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Abstract

Discourse relation classification has proven to
be a hard task, with rather low performance
on several corpora that notably differ on the
relation set they use. We propose to de-
compose the task into smaller, mostly binary
tasks corresponding to various primitive con-
cepts encoded into the discourse relation defi-
nitions. More precisely, we translate the dis-
course relations into a set of values for at-
tributes based on distinctions used in the map-
pings between discourse frameworks proposed
by Sanders et al. (2018). This arguably allows
for a more robust representation of discourse
relations, and enables us to address usually ig-
nored aspects of discourse relation prediction,
namely multiple labels and underspecified an-
notations. We study experimentally which of
the conceptual primitives are harder to learn
from the Penn Discourse Treebank English
corpus, and propose a correspondence to pre-
dict the original labels, with preliminary em-
pirical comparisons with a direct model.

1 Introduction

Discourse parsing is a crucial task for natural lan-
guage understanding, as it accounts for the coher-
ence of a text by identifying semantic and prag-
matic links between sentences and clauses. The
links are sometimes marked by explicit lexical
items, so-called discourse connectives, but very
often they rely on several lexical cues, contextual
interpretation or even world knowledge, in which
case they are called “implicit” relations. Automat-
ing discourse parsing consists in finding which
sentences or clauses are directly related in a text,
and with what type of semantico-pragmatic rela-
tion. The examples below demonstrate each type
of relation, with the explicit discourse connective
marked in bold, and example labels inspired by the
Penn Discourse Treebank 2.0 (Prasad et al., 2008)
relation set.
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(1) Climate change is caused by anthropic activi-
ties, but politics are not doing anything about
it.
Comparison.Concession.Contra-expectation

(2) Climate is changing. Humans generate too
much COs.
Contingency.Cause.Reason

Several theoretical frameworks exist for dis-
course analysis, the most well-known being
Rhetorical Structure Theory (RST, Mann and
Thompson, 1988), and Segmented Discourse Rep-
resentation Theory (SDRT, Asher and Lascarides,
2003). The Penn Discourse Treebank (PDTB,
Prasad et al., 2008) is an English annotated cor-
pus with its own theoretical assumptions. It is
the largest resource for discourse relations and has
been used in several studies to demonstrate the dif-
ficulty of automatically identifying implicit dis-
course relations, e.g. (Xue et al., 2016; Bai and
Zhao, 2018). The PDTB relies on a three-level hi-
erarchy of rhetorical functions, and multiple rela-
tions can be annotated for each example.

As empirical models have shown rather low re-
sults for implicit relation classification, with only
incremental improvements in spite of the variety
of approaches that have been tried, it appears a lot
of the necessary information is still not leveraged
in discourse parsing.

But it could be argued also that the difficulty lies
in the way we model the task, especially these la-
bels on which there is no consensus and generally
a low inter-annotator agreement.

We argue here that, even if the label sets dif-
fer, all frameworks propose to encode the same
range of pragmatic phenomena, and that decom-
posing the relations into simpler conceptual prim-
itives could help to understand where the real dif-
ficulty lies, and, eventually, to improve classifica-
tion performance. We thus experiment with clas-
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sification tasks where we try to predict these prim-
itives of the discourse relations rather than the re-
lations themselves.

More precisely, we experimentally test Sanders
et al. (2018)’s recent proposal of an inventory of
so-called dimensions (called here primitives) of
the discourse relations that could be seen as an in-
terface between the various existing frameworks.

Our first contribution is thus to implement this
mapping, from annotated relations to a set of prim-
itives, and from a predicted set of primitives to
compatible relation labels.

Our second contribution is an empirical inves-
tigation of the separate primitives and how diffi-
cult they are to predict. One advantage of this ap-
proach is that it can provide underspecified labels,
which is why we focus for now on the PDTB, as
its hierarchical organisation of relation types nat-
urally lends itself to a classification mixing gran-
ularities. Our approach can also address predict-
ing or comparing against multiple labels between
pairs of sentences or clauses. This allows us to
stay closer to the annotation, contrary to all exist-
ing work, limited to a subset of relations.

