Outakoski. 2013. Davvisámegielat čálamáhtu
konteaksta [The context of North Sámi literacy].
Sámi died̄alaš áigečála, 1/2015:29–59.

SIKOR2016. 2016-12-08. SIKOR UiT The Arc-
tic University of Norway and the Norwegian
Saami Parliament’s Saami text collection. URL:
http://gtweb.uit.no/korp (Accessed 2016-12-08).

Gary F. Simons and Charles D. Fennig, editors. 2018.
Ethnologue: Languages of the World, twenty-first
edition. SIL International, Dallas, Texas.

Joel R. Tetreault, Keisuke Sakaguchi, and Courtney
Napoles. 2017. JFLEG: A fluency corpus and bench-
mark for grammatical error correction. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
EACL 2017, Valencia, Spain, April 3-7, 2017, Vol-
ume 2: Short Papers, pages 229–234.

Linda Wiechetek. 2012. Constraint Grammar based
correction of grammatical errors for North Sámi. In
Proceedings of the Workshop on Language Technol-
ogy for Normalisation of Less-Resourced Languages
(SALTMIL 8/AFLAT 2012), pages 35–40, Istanbul,
Turkey. European Language Resources Association
(ELRA).

Linda Wiechetek. 2017. When grammar can’t be
trusted – Valency and semantic categories in North
Sámi syntactic analysis and error detection. PhD
thesis, UiT The arctic university of Norway.

