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Abstract

Acoustic addressee detection (AD) is a mod-
ern paralinguistic and dialogue challenge that
especially arises in voice assistants. In the
present study, we distinguish addressees in two
settings (a conversation between several peo-
ple and a spoken dialogue system, and a con-
versation between several adults and a child)
and introduce the first competitive baseline
(unweighted average recall equals 0.891) for
the Voice Assistant Conversation Corpus that
models the first setting. We jointly solve both
classification problems, using three models:
a linear support vector machine dealing with
acoustic functionals and two neural networks
utilising raw waveforms alongside with acous-
tic low-level descriptors. We investigate how
different corpora influence each other, apply-
ing the mixup approach to data augmentation.
We also study the influence of various acous-
tic context lengths on AD. Two-second speech
fragments turn out to be sufficient for reliable
AD. Mixup is shown to be beneficial for merg-
ing acoustic data (extracted features but not
raw waveforms) from different domains that
allows us to reach a higher classification per-
formance on human-machine AD and also for
training a multipurpose neural network that is
capable of solving both human-machine and
adult-child AD problems.

1 Introduction

For the past years, the phenomenon of multiparty
spoken interaction has drawn many researchers’
attention (Busso et al., 2007; Gilmartin et al.,
2018; Haider et al., 2018). How do we address
other people in such conversations? Normally, we
do this either explicitly, directly specifying desir-
able addressees by their names, or implicitly, us-
ing contextual (Ouchi and Tsuboi, 2016; Zhang
et al., 2018) and multimodal markers (Tsai et al.,
2015; Akhtiamov et al., 2017b; Akhtiamov and

Palkov, 2018; Le Minh et al., 2018). Particularly,
we use acoustic markers to emphasise special ad-
dressees, such as hard-of-hearing people (Batliner
et al., 2008), elderly people, children (Schuller
et al., 2017), and automatic spoken dialogue sys-
tems (SDSs) (Batliner et al., 2008; Shriberg et al.,
2013; Akhtiamov et al., 2017a; Pugachev et al.,
2017). We act in this way if we realise that our ad-
dressee may have some communicational difficul-
ties, and therefore we modify our normal manner
of speech, making it more rhythmical, louder, and
generally more understandable as soon as we start
talking to such conversational partners (Shriberg
et al., 2012; Siegert and Krüger, 2018).

In the present research, we deal with two binary
acoustic addressee detection (AD) problems. The
first problem of human-machine addressee detec-
tion (H-M AD) arises in conversations within a
group of users solving a cooperative task by means
of an SDS. The users may talk to each other and
also contact the system from time to time. The sys-
tem is supposed to distinguish between machine-
and human-directed utterances in order to main-
tain conversations in a realistic manner. Human-
directed utterances do not require a direct system
response and should be processed with the system
in an implicit way. We use the following two cor-
pora to model the H-M AD problem: the Smart
Video Corpus (SVC) (Batliner et al., 2008) and
the Voice Assistant Conversation Corpus (VACC)
(Siegert et al., 2018). The first competitive VACC
baseline is introduced in the present paper. The
second problem of adult-child addressee detec-
tion (A-C AD) appears in conversations between
a group of adults and a child. In this case, our
system is supposed to distinguish between child-
and adult-directed utterances. A possible appli-
cation for such a system of adult-child conversa-
tion monitoring is the estimation of children’s and
adults’ conversational behaviour that will allow us
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to measure Interaction Quality (IQ) (Spirina et al.,
2016). According to this complex metric, we will
be able to assess the children’s progress in main-
taining conversations. We model the A-C AD
problem, using the HomeBank Child-Adult Ad-
dressee Corpus (HB-CHAAC, mentioned as HB
below for simplicity) (Casillas et al., 2017).