Finally, we hope to provide a framework to in-
vestigate the validity of different conceptual de-
compositions of discourse relations.

This paper is organized as follows. In Section 2,
we briefly review work on discourse relation iden-
tification. In Section 3, we present discourse rela-
tion decomposition, with a focus on the mapping
presented in (Sanders et al., 2018), before detail-
ing, in Section 4, our proposal for an operational
mapping. The Section 5 presents our experimental
framework — the systems compared and the eval-
uation strategy. Finally, we detail in Section 6 the
models built and the data used, before reporting
our results in Section 7.

2 Discourse relation classification

Previous work on discourse relation identification
generally separated the classification of implicit
and explicit examples, and mainly focused on im-
plicit ones, considered as the hardest task. Per-
formance on this task are, however, still low: the
current best are reported in (Bai and Zhao, 2018),
where it is proposed to augment word embeddings
with subword and contextual embeddings, and to
combine sentence and sentence pair representa-

'Our code is available at https://gitlab.inria.
fr/andiamo/relations.
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tions. They report 45.73 to 48.22% in accuracy
— depending on the sections used for evaluation —
for level 2 relation classification (11 labels), and
51.06% in F; for multiclass classification of level
1 relations (4 labels).

For explicit relation classification, the last
scores come from the CoNLL shared tasks on
shallow discourse parsing (Xue et al., 2015, 2016).
Mihaylov and Frank (2016) use similarity mea-
sures based on word embeddings and report
78.34% in F;1 on blind test and 89.80% on sec-
tion 23. Kido and Aizawa (2016) propose to build
a specific classifier for Comparison subtypes and
report 75.43% on blind test and 90.22% on section
23. These scores are computed on relations of the
PDTB, with a modified inventory of 20 relations
designed to make data more balanced by mixing
various levels of the hierarchy.

The organizers of the shared tasks also provide
scores for all relations: at best 54.60 on blind test
and 64.34% on section 23 (Xue et al., 2016).

All previous work made simplifying assump-
tions for the task: systems are restricted to a sub-
set of relations, and ignore multiple annotations
and under-specified annotations of relations. On
the contrary, our approach aims at considering
the problem of discourse relation prediction in the
most general way.

3 Existing approach for mapping
relations into primitives

Discourse frameworks and their corresponding
annotated corpora rely on different assumptions,
among them the set of discourse relations they
consider, covering overlapping or identical con-
cepts under different names and definitions, and
they are hard to reconcile.

There have been a few attempts to formalize
the various types of information encoded by dis-
course relations, and give it some structure (Hovy,
1990; Knott, 1997), or provide a semantics for
the underlying principles (Chiarcos, 2014), with-
out clear-cut criteria to decide on the most appro-
priate set of relations. The PDTB addresses the
problem by providing a hierarchy of relations, al-
lowing for various levels of underspecification, but
without much justification other than annotation
operational constraints.


https://gitlab.inria.fr/andiamo/relations
https://gitlab.inria.fr/andiamo/relations

3.1 Cognitive approach to Coherence
Relations

More recently, within the context of the COST
TextLink Action,? Sanders et al. (2018) provided a
mapping into dimensions for sets or hierarchies of
relations from RST, PDTB and SDRT. These map-
pings rely on an extended version of the primitives
originally introduced in the Cognitive approach to
Coherence Relations or CCR (Sanders et al., 1992,
1993). In the following we will use the term prim-
itive to describe what is rather ambiguously called
dimension in (Sanders et al., 2018).

In CCR, the link between two discourse units is
described by values for a set of primitives. The
core CCR primitives are: basic operation, polar-
ity, source of coherence, implication order, and
temporality. According to Sanders et al. (2018),
these primitives are shared by all coherence rela-
tions and are validated by a number of psycholin-
guistic and/or corpus-based studies.

We use the following notation: P and () are two
propositions (events, states, speech acts, claims,
etc.) expressed in the discourse units linked by a
relation. Each relation is characterized by the way
in which its arguments map onto P and Q.

