
Proceedings of the SIGDial 2019 Conference, pages 198–209
Stockholm, Sweden, 11-13 September 2019. c©2019 Association for Computational Linguistics

198

Abstract

In this paper, we examine the foundations

of task-oriented dialogues, in which

systems are requested to perform tasks for

humans. We argue that the way this

dialogue task has been framed has limited

its applicability to processing simple

requests with atomic “slot-fillers”.

However, such dialogues can contain more

complex utterances. Furthermore,

situations for which it would be desirable to

build task-oriented dialogue systems, e.g.,

to engage in collaborative or multiparty

dialogues, will require a more general

approach. In order to provide such an

approach, we give a logical analysis of the

“intent+slot” dialogue setting that

overcomes these limitations.

1 Introduction

An important problem that forms the core for

many current spoken dialogue systems is that of

“slot-filling” — the system’s ability to acquire

required and optional attribute-values of the user’s

requested action, for example, finding the date,

time, and number of people for booking a

restaurant reservation, or the departure date,

departure time, destination, airline, arrival date,

arrival time, etc. for booking a flight (Bobrow et

al., 1977, Zue et al., 1991). If a required

argument is missing, the system asks the user to

supply it. Although this may sound simple,

building such systems is more complex than one

might suppose. For example, real task-related

dialogues may be constraint-based rather than

slot-filling, and are usually collaborative, such

that dialogue participants may together fill slots,

1 Inspired by Woods (1975), “What’s in a Link: Foundations for Semantic Networks”
2 See https://developer.amazon.com/docs/custom-skills/create-intents-utterances-and-slots.html for an example of the

commercial interest in “intent + slots”.

and people go beyond what was literally requested

to address higher-level goals.

In this paper, we discuss the limitations of the

general slot-filling approach, and provide a formal

theory that can be used not only to build slot-

filling task-oriented dialogue systems, but also

other types of dialogues, especially multiparty and

collaborative ones. We argue first that without

being explicit about the mental states and the

logical forms that serve as their contents, systems

are too tightly bound to the specific and limited

conversational task of a single user’s getting a

system to perform an action.

1.1 Intent+Slots (I+S)

The spoken language community has been

working diligently to enable users to ask systems

to perform actions. This requires the system to

recover the user’s “intent” from the spoken

language, meaning the action the system is being

requested to perform, and the arguments needed

to perform it, termed “slots”.2 The most explicit

definition of “slot” we can find is from

(Henderson, 2015) in describing the Dialog State

Tracking Challenge (DSTC2/3):

The slots and possible slot values of a slot-

based dialog system specify its domain, i.e.

the scope of what it can talk about and the

tasks that it can help the user complete. The

slots inform the set of possible actions the

system can take, the possible semantics of the

user utterances, and the possible dialog

states… For each slot s S, the set of possible

values for the slot is denoted Vs.

Henderson goes on to describe a system’s

dialog state and two potentially overlapping slot

Foundations of Collaborative Task-Oriented Dialogue:

What’s in a Slot?1

Philip R. Cohen

Laboratory for Dialogue Research

Faculty of Information Technology

Monash University

https://developer.amazon.com/docs/custom-skills/create-intents-utterances-and-slots.html

199

types, so-called “informable” and “requestable”

slots, denoted by sets Sinf and Sreq, respectively.
The term dialog state loosely denotes a full

representation of what the user wants at any

point from the dialog system. The dialog state

comprises all that is used when the system

makes its decision about what to say next. …

the dialog state at a given turn consists of:

 The goal constraint for every informable slot

s∈ Sinf. This is an assignment of a value v∈ Vs

that the user is specifying as a constraint, or a

special value Dontcare, which means the user

has no preference, or None, which means the

user is yet to specify a valid goal for the slot.

 A set of requested slots, the current list of

slots that the user has asked the system to

inform. This is a subset of Sreq.3,4 (Henderson,

2015) …

Most papers in the field at best have informal

definitions of “intent” and “slot”. In order to

clarify these concepts, we frame their definitions in

a logic with a precise semantics. We find the

following topics require further explication.