We consider both binary classification problems
as one: the utterances belonging to the first cate-
gory are directed to a special addressee that may
be an SDS or a child having a lack of communi-
cational skills. The utterances belonging to the
second category are directed to ordinary adults
without any impairments that may cause miscom-
munication. In this light, we conduct a series of
cross-corpus experiments and merge several cor-
pora with the mixup method. This data augmenta-
tion technique has already been studied on image
classification (Zhang et al., 2017), speech recogni-
tion (Medennikov et al., 2018), and acoustic emo-
tion recognition (Fedotov et al., 2018b).

The present paper has the following contribu-
tions: the H-M and the A-C AD problem are
jointly analysed by means of machine learning;
mixup in combination with state-of-the-art clas-
sifiers is applied to cross-corpus acoustic AD for
the first time; mixup capabilities are investigated
over various speech signal representations (includ-
ing raw data), acoustic context lengths, corpora,
domains, languages, and classification problems.

2 Related Work

Several studies have already been conducted on
the problem of acoustic H-M AD. The current
acoustic SVC baseline was introduced by Akhti-
amov et al. (2017a), who applied a feature se-
lection method to a large paralinguistic feature
set containing various functionals computed over
low-level descriptor (LLD) contours (2013 Com-
ParE feature set described by Eyben (2015)). The
ComParE LLDs and their functionals were shown
to be a universal solution for a wide range of
paralinguistic problems besides AD, e.g, acous-
tic emotion recognition (Fedotov et al., 2018a),
native speech detection, and neurological pathol-
ogy estimation (Schuller et al., 2015). The same
attribute set in combination with a linear sup-
port vector machine (SVM) alongside with other
models including an end-to-end neural network
was applied to the problem of acoustic A-C AD
on HB by Schuller et al. (2017). HB was in-

troduced within the Addressee Sub-Challenge of
the Interspeech 2017 Computational Paralinguis-
tics Challenge (ComParE) (Schuller et al., 2017)
that has already been finished. However, the chal-
lenge organisers proposed an extremely compet-
itive baseline (Schuller et al., 2017) that none of
the challenge participants managed to surpass, and
therefore the HB classification problem remains of
great scientific and practical interest.

There also exist speech signal representations
designed specially for acoustic H-M AD. Shriberg
et al. (2013) suggested modelling speech rhythm
and vocal effort with high-abstract attributes: en-
ergy contour features, voice quality and spec-
tral tilt features, and delta energy at voicing on-
sets/offsets. The energy contour and tilt features
employed Gaussian mixture models (GMMs) to
compute a log likelihood ratio of the two ad-
dressee classes. The machine-directed utterances
from the corpus used for experiments in the latter
study were short predefined commands consisting
of three words on average. However, the machine-
and child-directed utterances from the data that we
have at our disposal were recorded under real-life
conditions and usually contain whole sentences of
spontaneous speech. Furthermore, it is unclear
how these specific attributes perform on A-C AD.
Therefore, we would not like to confine to such a
narrow attribute set. Instead, we want to use the
ComParE features in order to capture all the vari-
ety of spontaneous speech. An argument in favour
of low-level features, such as LLDs and raw data,
is the possibility to use them in combination with
deep neural networks capable of performing fea-
ture selection and feature transformation implic-
itly for a specific problem. In the present study, we
apply the ComParE functionals jointly with sim-
ple linear models, while lower-level features (raw
audio and the ComParE LLDs) are used in combi-
nation with deep neural networks that learn high-
level feature representations for our AD problem.
Compared to Mallidi et al. (2018), we do not have
that much data for training our networks on acous-
tic AD. We offset this lack by means of data aug-
mentation.

3 Proposed Approach

3.1 Classifiers

We apply the following three models to audio clas-
sification. The first classifier (func) is a simple
SVM with a linear kernel (Hofmann and Klinken-
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berg, 2013). This model deals with the ComParE
feature set comprising 6373 functionals (Eyben,
2015) extracted at the utterance level.