Basic operation This primitive makes a dis-
tinction between additive relations (typically ex-
pressed by connectives and or also) that involve
a logical conjunction (P&(Q)) and causal relations
(typically expressed by connectives because or
since) that involve an implication (P — Q).

Polarity Polarity distinguishes between positive
and negative (or adversative) relations. Nega-
tive relations (expressed for instance by connec-
tives but, although or even if), differ from posi-
tive relations (expressed for instance by because)
in that they imply the negation of either P or )
or some of their implications in their semantics.
Note that this negation does not need to be ex-
plicit/linguistically marked. In (3), the negated
proposition would be that the biofuel costs more,
as an expected consequence of the higher produc-
tion costs. Note that this primitive must not be
confused with sentiment polarity.

(3) The biofuel is more expensive to produce,
but by reducing the excise-tax the govern-
ment makes it possible to sell the fuel for the
same price.
Comparison.Concession.Contra-expectation

2See http://www.textlink.ii.metu.edu.tr.

Source of coherence This primitive has two
possible values named objective and subjective in
CCR. It refers to a common distinction in the lit-
erature, for instance subject matter versus presen-
tational relations for Mann and Thompson (1988).
Objective relations link discourse units at the level
of their propositional content (as a result gener-
ally expresses an objective relation), whereas sub-
Jjective relations operate at epistemic or speech act
level: the speaker is “involved in the construction
of the relation” (Sanders et al., 2018) (since seems
to have a preference for marking subjective rela-
tions).

Implication order This primitive is only appli-
cable for causal relations (value for this primi-
tive is set to non-applicable (NA) for additive re-
lations). For relations involving an implication
P — (@, it indicates the order in which P and ()
are described in the linguistic arguments .51 and S
of the relation. If S expresses P (antecedent), im-
plication order is basic, whereas if S1 expresses )
(consequent), implication order is non-basic. Typ-
ically, connectives thus and because respectively
express relations in basic and non-basic order.

Temporality A relation can have a temporal as-
pect or not, and when it does it can be chrono-
logical (then), anti-chronological (previously), or
synchronous (meanwhile).

Additional features Sanders et al. (2018) in-
troduce additional features that represent distinc-
tions which are more detailed than those used in
the original CCR framework, in order to provide
the most specific mapping possible. These addi-
tional features are: conditional, alternative, speci-
ficity (and refinements: specificity-equivalence,
specificity-example), goal and list. Their values
are negative by default (-). In our experiments, we
did not retain features that only apply to part of
the relations falling under the respective category
(goal and list). We keep as primitives: conditional
(if, unless), alternative (or) and specificity (in par-
ticular, in fact). In order to have quite generic
primitives, we merged refinements on specificity
into one primitive, so that each primitive is posi-
tive (+) for more than one PDTB label.

The contribution of Sanders et al. (2018) is to
provide a (arguably) complete mapping to make
existing annotation systems compatible, and Dem-
berg et al. (2017) test the approach by applying
PDTB and RST mappings to existing annotations:
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Class Type Subtype Pol. Basicop. Impl. order SoC Temp.
Comparison neg NS NS NS NS
Comparison Contrast Juxtaposition neg add NA obj NS (any)
Comparison Contrast Opposition neg add NA obj NS (any)
Comparison Pragmatic contrast neg add NA sub NS (NA)
Comparison  Concession neg cau NS NS NS
Comparison  Concession Expectation neg cau non-b NS (obj|sub) NS (anti|NA)
Comparison Concession Contra-expectation  neg cau basic NS (obj|sub) NS (anti|NA)
Comparison  Pragmatic concession neg cau NS sub NS

Table 1: Sample of our classification into core primitives, for relations within the class Comparison. Primitives
are polarity (Pol.), basic operation (Basic op.), implication order (Impl. order), source of coherence (SoC) and
temporality (Temp.). Bold indicates modified or new values w.r.t. Sanders et al. (2018) (see Section 4.1). Original
ones are indicated in parenthesis. NS (non-specified) unifies different unspecified labels from the original model.

they used common portions of PDTB 2.0 and RST-
DT, in order to test the validity of the mapping.
The outcome is that only a partial mapping is pos-
sible at this stage, because of discourse segmenta-
tion issues, and a lot of contextually underspeci-
fied or ambiguous correspondences.