2 Limitations of Slot-Filling

2.1 Representation of Actions

The DSTC proposes a knowledge

representation of actions with a fixed set of slots,

and atomic values with which to fill them, such as
reserve(restaurant=Mykonos, cuisine=Greek, Location

= North) to represent the user’s desire that the

system reserve Mykonos, a Greek restaurant in

the north of town, or reserve(restaurant=none,

cuisine=Greek, Location = dontcare), which

apparently says that the user wants the system to

reserve a Greek restaurant anywhere. However,

missing from this representation is the agent of

the action. At a minimum, we need to be able to

distinguish between the user’s performing and the

system’s performing an action. Thus, such a

representation cannot directly accommodate the

user’s saying “I want to eat at Guillaume” because

the user is not explicitly requesting the system to

perform an action.5 Also missing are variables

used as values, especially shared variables. This

severely limits the kinds of utterances people can

provide. For example, it would prevent the

3 This appears to be the reverse of the definition in (Gašić

et al., 2016, p. 557)
4 At least implicitly, the DSTC must allow a distinguished

symbol (e.g., ‘?’) to indicate what slot values are being

requested. Alternatively, we have seen request(<attribute>)

system from representing the meaning of “I want

you to reserve that Greek restaurant in the north

of Cambridge that John ate at last week.”

2.2 Restrictions on Logical Forms (LFs)

Next, the slot-filling approach limits the set of

logical forms the dialogue system can consider by

requiring the user to supply an atomic value

(including Dontcare and None) to fill a slot. For

example, slot-filling systems can be trained to

expect simple atomic responses like “7pm” to

such questions as “what time do you want me to

reserve a table?” However, I+S systems

typically will not accept such reasonable

responses as “not before 7pm,” “between 7 and

8 pm,” or “the earliest time available.” What’s

missing from these systems are true logical forms

that employ a variety of relations and operators,

such as and, or, not, all, if-then-else, some, every,
before, after, count, superlatives, comparatives,

as well as proper variables. Critically, adequate

meaning representations are compositional often

employing relative clauses, such as the LF

underlying “What are the three best Chinese or

Japanese restaurants that are within walking

distance of Century Link Field?” Compositional

utterances often require scoped representations, as

in “What is the closest parking to the Japanese

restaurant nearest to the Space Needle?” which

has two superlative expressions, one embedded

within the other. These phenomena are also

problematic for requests, as in: Book a table at

the closest good Italian restaurant to the

Orpheum Theater on Monday for 4 people.

Although current I+S systems cannot parse or

represent such utterances (Ultes et al. 2018),

complex logical forms such as those underlying

the above can now be produced robustly from

competent semantic parsers (e.g., (Duong et al.,

2017; Wang et al., 2015)). What we claim is

necessary is to move from an I+S representation

language of actions with attributes and atomic

values to a true logical form language with which

to represent the meaning of users’ utterances.

2.3 Explicit Attitudes

However, this is still not sufficient. The I+S

approach, as incorporated into the DSTC 2

(Henderson, 2015), says that the dialogue state

with an unstated value, meaning the user is asking for the

value of the attribute.
5 In order to handle this as an indirect request, a system

would need to reason about users’ plans and how the system

can help the user achieve them.

200

“loosely denotes a full representation of what the

user wants at any point from the dialog system”,

but treats as implicit the desire attitude associated

with the intent content. Thus, when a user says “I

want you to reserve for Monday” the notion of

“want” is taken to be just syntactic sugar and is

generally thrown away, resulting in a

representation that looks like this:

inform(reserve(day = monday)). But this is too

simplistic for a real system as there are many

types of utterances about actions that a user might

provide that cannot be so expressed. For

example, the user might want to personalize the

system by telling it never to book a particular

restaurant, i.e., the user wants the system not to

perform an action. Moreover, a virtual assistant

positioned in a living room may be expected to

help multiple people, either as individuals or as a

group. A system needs to keep separate the

actions and parameters characterizing one

person’s desires from another’s, or else it will be

unable to follow a discussion between two

parties about an action. For example, John says he

wants the system to reserve Vittorio’s for he and

Sue on Monday, and Sue says she wants the

reservation on Tuesday. In addition to specifying

agents for actions, we need to specify the agent

of the inform, so that we can separate what John

and Sue each said, as in: inform(agent=john,
reserve(patron=[john,sue],day=monday)), and

inform(agent=sue,reserve(patron=[john,sue], day
=tuesday)). But, since I+S slots encode the

speaker’s desire, how can John’s saying “Sue

wants you to reserve Monday” be represented?

Does this utterance fill slots in Sue’s desired

reservation action, both of theirs, or neither?

And what if Sue replies “no, I don’t”? What

then is in the day slot for Sue? Dontcare? She

didn’t say she doesn’t care what day a table is

reserved. In fact, she does care — she does not

want a reservation on Monday. By merely having

an implicit attitude, we cannot represent this.6

All these representational weaknesses

compound. Imagine John’s being asked by the

system “when do you want me to reserve

Vittorio’s?” and he replies “whenever Sue

wants.” Again, whose slot and attitude is

associated with the utterance— John’s or Sue’s?

6Some researchers have advocated a “negate(a=x)” action

with an informal semantics that the user does not want the

slot a to be filled with the value x (Young et al., 2010). In

the multiparty case, one would need to be more explicit

about whose slot and desire this is.

Without a shared variable, agents for actions, and

explicit desires, we cannot represent this either.

2.4 Mixed initiative and collaboration

Finally, in the dialogue below, apart from the

fact that I+S cannot represent utterance (1),

question (2) is answered with a subdialogue

starting at question (3) that shifts the dialogue

initiative (Bohus and Rudnicky, 2002; Horvitz,

2007; Litman and Allen, 1987; Morbini et al.,

2012). In utterances (4) and (6), the system is

proposing a value and in (5) and (7), the user is

rejecting or accepting the proposal. Thus, both

system and user are collaboratively filling the slot

(Clark and Wilkes-Gibbs, 1986), not just one or

the other. I+S systems cannot do this.

(1) U: Please book a reservation at the

closest good restaurant to the Orpheum
Theater on Monday for 4 people.

(2) S: OK, I recommend Guillaume.

What time would you like to eat?

(3) U: what’s the earliest time available?

(4) S: 6 pm

(5) U: too early

(6) S: how about 7 pm?

(7) U: OK

2.5 Dialogue state and belief

The DSTC approach to I+S represents dialogue

state in terms of the user’s desires. We claim that

task-oriented dialogue systems, especially those

that could engage in multiparty conversations,

will also need to explicitly represent other mental

states, including but not limited to people’s

beliefs.7 The naive approach to representing

beliefs is as an embedded database (Cohen, 1978;

Moore, 1977). Such an approach could perhaps

work until one attempts to deal with vague beliefs.

For example, you know Joe is sitting by a window

and able to look outside. You can reasonably

ask Joe “Is it raining?” because you believe that

either Joe believes it is raining, or Joe believes it

is not raining, i.e., Joe knows whether it is raining

or not. This is different than believing that Joe

believes that Rain  ~Rain, which is a tautology.

But to use the database approach, what should

the system put into Joe’s database? It can’t put in

Rain, and it can’t put in ~Rain, or else it would

not need to ask. It needs to represent something

7 This is a different notion of “belief” than “belief state” as

used in POMDP dialogue modeling (Williams & Young,

2007).

201

more vague – that Joe knows if it is raining, a

concept that was described as KNOWIF =def (BEL x P)

 (BEL x ~P) (Allen 1979; Cohen and Levesque,

1990b; Cohen and Perrault, 1979; Miller et al.,

2017; Perrault and Allen, 1980; Sadek et al., 1997,

Steedman and Petrick, 2015). In the case of a

multiparty dialogue system, the system should

direct the yes/no question of whether it is raining

to the person whom it believes knows the answer

without having to know what they think it is.