The second classifier (LLD) consists of
two stacked long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) layers fol-
lowed by a global max pooling, a dropout (Sri-
vastava et al., 2014), and a softmax layer. As
input, the first layer receives the same LLD se-
quences used for computing the ComParE func-
tionals. Each sequence element is a vector of 130
LLDs extracted for a sliding time window of 60 ms
with an overlap of 50 ms. The sequences are ex-
tracted from acoustic context windows of various
lengths (from 1/8 to 8 s). The context windows are
cut out of audio files with an overlap of 75%. The
predictions obtained on several windows belong-
ing to one utterance are averaged to get the final
utterance-level prediction.

The third classifier (e2e) performing end-to-end
speech signal processing differs from the second
model in the following way: the sequences of
the ComParE LLDs are replaced by the output of
a convolutional neural network (CNN). As a re-
sult, we obtain a convolutional recurrent neural
network (CRNN) that is quite similar to the one
suggested by Trigeorgis et al. (2016) for acous-
tic emotion recognition. However, the initial net-
work architecture specified in the latter study did
not provide any reliable results on our AD problem
probably due to a lack of perceptive abilities. For
this reason, we replaced the initial two-layer CNN
by a deeper one. We took the five-layer SoundNet
architecture (Aytar et al., 2016) as the reference
point for our CNN, cut off its last convolutional
layer and scaled the filter sizes and the number of
units in each layer in accordance with the input
signal resolution and the available amount of our
training data. The final shape of the e2e model is
depicted in Figure 1.

For the func and LLD models, we use statistical
corpus normalisation by bringing the handcrafted
features to zero mean and unit variance. For the
e2e model, we employ batch normalisation (Ioffe
and Szegedy, 2015) between each convolution and
activation instead. Training our neural networks,
we use the following parameters optimised on a
development set: Gaussian noise applied to the in-
put signal if mixup is disabled, 20% dropout ap-
plied directly before the softmax layer, rectified
linear unit (ReLU) as an activation function for all
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Figure 1: E2e classifier. To obtain the LLD model,
we replace the middle part of the e2e model by the
ComParE LLD sequences. Notation of the layers in
the middle part of the e2e model: layer name(n units,
filter size, stride), other layers: layer name(n units).

convolutional layers, categorical cross-entropy as
a loss function, Adam (Kingma and Ba, 2014) as
a weight optimisation algorithm, 100 epochs, and
a batch size of 32 examples. The initial learning
rate is chosen from the set {10−3, 10−4, 10−5}
and then divided by 10 if there is no performance
improvement observed for the past 10 epochs on
the development set. We make checkpoints, sav-
ing the current model weights at each epoch and
using the best checkpoint as the resulting model
according to its performance on the development
set.

Both neural networks were designed with Ten-
sorFlow (Abadi et al., 2016). The func model
was implemented with RapidMiner (Hofmann and
Klinkenberg, 2013). We used the openSMILE
toolkit (Eyben et al., 2013) and its 2013 Com-
ParE feature configuration (Eyben, 2015) to ex-
tract acoustic LLDs and their functionals.

3.2 Data Augmentation
We apply a simple yet efficient approach to data
augmentation called mixup (Zhang et al., 2017).
The core idea of this method is to regularise our
model by encouraging it to make linear predic-
tions in the vector space between seen data points.
The method generates artificial examples as lin-
ear combinations of the feature and label vectors
taken from two arbitrary real examples and mixed
at a proportion λ in the following way:

xart = λxi + (1− λ)xj , (1)

yart = λyi + (1− λ)yj . (2)

λ is randomly generated from a β-distribution for
each artificial example. This distribution is de-
fined as follows by a coefficient α that lies within
the interval (0,∞) and determines the probability
that our generated example lies close to one of real
examples:

f(x;α) = xα−1(1− x)α−1. (3)
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VACC (German) SVC (German) HB (English)
Label Train Dev Test Label Train Dev Test Label Train Dev Test

M 1809 501 1493 M 546 90 442 C 1882 420 2182
H 862 218 756 H 557 135 423 A 1160 280 1368

Total
2671
(12)

719
(3)

2249
(10) Total

1103
(48)

225
(10)

865
(41) Total

3042 700 3550
(No speaker info)

5639 (25), 2:50:20 s 2193 (99), 3:27:35 s 7292, 3:12:16 s

Table 1: General characteristics of the considered data sets and their utterance-level labelling. Number of speakers
is specified in parentheses. Utterance labels: H - human-, M - machine-, A - adult-, C - child-directed. It is assumed
that H = A and M = C.