As a first step we focus on providing a practical
correspondence between PDTB annotations and
the set of CCR primitives described by Sanders
et al. (2018). It is the mapping we rely on in our
experiments (with a few changes on the possible
values for each primitive, see Section 4).

4 Proposal for an operational mapping

In this study, we focus on the PDTB 2.0 (Prasad
et al., 2007). This corpus has been annotated with
explicit and implicit discourse relations.> As pre-
viously said, in the PDTB, relations are organized
into a three-level hierarchy with 4 coarse-grained
classes, 16 types and 23 subtypes. Examples can
be annotated at any levels and annotators were
asked to choose a more general relation when hes-
itating between different relations within a group;
some annotation disagreements were adjudicated
by annotating at the upper level. Moreover, anno-
tators were allowed to suggest up to two relations
per explicit example, and up to four per implicit.
PDTB annotation thus presents several partic-
ularities that are almost always ignored by auto-
mated approaches: relations at different levels of
granularity, under-specified relations and possibly
multiple relations for a single pair of text seg-
ments. Moreover, studies on discourse relation
classification are always limited to a subset of re-

3 As in previous work on this task, we ignore the Entity re-
lation. Note that no mapping was provided in (Sanders et al.,
2018) for this relation.

lations, for example by focusing on level 1 or 2
relations.

Decomposing relations into primitive concepts
allows us to tackle the problem in all its general-
ity. First, the primitives can precisely be used to
encode distinctions at the finest level of the hierar-
chy (level 3) such as distinction on source of co-
herence for pragmatic (subjective) or level 3 (the
finest level) relations. Second, even when several
relations cannot be distinguished by their values
for each primitive, we do not need to merge them:
they are mapped into the same set of values for
dimensions, and in the reverse mapping (see Sec-
tion 5.1), they can be mapped into a subset of re-
lations. Finally, we are not limited by the problem
of small number of annotated instances for some
relations.

In this section, we describe specificities of our
operational mapping.

4.1 Primitives and possible values

The set of primitives and their possible values used
in our experiments are presented in Figure 1, along
with their distribution in our training dataset (see
Section 6.1) after operational mapping. Possible
values for core primitives present minor changes
compared to the ones adopted by Sanders et al.
(2018). For additional or binary primitives, pos-
sible values are unchanged: they are either neg-
ative (default value -) or positive (+). For core
primitives, we proposed several modifications mo-
tivated by the fact that the operational mapping is
applied to data for being used as input of classifiers
for each primitive (see Section 5). In particular,
we need to deal with cases of ambiguity —i.e. for
some relations, a primitive is associated with a set
of values, each being possible —, under-specified
and multiple annotated relations.
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Figure 1: Distribution of values for each dimension

Non-specified value (NS) For all core primi-
tives (i.e. non binary primitives), in addition to val-
ues described in previous section (e.g. additive and
causal for primitive basic operation), we add the
value NS (non-specified) to the set of possible val-
ues.

NS value does not exist as a “label” in (Sanders
et al., 2018) mapping, but there are cases of
ambiguity/under-specification: in the original
CCR mapping, value for the primitive source
of coherence is set to objlsub for a number
of relations, primitive temporal order has value
syn|chron|NA for Expansion.List, etc. In our map-
ping, when there is an ambiguity on a primitive
value, we associate the value NS (see Table 1 for
our mapping for class Comparison relations).

NS value is also used for ambiguities raised
by the need to associate primitive values to re-
lations that are not end-labels of the PDTB
hierarchy, end-labels being relations at level
2 that have no subtypes (such as Tempo-
ral.Synchronous) or relations at level 3 (such as
Contingency.Cause.Result). Sanders et al. (2018)
provide a mapping for each end-label but not
for less specific labels. Since PDTB contains
examples annotated with level 1 (classes) or 2
(types) relations which are not end-labels — under-
specified relations —, we also need to provide a
mapping into primitives for these relations in our
experiments. For example, we set primitive basic
operation to value NS for Comparison, as some
relations within this class are additive, and some
others are causal (see Table 1).