2.6 Knowledge acquisition

Any task-oriented dialogue system will need to

acquire information, usually by asking wh-

questions, which we have argued will require it to

deal somehow with variables. Again, for a

multiparty context, in order to ask a wh-question,

the system should be asking someone whom it

thinks knows the answer. We need to be able to

represent such facts as “John knows Mary’s

mobile phone number”, which is different from

saying “John knows Mary has a mobile phone

number”. In the former case, I could ask John the

question “what is Mary’s phone number?”, while

in the latter case, it would be uncertain whether he

could reply. This ability to represent an agent’s

knowing the referent of a description, was called

KNOWREF (Allen 1979; Cohen and Levesque,

1990b; Cohen and Perrault, 1979; Perrault and

Allen, 1980), Bref (Sadek et al., 1997), or

KNOWS_VAL (Young et al., 2010), and is intimately

related to the concept of quantifying-into a modal

operator (Barcan, 1946; Kaplan, 1968; Kripke,

1967; Quine, 1956), about which a huge amount

of philosophical ink has been spilled. For a

database approach to representing belief, the

problem here revolves around what to put in the

database to represent Mary’s phone number. One

cannot put in a constant, or one is asserting that to

be her phone number. And one cannot put in an

ordinary variable, since that provides no more

information than the existentially quantified

proposition that she has a phone number, not that

John knows what it is! Over the years, various

researchers have attempted to incorporate special

types of constants (Cohen, 1978; Konolige,

1987), but to no avail because the logic of these

constants requires that they encode all the modal

operators in whose scope they are quantified.

Rather, one needs to represent and reason with

quantified beliefs like

8 Note that this has nothing to do with uncertainty in the

probabilistic sense. I can be certain that John knows Mary’s

phone number, but still not know what it is.

X (BEL john phone_number(mary,X))
To preview our logic below, we define some

syntactic sugar using roles and Prolog syntax (and

a higher-order schematic variable ranging over

predicates Pred):

(KNOWREF agent:X variable:Var predicate:Pred)

=def  Var (BEL x Pred), with Var bound in Pred

In other words, the agent X knows the referent

of the description ‘Var such that Pred’ . For

example, we can represent “John knows Mary’s

phone number” as

(KNOWREF agent:john,variable:Ph,
 predicate:phone_number(mary,Ph))
In summary, a system’s beliefs about other agents

cannot simply be a database. Rather, the system

needs to able to represent such beliefs without

having precise information about what those

beliefs are.8 If it can do so, it can separate what

it takes to be one agent’s beliefs from another’s,

which would be needed for a multiparty dialogue

system. Dialogue state for task-oriented dialogue

systems is thus considerably more complex than

envisioned by I+S approaches.

3 Logic of Task-Oriented Conversation

Let us now cast the I+S dialogue setting into a

logical framework. We will examine intent vs.

intention, semantics of slots, and dialogue state.

3.1 What is an Intent?

How does the action description in such

utterances as those above relate to an “intent”?

First, let us assume “intent” bears some relation to

“intention”. What appears to be the use within the

spoken language community is that an “intent” is

the action content of a user request that

(somehow) encodes the user’s intention. To be

precise here, we need to review some earlier work

that can form the basis for a logic of task-oriented

conversation.

3.2 The Language L

We will use Cohen and Levesque’s (1990) formal

language and model theory for expressing the

relations among belief, goal, and intention (see

Appendix for precise description of L). Other

formal languages that handle belief and intention

(e.g., (Rao and Georgeff, 1995)) may do just as

202

well, but this will provide the expressivity we

need. The language L is a first-order multi-modal

logical language with basic predicates, arguments,

constants, functions, objects, quantifiers,

variables, roles, values (atomic or variables),

actions, lists, temporal operators (Eventually (,

LATER), DOES and DONE), and two mental states,

BEL and GOAL. The logic does not consider

agents’ preferences, assuming the agent has

chosen those it finds superior (according to some

metric such as expected utility). These are called

GOALs in the logic. Unlike preferences, at any

given time, goals are consistent, but they can

change in the next instant. As is common, we

refer to this as a BDI logic. See the Appendix for

examples of well-formed formulas.