If yi and yj from Equation 2 are different hard
targets (one-hot vectors) of a classification prob-
lem, yart will be a soft target. This solution pro-
vides better model regularisation and generalisa-
tion over various classes and partially resolves the
problem of imbalanced data.

We declare another mixup parameter k that de-
fines the proportion of the number of artificial ex-
amples that should be generated and the number of
real examples. When merging n corpora, we gen-
erate one batch from each corpus, increasing the
amount of training data in n times without using
mixup. If we simultaneously apply mixup, artifi-
cial batches are generated on the fly from n real
batches, increasing the amount of training data in
n(k+ 1) times without any considerable delays in
the training process. In most of the mixup appli-
cations investigated by Zhang et al. (2017), α lies
within the interval [0.1, 0.5], i.e., the algorithm bi-
ases toward original examples and thereby gener-
ates more realistic artificial ones. We use constant
α and k values that equal 0.5 and 2 respectively.
For greater α values, mixup leads to underfitting.

4 Corpora

We examine our models on the audio data of the
three corpora mentioned above. The VACC data
set contains experimental conversations in Ger-
man between a user, a confederate, and an Echo
Dot Amazon Alexa device (Siegert et al., 2018).
The SVC data set was collected within large-scale
Wizard-of-Oz (WOZ) experiments and consists of
realistic conversations in German between a user,
a confederate, and a mobile SDS (Batliner et al.,
2008). For compatibility with the other corpora,
we consider the two-class SVC problem intro-
duced by Batliner et al. (2008). The HB data set
contains spoken conversations in English between
a child and a group of adults recorded under real-
life conditions (Casillas et al., 2017). Each corpus
was split into a training, a development, and a test

set at a proportion defined by its developers. There
was no development set specified for SVC by Bat-
liner et al. (2008), and therefore we use 20% of
the speakers from its initial training set as a devel-
opment set. The HB test labels are unavailable to
us since this corpus was a part of the Interspeech
2017 ComParE Challenge (Schuller et al., 2017)
that has already been finished (none of the par-
ticipants managed to surpass the Addressee Sub-
Challenge baseline). Therefore, we use its devel-
opment set as a new test set and also utilise 20% of
the utterances from its initial training set as a new
development set. The partitions of the considered
corpora are presented in Table 1. A kernel density
estimation (KDE) is depicted in Figure 2 for the
utterance length distribution of each corpus.

0 2 4 6 8 10 12 14
Utterance length, s

0.0

0.5

1.0

KD
E

VACC
SVC
HB

Figure 2: Kernel density estimation (KDE) of the utter-
ance length distributions.

5 Preliminary Experiments with Linear
Models

5.1 Feature Selection

Before training the neural network-based classi-
fiers, we conduct preliminary experiments with
the func model, aiming to estimate the degree of
similarity between the corpora. After feature ex-
traction with the ComParE configuration, we per-
form recursive feature elimination (RFE), using
the coefficients of the normal vector of a linear
SVM as attribute weights similarly to Akhtiamov
et al. (2017a). Figure 3a demonstrates RFE curves
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obtained by applying ten-fold leave-one-speaker-
group-out cross-validation (LOSGO) on each cor-
pus without its test set. The resulting performance
is calculated as unweighted average recall (UAR)
for comparability with the existing studies and av-
eraged over all folds for each reduced feature set.
A feature set is considered to be optimal if fur-
ther RFE leads to a stable performance loss. For
each corpus, we choose one optimal feature set ob-
tained on a random fold and analyse their inter-
section depicted in Figure 3b. The representative
acoustic attributes vary essentially: VACC, SVC,
and HB have only 450, 2020, and 400 relevant fea-
tures out of 6373 respectively, while having only
28 features in common: some functionals over
F0final sma, audSpec Rfilt sma, mfcc sma, pcm
fftMag spectralRollOff25.0 sma, pcm fftMag spec-
tralRollOff50.0 sma, voicingFinalUnclipped sma,
and their deltas (Eyben, 2015). Besides these at-
tributes, VACC and SVC have only 172 features
in common, though these two corpora have the
same target classes. The optimal feature set size
for SVC is considerably greater than for the other
two corpora. This difference was probably caused
by the WOZ modelling of SVC dialogues as the
WOZ setup did not seem convincing enough to
some users, resulting in fuzzy addressee patterns
that concerned a greater number of acoustic fea-
tures.