Non-applicable value (NA) We keep value NA
for dimension implication order, associated with
relations that do not involve an implication (addi-
tive relations).

On the other hand, we remove it for dimension
temporal order. This is motivated by the fact that
relations from Temporal class have a somewhat

special status among discourse relations: it is not
always clear whether they are rhetoric or semantic
relations (especially when annotated in addition
of another relation). Temporal relations represent
66.3% of multiple relations in PDTB, and they
can co-occur with relations from any other class.
Furthermore, temporal relations can co-occur with
relations which are associated with the value NA
(non-applicable) for temporal order in the original
mapping of Sanders et al. (2018).4

As there is no relation in PDTB data that seem
to be incompatible with a specified value for tem-
poral order, we remove NA value for this primitive
(it is present in possible values for temporal order
in CCR), and keep only NS as a default value.

4.2 Multiple relations: merging sets of
primitive values

On the overall corpus used in our experiments (see
Section 6.1), 4.4% relations are multiple relations,
i.e. several relations have been annotated in the
original PDTB. As previously said, Sanders et al.
(2018) applied their mapping into values per prim-
itive on RST-DT and PDTB’s common sections.
However, they give no information about a map-
ping into primitives for cases where multiple re-
lations were annotated in the PDTB: they select
the PDTB relation that most closely corresponds
to the RST label.

Our goal being different here, we want to take
all annotated information into account. In case of
multiple relations, we map each relation into a set
of primitive values, and then merge values when
they are different. Our actual merging prefer-
ably outputs non-specified values, but other op-
tions should be tested in future work, e.g. keep
most specific values.

For basic operation, polarity, source of coher-
ence and temporal order, if values to be merged
are different, the primitive value is set to NS.

For binary primitives (conditional, alternative,
specificity), value is set to positive (+) if at least
one of the merged values is positive, and negative
(-) otherwise.

For implication order, if one of the two distinct
values to be merged is NA and the other is not (i.e.
basic, non-basic or NS), we keep the second value.
If the two distinct values are different from NA,
implication order is set to NS.

4 For instance, there are 198 co-occurrences of Tem-

poral.Synchrony and Expansion.Conjunction in our training
dataset.
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4.3 Refinements and adding of missing
relation

When mapping PDTB relations into primitives,
we operated refinements on occurrences of Ex-
pansion.Alternative. Disjunctive, whose values for
primitives are quite under-specified when strictly
applying the mapping of Sanders et al. (2018):
values are non-specified (NS) for basic operation
and source of coherence, and we do not know
whether the additional feature conditional or al-
ternative must be set to a positive value (+). The
only specified primitive is polarity, which is neg-
ative. Leaving this level of under-specification
would mean having the same set of primitive val-
ues for class Comparison and sub-type Expan-
sion.Alternative.Disjunctive.

But as suggested by Sanders et al. (2018),
markers such as unless indicate that the re-
lation is causal-conditional rather than addi-
tive-alternative. For some occurrences of Ex-
pansion.Alternative.Disjunctive, connectives from
PDTB annotations (unless, either...or and or) were
used to determine which of the two sub-cases
of Expansion.Alternative.Disjunctive was present,
and associate the correct set of primitive values.

Sanders et al. (2018) provide no mapping for
PDTB relation Comparison.Pragmatic conces-
sion, for which there is no description in PDTB
annotation manual. This label being quite explicit,
we associate to it the same primitive values as
Comparison.Concession, except for source of co-
herence, set to subjective (see Table 1).

S Experiments

Our main goal is to assess which primitives are
harder to identify, we thus build separate mod-
els for each of them, i.e. basic operation, polar-
ity, source of coherence, implication order, tempo-
rality, conditional, alternative and specificity (see
Section 3 for definitions).