3.3 Possible worlds semantics

Again from (Cohen and Levesque, 1990), the

propositional attitudes BEL and GOAL are given a

relatively standard possible worlds semantics,

with two accessibility relations B and G.

However, for modelling slot-filling, we are

critically interested in the semantics of

“quantifying-in” (Barcan, 1946; Kaplan, 1968;

Kripke, 1967; Quine, 1956). Briefly, a variable

valuation function v in the semantics assigns

some value chosen from the domain of the world

and time at which the formula is being satisfied.

When “quantifying-into” a BEL or GOAL
formula, that value is chosen and then the BEL or

GOAL formula is satisfied. As is standard in

modal logic after (Kripke, 1967), the semantics

of these modal operators is given in terms of a

universal quantifier ranging over B- and G-

related possible worlds. Thus, the semantics of

satisfying y(BEL x p(y)) in world W is that there

is a single value that is assigned by the variable

assignment function v to y, such that for all

worlds W’ that are B-related to W, p(y) is true in

W’. In other words, the value assigned to y is

the same for all the related worlds W’. If the

quantifier is within the scope of the modal

operator as in (BEL x y p(y)), then a different

value could be assigned to the variable in each B-

related world. Likewise, one can quantify into

GOAL, and even iterated modalities or modalities

of different agents. This gives rise to the

theorems below, and analogous ones for GOAL.

|=y (BEL x p(y))   (BEL x y p(y)), and

|=BEL x p(c)   y (BEL x p(y)) for constant c.

This paper shows why quantifying into BEL and

GOAL is key for slot-filling systems.

3.4 Persistent goals and intentions

Cohen and Levesque (1990) defined a concept

of an internal commitment, namely an agent’s

adopting a relativized persistent goal (PGOAL x P
Q), to be an achievement goal P that x believes to

false but desires to be true in the future, and

agent x will not give up P as an achievement goal

at least until it believes P to be satisfied,

impossible, or irrelevant (i.e., x believes ~Q). If

the agent believes ~Q, it can drop the PGOAL.

More formally, they have:

(PGOAL x P Q) =def(GOAL x (LATER P))(BEL x ~P) 

 (BEFORE ((BEL x P)  (BEL x ~P)  (BEL x ~Q))
 ~(GOAL x (LATER P))

They also defined an intention to be a persistent

goal to perform an action. More formally:

(INTEND x A Q) =def (PGOAL x (DONE x A) Q).

 In other words, an agent x intending to do an

action A is internally committed (i.e., has a

PGOAL) to having performed the action A in the

future. So, an intention is a future-directed

commitment towards an action.

3.5 What is a slot?

Given this language, how would one represent a

DSTC slot, which incorporates the user’s desire?

We propose to separate the attitude, action, and

role-value list, then reassemble them. First, we

consider the role:value argument in an action

expression, using upper case variables (as in

Prolog), such as reserve(patron:P, restaurant:R,
day:D, time:T, num_eaters:N). Here, restaurant:R

is the role:value expression. Next, we need to add

the desire attitude (as a PGOAL) in order to express

such phrases “the day Joe wants me to reserve

Vittorio’s Ristorante for him.” Here is how we

would express it as part of the system’s belief:

(1) Day

 (PGOAL joe [T ,N]
 (DONE sys reserve([patron:joe,

 restaurant:vittorios,
 day:Day, time:T,

 num_eaters:N])) Q)
In other words, there is a Day on which Joe is

committed to there being a Time, and number of

eaters N such that the system reserves Vittorio’s

203

on that Day at that Time and with N eaters. The

system has represented Joe as being picky about

what day he wants the system to reserve Vittorio’s

(e.g., as a creature of habit, he always wants to eat

there on Monday), but the system does not know

what day that is. Here, we have quantified Day

into the PGOAL, but the rest of the variables are

existentially quantified within the PGOAL. That

means that Joe has made no choice about the Time

or Number of people. But because the system has

this representation, it can reasonably ask Joe

“What day do you want me to reserve

Vittorio’s?”. We can now also represent the day

Joe does not want the system to reserve, can

distinguish between the day Joe wants the system

to reserve and the day Sue wants, and we can even

equate the two, saying that Joe wants the system

to reserve on whatever day Sue wants (See section

2.7). So the DSTC “slot” day turns out to have a

variable in an action expression all right, but one

that is now quantified into an intention or PGOAL

operator. This explicit representation enables the

system to discuss the action with or without

anyone’s wanting to perform it, and to

differentiate between agents’ attitudes, which is

essential for multiparty dialogues.

3.6 Where do the slot-filling goals and

intentions come from?

In order to know what action to perform, an agent

needs to know the values of the required

arguments of an action. (Allen and Perrault, 1980;

Appelt, 1985; Cohen and Perrault, 1979; Moore,

1977)9. In the case of the task-oriented dialogue

setting, in which the agents are intended to be

cooperative, we will have all agents obey the

following rule. (We suppress roles below and

hereafter.)

For any agents X and Y (who could be the same):

If: (BEL Y (PGOAL X (DONE Y A) Q)),

Then for the set of required but unfilled

obligatory arguments Args, assert

(2) (PGOAL Y
 (KNOWREF Y Args (PGOAL X (DONE Y A)),
 (PGOAL X (DONE Y A) Q)),

9 Required arguments will be stipulated as part of a meta-

data template in the system’s knowledge base. Knowing the

values for arguments of actions is not the only case in

which having to know an argument is required. For

In other words, assuming Y is the system and X is

the user, this rule says that if the system believes

the user is committed to the system’s doing an

action A (as would be the result of a request), then

the system is committed to knowing the referents

of all required arguments of the action A that the

user wants the system to perform.10 That is, the

system is committed to knowing the user’s

desired “slot” values in the action that the user

wants the system to perform. For example, if the

system believes the user wants the system to do

the action of reserving Vittorio’s Ristorante for

the user, then the system adopts a persistent goal

to know the Time, Day, and Num, for which the

user wants the system to reserve Vittorio’s.11
Notice that this holds no matter how the system

comes to infer that the user wants it to do an

action. For example, the system could make an

indirect offer and the user could accept (Smith and

Cohen, 1996), as in System: “Would you like me

to reserve vittorio’s for you?” User: “Sure”.

Here, the offer is stated as a question about what

the user wants the system to do, and the positive

reply provides the system with the rule antecedent

above.

3.7 Application of the logic to I+S:

Expressing problematic user responses

Let us now apply the logic to handle some of the

expressions we claimed were problematic for an

I+S approach. Assume the system has asked the

user: “What time do you want me to reserve

Vittorio’s Ristorante?” We start with the base

case, i.e. with the user’s supplying an atomic

value, and assume the representation of the

question has only the Time variable quantified-in.

User: “7 pm”.

Essentially, we unify the variable quantified into

the PGOAL with the atom 7pm, resulting in:

(PGOAL usr [Day,N]
 (DONE sys reserve([usr, vittorios,Day,7pm, N]))
Q)
This is classic slot-filling.

User: “I don’t know”. The system would need

to assert into its database a formula like the

following (assume the action variable A

example, for the system to determine the number of

available seats at a restaurant, it needs to know the date.
10 When X and Y are the same agent, (PGOAL X (DONE X A))
is exactly the definition of an intention.
11 Formula (1) is a consequence of this.

204

represents the act of reserving Vittorio’s for the

user, and that it has a free variable Time):
~ (KNOWREF usr Time

(PGOAL usr (DONE usr, A) Q))
In doing so, the system should retract its previous

KNOWREF belief that enabled it to ask the original

question. How a system responds to this

statement of ignorance is a different matter. For

example, it might then ask someone else if it

came to believe that person knows the answer.