0 1000 2000 3000 4000 5000 6000
Feature set size

0.5

0.6

0.7

0.8

UA
R

(450, 0.797)

(2020, 0.789)

(400, 0.623)

VACC
SVC
HB

(a)

220 1683172

205

30 137
28

VACC

SVC

HB

(b)

Figure 3: Preliminary analysis: performance losses
during RFE (a), and optimal feature set comparison (b).

5.2 Cross-Corpus and Multitask
Classification

We conduct a series of cross-corpus and multi-
task experiments with the func model, applying
a leave-one-corpus-out (LOCO) and an inverse
LOCO scheme. In the first scheme, the model is
trained on a mixture of all the corpora but one and
tested on each of the three corpora. In the sec-
ond scheme, the model is trained on one corpus
and tested on each of the three corpora. In both

cases, the model is trained and tested on the corre-
sponding partitions from Table 1. In these experi-
ments, we do not perform feature selection and do
not use mixup. Results of the two experimental
series are depicted in Figure 4. Let us denote the
matrix from Figure 4a as Ā, its element as āi,j , the
matrix from Figure 4b as B̄, and its element as b̄i,j .
The resulting UAR (ā2,2) and the optimal feature
set size on SVC slightly differ from those obtained
by Akhtiamov et al. (2017a) since we apply sta-
tistical corpus normalisation in the present study
instead of speaker normalisation in order to make
our results fairer as the system may face unknown
speakers in real applications. Furthermore, there
is no information regarding speakers available for
HB. ā1,2 and ā2,1 are considerably greater than the
other off-diagonal elements of Ā, demonstrating a
clear relation between VACC and SVC. This result
motivates us to explore the potential of the cross-
corpus data augmentation on VACC and SVC by
means of mixup and deep learning in our future
experiments. Ā does not reveal any relation be-
tween HB and the other two corpora, though an in-
teresting trend may be noted in B̄. b̄2,1 and b̄3,1 are
similar to ā1,1, b̄1,2 and b̄3,2 are close to ā2,2, and
b̄1,3 and b̄2,3 are similar to ā3,3. Altogether, these
three results mean that a single func model trained
on examples from two arbitrary corpora demon-
strates an adequate performance on them both as
if the model were trained on each corpora sepa-
rately or, in other words, that the three classifica-
tion problems are non-contradictory. However, A-
C AD turned out to be essentially more challeng-
ing than H-M AD.

(1) (2) (3)
Test

(1
)

(2
)

(3
)

Tr
ai

n

0.788 0.605 0.511

0.614 0.770 0.516

0.527 0.552 0.602

(a)

(1) (2) (3)
Test

(1
)

(2
)

(3
)

Ex
cl

ud
e 

Tr
ai

n

0.560 0.754 0.604

0.758 0.616 0.585

0.783 0.756 0.501

(b)

Figure 4: Results of the inverse LOCO (a) and LOCO
(b) experiments with the func model. All values are
presented in terms of UAR. Corpora: (1) - VACC, (2) -
SVC, (3) - HB.