In addition, we compute the performance of
our systems on discourse relations using a reverse
mapping from a set of predicted values for each
primitive to a relation, or, more precisely, to a
set of potential relations. We describe the reverse
mapping in Section 5.1.

We also train systems on the task of directly pre-
dicting discourse relations, in order to check the
validity of our models and to compare to the pre-
dictions derived from the primitives.

Recall that we aim at keeping all the particular-

ities of the PDTB annotations, meaning the mul-
tiple relations and the relations at different levels
of granularity. This calls for specific evaluation
metrics, relying on hierarchical multi-label mea-
surement, that we describe in Section 5.2.

5.1 Reverse mapping

Our approach consists in building separate sys-
tems dedicated to each primitive, in order to split
a hard task into several, arguably simpler tasks.
One possible goal of this approach is to predict
discourse relations based on the predicted primi-
tives. In order to do that, we need a mapping in
the reverse way, i.e. from primitives to (PDTB) re-
lations. Note that we need to map primitives to any
level relation, since examples in the PDTB can be
annotated with various granularities. This could
also be used to limit our system to a set of rela-
tions a posteriori, without retraining the primitives
models. Our reverse mapping, which outputs a set
of relations, is defined as follows: starting with a
set containing all the possible relations, we remove
relations that are not compatible with the primitive
values predicted.

More precisely, for each binary primitive, if the
predicted value is negative (-), we remove all re-
lations with a positive value for the primitive. For
primitives basic operation, polarity, source of co-
herence and temporal order, if predicted value is
not NS, we remove all relations with a different
“specified” (non NS) value for the primitive which
is different from predicted value. For instance, if
polarity is positive, all relations associated with
negative polarity are excluded.

For primitive implication order, at first, we
treated NA value as a “specified” value in our re-
verse mapping: a predicted value NA for implica-
tion order excluded all relations with a non NA
value for this primitive, i.e. all causal relations
were removed. This first mapping led to cases
where the set of compatible relations was empty.
In all these cases, basic operation was predicted
causal and primitive implication order was pre-
dicted NA, which is theoretically inconsistent: if
not specified, implication order should be NS. In
order to keep the information specified in other
primitives, we decided to treat NA value for im-
plication order as an NS value. It suggests that
keeping these two distinct values should be recon-
sidered.

When all subtypes of a type (or all types un-
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der a class) remain in the set of possible rela-
tions, we remove these subtypes (or types) from
the set, and keep the type (or class) —i.e. the up-
per lever underspecified relation. For instance, if
the set contains Temporal. Asynchronous and Tem-
poral.Synchrony, these labels are removed: only
the less specific label Temporal remains in the set.

When only some subtypes of a type (or some
types under a class) remain in the set of possible
relations, we keep them along with the type (or
class).

5.2 Evaluation measures

Our experimental setup raises a number of ques-
tions with respect to the evaluation: mapping a
set of primitive values back to a PDTB label im-
plies there might be underspecifications and cor-
responding to a disjunction of relations, either a
coarse-grain label in the hierarchy or a set of possi-
ble relations. To account for the first case, we can
apply measures for hierarchical classification; the
second case can be taken care of by measures for
multi-label classification, which are needed any-
way to take PDTB annotations without restric-
tions. There has not been much work on hierarchi-
cal discourse relation classification except (Ver-
sley, 2011), and the evaluation was just done at
each granularity level, with either exact matching
or a Dice coefficient between sets of labels (a rel-
ative overlap measure). For a more general mea-
sure, we use hierarchical precision and recall (Kir-
itchenko et al., 2005) on the set of all predicted
relations. For instance a predicted X.Y evaluated
against a gold X.Z.T would get 0.5 precision (one
level correct, one incorrect), and 0.33 recall (2 out
of 3 levels missing from the prediction). For multi-
labels, all levels are put in the same set.

To have an idea of the upper bound we could
obtain this way, we also evaluated by considering
only the best predicted label, with respect to hi-
erarchical F-score, and prefixed the corresponding
measures with max-h.

6 Settings

6.1 Data

The PDTB (Prasad et al., 2007) is a corpus of En-
glish newswire, containing 2,159 articles from the
Wall Street Journal. We use the section 23 as test
set. In the following sections, we present results
for both explicit and implicit examples. Contrary
to existing studies, we give results for all the labels
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annotated in the data (in particular, our results are
not limited to level 1 or 2 relations). There are 41
distinct relation labels in the corpus, with 30 end-
labels (mainly level 3 labels, but also level 2 labels
that have no sub-types), and 11 “intermediate” la-
bels (such as Contigency.Cause or Comparison).

6.2 Model architecture

We have separate classifiers for each dimension,
and we compare the mapping from these to a full
relation with a direct PDTB relation prediction.

Infersent is an architecture for sentence relation
prediction, initially proposed to train transferable
sentence representation from a semantic inference
task to be fine-tuned on various sentence and sen-
tence pair classification tasks. It takes as input two
text fragments s; and s, (sentence or clause here),
mapped to pretrained word embeddings (GloVe),
encode each separately with a bi-LSTM with tied
weights, and combine the final LSTM states to
predict arelation. The combination is a concatena-
tion of the representations provided for each argu-
ment, their absolute difference, and their element-
wise product.

Each argument of the relation is thus encoded
as a vector of dimension n, and the combined rep-
resentation is a vector of dimension 4n for each
separate relation dimension to predict, for various
values of n.

6.3 Hyper-parameters

Models are trained for each dimension separately,
with a maximum of 15 epochs and early stopping.
An additional fully connected layer can be added
on top of the combination of argument representa-
tions, and we vary the size of the layer with O (no
layer), 512, or 4096 dimensions. We also tried dif-
ferent regularization values (weight decay): 1077,
with n € {—8,1}. The best setting on the devel-
opment set was chosen as our configuration for the
final test.

7 Results

We describe here the performances obtained for
our systems for each primitive separately, and use
the reverse mapping to evaluate performance on
relations as annotated in the PDTB.

7.1 Predicting primitives

All primitives are not equal in importance in
the perspective of predicting rhetorical relations.



Primitive Baseline Best model

Acc m-F; w-F; Acc m-F; w-F;
Basic op. 7276 28.08 61.29 7590 37.80 69.03
Polarity 73.00 28.13 61.60 82.29 49.86 80.59
Src of Coh. 52.67 23.00 36.34 68.06 50.03 67.44
Impl. order 73.05 21.11 61.68 78.16 41.00 74.89
Temp. 69.63 20.52 57.16 72.65 48.04 69.32
Cond. 95.88 - - 98.55 - -
Altern. 98.78 - - 98.84 - -
Specif. 82.93 - - 85.13 - -

Table 2: Scores of the systems for each primitive on
test set (section 23 of the PDTB). The baseline is a
majority classifier. We report Accuracy (“Acc”), and,
for non-binary tasks, macro averaged F; (“m-F;”) and
weighted F; (“w-F;”).

Some primitives, such as basic operation and
polarity, correspond to major distinctions with
respect to PDTB hierarchy: their values deter-
mine distinctions between top-level classes. Other
primitives characterize more restricted sets of rela-
tions (alternative, specificity) or label distinctions
at level 3 (source of coherence).

Table 2 shows performance for each primitive
separately. We observe that among core primi-
tives, basic operation demonstrates the least im-
provement (on accuracy, macro averaged F1 and
weighted F1) with respect to the baseline, and thus
should be a priority for further work. For primitive
polarity, whose distribution of values are compa-
rable (see Figure 1), results are quite better. When
looking at the confusion matrix for this primitive,
we observe that 95% of positive relations and 50%
of negative relations are correctly labeled. For
primitive basic operation, only 14% of causal re-
lations are correctly labeled (relations are mainly
labeled as positive). For primitive temporal or-
der, results are lower than for primitive polarity.
Relations are mainly labeled as NS (non-specified,
which is the majority class) for this primitive.

The greatest improvement with respect to the
baseline is for primitive source of coherence, but
this result must be tempered by the fact that there
are a very small number of subjective relations in
our dataset (less than 1%).> A further study with
more data about subjective relations could be more
informative.