6 Experiments with Neural Networks

6.1 Mixup and Acoustic Context Length
All the experiments below are presented in terms
of UAR for comparability with the existing stud-
ies. All statistical comparisons are drawn apply-
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2 3 2 2 2 1 20 21 22 23

Context window length, s

0.80

0.85

0.90

0.95

UA
R

VACC
mix(VACC)
mix(VACC, SVC)
mix(VACC, HB)

(a) Performance on VACC.

2 3 2 2 2 1 20 21 22 23

Context window length, s

0.65

0.70

0.75

0.80

0.85
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R

SVC
mix(SVC)
mix(SVC, VACC)
mix(SVC, HB)

(b) Performance on SVC.

2 3 2 2 2 1 20 21 22 23

Context window length, s

0.55

0.60

0.65

0.70

UA
R

HB
mix(HB)
mix(HB, VACC)
mix(HB, SVC)

(c) Performance on HB.

Figure 5: Classification performance of the LLD model over various context windows and its trends after data
augmentation on the considered corpora. In each of the three cases, the training set of the target corpus (on the test
set of which UAR is measured) is mixed with itself (mix(corpus)) or with itself and with the training set of another
corpus (mix(corpus, another corpus)). The points connected with spline interpolation denote exact measurements.

ing a t-test with a significance level of 0.05. First,
we analyse the sensitivity of our neural networks
to acoustic context length variations. This hy-
perparameter was shown to be critical for par-
alinguistic problems (Fedotov et al., 2018a). We
take a context window length of 1 s as a refer-
ence point and then vary it by raising to differ-
ent powers of two. The context windows are cut
out of the audio files with an overlap of 75%.
This preprocessing partially resolves the lack of
training data. It is possible to align the obtained
logarithmic scale with basic acoustic units: given
the mean syllable duration estimated by Green-
berg (1999) for spontaneous English, we roughly
assume that the time intervals between 0, 0.125,
0.5, 1, 2, and 8 s correspond to allophones, syl-
lables, words, collocations/syntagmas, and utter-
ances respectively. In fact, these intervals may sig-
nificantly overlap since syllable duration is known
to be highly speaker-dependent (Greenberg et al.,
2003). German words and more complex acous-
tic units have longer durations compared to their
English equivalents.

Performance curves of the LLD classifier tested
on LOSGO are depicted in Figure 5. The re-
sulting UAR values are averaged over all folds.
The dashed curve is located above the solid
one in all three cases, i.e., mixup results in
a significant performance improvement already
when applied to the same corpus. Adding an-
other corpus to the mixup procedure influences
the performance depending on a context window
length. Mix(VACC, SVC) significantly surpasses
mix(VACC) on VACC for a context window of
2 s. Mix(SVC, VACC) significantly outperforms
mix(SVC) on SVC for a context window of 0.5
s. A possible explanation for these two results

is that SVC has generally longer utterances (Fig-
ure 2) and probably longer acoustic addressee pat-
terns compared to VACC. Mix(HB) does not ben-
efit from adding another corpus to the mixup pro-
cedure.

The curves from Figure 5a flatten beyond 0.5
s, meaning that VACC is less sensitive to context
length variations than SVC and HB. The optimal
context window length, which provides the high-
est UAR, is 2 s for VACC and SVC and 1 s for HB.
However, the latter corpus demonstrates virtually
the same result for a longer window of 2 s. The
e2e model shows a similar behaviour on various
context windows and reaches the highest UAR for
the same context window of 2 s on all three cor-
pora. This fact motivates us to confine to a single
context window length of 2 s in our future exper-
iments that corresponds to acoustic patterns at the
utterance level. Our results confirm an earlier con-
clusion drawn by Shriberg et al. (2013) regarding
the optimal acoustic context length for H-M AD in
English.

Table 2 contains the exact UAR values of the
two-second performance slices for both neural
networks. Similarly to the results presented in Fig-
ure 5, the values from Table 2 are obtained on
LOSGO and averaged over all folds. The LLD
model demonstrates a higher performance com-

Test
Corpus Model —— - - - · · · · - · - · mix

(all)

VACC LLD .879 .890 .901 .873 .886
e2e .853 .834 .852 .845 .846

SVC LLD .813 .823 .804 .795 .818
e2e .764 .756 .758 .749 .761

HB LLD .631 .645 .627 .640 .636
e2e .647 .632 .633 .616 .631

Table 2: Two-second UAR slices. Each marker corre-
sponds to a curve of the same style in Figure 5.
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pared to the e2e model overall, except HB, on
which both classifiers behave similarly. In con-
trast to the LLD model, the e2e classifier does not
benefit from mixup. This result contradicts the
supposition made by Zhang et al. (2017) to ap-
ply mixup to raw speech data and may be natu-
rally explained in the following way: after apply-
ing mixup to raw speech signals, our augmented
data sounds like crowd noise that confuses the e2e
model being unable to handle the cocktail party
effect. This is not the case for some handcrafted
features, e.g., logarithmic attributes, as applying
mixup to them does not necessarily mean a simple
overlapping of two waveforms, from which these
features were extracted. We conclude that ap-
plying mixup makes more sense for acoustic fea-
tures of a higher abstraction level than raw data,
e.g., handcrafted LLDs or features extracted with
a CNN. In the present study, we confine to two
extreme cases: handcrafted LLDs and raw wave-
forms.

6.2 Cross-Corpus and Multitask
Classification

The experiments below are conducted on the par-
titions specified in Table 1. Six series of cross-
corpus experiments are depicted as performance
matrices in Figure 6. Let us denote the matrix
from Figure 6a as A and its element as ai,j , the
matrix from Figure 6b as B and its element as
bi,j , etc. A and B show inverse LOCO experi-
ments on the LLD model with mixup and on the
e2e model without mixup respectively. a1,2 and
a2,1 are considerably greater than the other off-
diagonal elements of A. b1,2 and b2,1 are also sig-
nificantly greater than the other off-diagonal ele-
ments of B. Similarly to the matrix Ā from Fig-
ure 4a, these two results demonstrate a clear rela-
tion between VACC and SVC that was better cap-
tured with the e2e model. The other four matri-
ces from Figure 6 contain results of LOCO ex-
periments: C and D - without mixup, E and F -
with mixup. The elements c1,3, c2,3, d1,3, and d2,3
are close to a random-choice UAR of 0.5, mean-
ing that both neural networks perceive HB as noise
and completely ignore it in favour of another cor-
pus. However, the situation changes if we apply
mixup: the elements e1,3 and e2,3 are similar to
a3,3 as well as the elements f1,3 and f2,3 being
close to b3,3. These two results mean that both
neural networks start perceiving both corpora in-
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Figure 6: Results of the inverse LOCO and LOCO ex-
periments with the neural networks. All values are pre-
sented in terms of UAR. Corpora: (1) - VACC, (2) -
SVC, (3) - HB.

volved in the mixup procedure as efficiently as if
the networks were trained on each data set sepa-
rately. Due to a simpler model architecture, the
func classifier did not face such a problem of over-
fitting to a specific corpus during the experiments
with multitask learning presented in Figure 4b.

A similar trend may be noted in Figure 7 that
demonstrates experiments on merging all three
corpora: if trained on all the corpora without
mixup, both LLD and e2e models discriminate
SVC and completely ignore HB. Mixup allows us
to train a multipurpose neural network that per-
forms equally well on each of the corpora as if
there were three networks trained exclusively for
single tasks. The classification performance ob-
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Figure 7: Results of the experiments on merging all
three corpora.
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tained on VACC and HB with the func model is
generally lower compared to the results of the neu-
ral networks, and mixup is unable to improve it.
However, the func classifier does not suffer from
overfitting to a specific corpus during multitask
learning and does not need to be regularised.