3t should be noted that there is a potential loss of
information due to the absence of a subjective version
for Contingency.Cause.Result (whereas the subjective ver-
sion of Contingency.Cause.Reason is Contingency.Pragmatic
cause.Justification) in the PDTB 2.0 hierarchy (whereas
present in PDTB 3).
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We also looked at the difference when predict-
ing primitives for implicit and explicit relations,
and it appears there is almost no improvement on
implicit over the baseline, which seems to confirm
that primitives should not be considered in isola-
tion. Less distinctive primitives show high accu-
racy mainly because they are unspecified most of
the time.

7.2 Relation identification

Table 3 summarizes the scores obtained for rela-
tion identification, either when the relation label
is obtained via the reverse mapping from the pre-
dicted primitives (row ‘“Primitives”), or for sys-
tems directly trained to predict discourse relations
(row “Relations”). We report accuracy as done in
the literature by considering a prediction as cor-
rect if it contains one of the gold labels, and use
hierarchical measures to have a more general set-
ting. Again, our models generally outperform the
baseline, often by a large margin, showing the
relevance of Infersent architecture to perform the
task. Accuracy is much lower than predicting di-
rectly the relations, which can be explained by the
fact that primitives are learned independently from
each other.

By analyzing the predictions, we observed that
Contingency relations were rarely predicted, a
consequence of the aforementioned problem when
predicting the basic operation primitive (which
separates causal from additive relations). An-
other problem is that combining primitives still
leaves too much underspecification, and predict-
ing too many labels greatly impacts all hierarchi-
cal scores. We can also see that explicit relations
benefit from the presence of very specific mark-
ers, while primitive recombination cannot make
use of the marker information as efficiently. An
encouraging aspect is that we found a lot of cases
where a Temporal relation was predicted instead
of a Contingency relation because the basic opera-
tion primitive was wrong, but the others were cor-
rect, which appears as plain error in all evaluations
while being close to the ground truth. This seems
to indicate primitive could be useful information
on their own. Note that the scores we report in this
table are the first, to the best of our knowledge,
that are computed on the whole set of relations of
the PDTB.



Explicit Implicit All
Acc h-R h-P max-h-R  max-h-P  Acc h-R h-P max-h-R  max-h-P  Acc h-R h-P

PDTB relations
3472 31.38 35.5 20.03 27.65
10.52 35.61 45.99 34.15 28.89
39.76 42.11 40.57 42.67 4535 52.97

max-h-R  max-h-P

Baseline  23.5 2535 26.13 27.02 27.33 1573 305
Primitives  46.27 35.56 2643 59.93 69.59 19.12 20.63
Relations  59.08 63.63 653 674 67.8 28.35

29.97 2897 30.98
19.32 49.07 59.05
54.95 55.42 56.58

Table 3: Scores of the systems for relation prediction, using the full relation set of the PDTB. The predicted
relations are either inferred from the predicted primitives (“Primitives”), or directly predicted (“Relations”).We

report hierarchical recall (h-R) and hierarchical precision (h-P), along with max-h-P max-h-R, and accuracy.

8 Conclusion

We have taken a theoretical proposition for map-
ping discourse framework to apply it to discourse
relation decomposition into primitives, in the con-
text of the PDTB English corpus. This allows us
to have a simple representation of PDTB anno-
tations as a set of semantic and pragmatic primi-
tives, allowing for general representations in case
of underspecification. We have shown a simple
experiment to learn these concepts separately and
compare them to a direct relation classifier. Of
course the primitives are not independent from
each other, so learning them in isolation is bound
to be less accurate than learning fully specified re-
lation, but this framework lends itself straightfor-
wardly to a multi-task learning setting and will be
subject of future work. Other interesting perspec-
tives include testing whether, when learning prim-
itives on a training corpus without some relations,
we can predict them correctly based on their con-
ceptual decomposition (something akin to 0-shot
learning); and finally, applying this decomposition
to other discourse framework (RST or SDRT) can
make cross-corpora training and prediction possi-
ble.
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