7 Experiments with ASR-Based
Metafeatures

Some metafeatures obtained from an automatic
speech recogniser (ASR) are useful for H-M AD
since people speak more clearly than usual when
addressing an SDS. Machine-directed speech
tends to match the ASR patterns better compared
to human-directed speech, resulting in a higher
ASR confidence (Tsai et al., 2015). It is inter-
esting to check this approach on A-C AD. Using
the Google Cloud ASR for German (on VACC
and SVC) and for English (on HB), we extract
the following ASR metafeatures at the utterance
level: confidence of the best hypothesis, number of
hypotheses, number of words in the best hypoth-
esis, and utterance duration in seconds. These
features except the first one (it is already nor-
malised) are brought to zero mean and unit vari-
ance and fed to an SVM with a radial kernel (Hof-
mann and Klinkenberg, 2013). The UAR val-
ues obtained with this classifier on the test par-
titions from Table 1 are equal to 0.778, 0.657,
and 0.515 for VACC, SVC, and HB respectively.
The latter value is slightly above a random-choice
UAR of 0.5, meaning that ASR confidence is non-
representative for A-C AD.

8 Conclusions and Future Work

The H-M and A-C AD problems turned out to be
essentially different in certain aspects. The first
aspect concerns the previously discussed acous-
tic patterns of child- and machine-directed speech.
On the one hand, none of the considered mod-
els managed to reveal any relations between HB
and the other two corpora during our inverse
LOCO experiments. On the other hand, the LOCO
experiments with the linear model demonstrate
that the H-M and A-C AD problems are non-
contradictory. The second aspect is connected
with the degree of how often misunderstanding
situations occur in an H-M conversation. People
tend to talk to the system in a normal manner in
the absence of such situations, and this manner
of speech may be acoustically undistinguishable

from human-directed speech. The third aspect
concerns what is said during an A-C conversation.
Adults’ speech often contains separate sounds and
intonations and no verbal information when they
talk to children, and therefore ASR confidence is
non-representative for A-C AD, though it is useful
for H-M AD.

Mixup has been shown to be beneficial for neu-
ral networks using predefined acoustic features,
while not giving any significant performance im-
provement for e2e models, though Zhang et al.
(2017) supposed that it is worth applying the
method to raw speech data as well. Linear clas-
sifiers do not benefit from mixup neither due to
their simple architectures that do not require any
regularisation. Another remarkable capability of
mixup was revealed in multitask experiments and
applies to both handcrafted features and raw data.
This method allows us to merge several corpora
modelling similar classification tasks in such a
way that one neural network trained on this mix-
ture solves all the tasks equally efficiently with
single neural networks, each of which was trained
on its own corpus. The corpora being utilised
for multitask learning may essentially differ, e.g.,
VACC and SVC were collected in completely dif-
ferent domains, and HB was even collected for an-
other task and uttered in another language. With-
out mixup, the neural network overfits to the cor-
pus with the strongest correlation between its fea-
tures and labels (VACC) and starts discriminat-
ing the other corpora. Linear models do not suf-
fer from this problem, though they demonstrate a
lower classification performance overall.

Two-second speech fragments are optimal for
AD and correspond to acoustic patterns at the ut-
terance level. This result confirms an earlier con-
clusion drawn by Shriberg et al. (2013) regarding
H-M AD in English. According to our inverse
LOCO experiments, there exists a clear relation
between VACC and SVC. Furthermore, applying
mixup to these two corpora allows us to improve
classification results on VACC significantly. The
following UAR values may be taken from Figure 6
as the new baselines: e3,1 = 0.891 for VACC and
b3,3 = 0.640 for HB. b3,3 is the best baseline for
standalone classifiers compared to the results in-
troduced by Schuller et al. (2017) on the original
HB development set. Our e2e model surpasses the
one from (Schuller et al., 2017) that demonstrated
a UAR of 0.609. We achieved this performance
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improvement due to a more careful choice of the
CNN architecture. a2,2 = 0.789 is similar to the
latest SVC baseline of 0.800 established by Akhti-
amov et al. (2017a).

In our future work, we plan to extend our exper-
iments, applying mixup to two-dimensional spec-
trograms and to features extracted with a CNN.
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