Thus, if the user then said “but Mom knows” and

the system believes the user, the system could

then ask Mom the question.

User: “I don’t care”. There are only two

approaches we have seen to handling this in the

I+S literature. One is to put the Dontcare atom

into the value of a slot (Henderson, 2015).

However, it is not clear what this means. It does

not mean the same thing as “I don‘t know.” It

might be the equivalent of a variable, as it

matches anything as a slot value, but that begs

the question of variables in slots. To express

“I don’t care” in the logic, we can define

CAREREF, a similar concept to KNOWREF:

(CAREREF x Var Pred) =def Var (GOAL x Pred),
where Var is free in Pred. Then for “I don’t care”,

one could say: ~(CAREREF x Var Pred) with the

formal semantics that there is no specific value

v for Var towards which x has a goal that Pred be

true of it.

Rather than have a distinguished “don’t care”

value in a slot, Bapna et al. (2017) create a

“don’t_care(slot)” intent, with the informal

meaning that the user does not care about what

value fills that slot.12 Here, it is not clear if this

applies on a slot-by-slot basis, or on an

intent+slot basis. For example, if it is on a slot-

by-slot basis, then if the user says “I don’t care”

to the question “Do you want me to reserve

Monday at 7pm or Tuesday at 6pm?” it would

lead to four don’t_care(slot) intent expressions.

Would these be disjunctions? How would the

relation between Monday and 7pm be expressed?

By contrast, we can define a comparable

concept to KNOWIF,

 (CAREIF x P) =def (GOAL x P)  (GOAL x ~P)
such that one can say “x doesn’t care whether P”,

as ~(CAREIF x P), with the obvious logical

interpretation. With CAREIF, one could express

12 Notice that “intent” for Bapna et al. does not indicate an

action being requested, so their notion of intent is different

the reply “I don’t care” to the above disjunctive

question as:
~(CAREIF usr
 (LATER
 (DONE sys reserve([usr, mond, 7pm)]) 
 (DONE sys reserve([usr, tues , 6pm]))))

User: “before 8 pm.” Because all that the I+S

approach can do is to put atomic values in slots

or leave them unfilled, the only approach

possible here is to put some atom like

before_8_pm into the slot. If one tried to give a

semantics for this, it might be a function call or

λ-expression that would somehow be interpreted

as a comparative relation with whatever value

eventually fills the slot. But, one would need a

different comparison relation for every time

value, not to mention for other more complex

expressions such as

not_before_7_pm_or_after_9_pm, or

between_7_pm_and_9_pm. How would the

system infer that these are the same condition?

Instead, one might think we only need a method

to append new constraints to the quantified

persistent goal “slot” expression, as in

 Time (PGOAL usr

  [Day,Num]
 (DONE sys
 reserve([usr,vittorios,Day,Time,Num]))

 (BEFORE Time 8:15_pm))
However, as a representation of the reply, the

above is not quite what we want. Here, the user

has implicated (Grice, 1975) that she does not

have a goal for a particular time such that she

wants a reservation at that time. Rather, she

wants whatever time she eats to be before 8:15

pm. So, in fact, we want this constraint to be

embedded within the scope of the existential

quantifier:

 (PGOAL usr  [Day,Time,Num]
 ((DONE sys reserve([usr,vittorios,

 Day,Time, Num]))

  (BEFORE Time 8:15_pm)))
The reason we need an inference like a Gricean

implicature is that the system would need to

reason that in response to the question, if the user

knew the answer, she would have told me, and

she didn’t, so she (probably) doesn’t know the

answer. Thus, the system needs to assert a

weaker PGOAL.

from that of (Henderson, 2015) or that used by Amazon

Alexa.

205

User: “whenever Mary wants.” To represent the

content of this utterance, one can equate the

quantified-in variables T1, T2 (and ignoring Q):

[T1,T2] (equals T1,T2) 

 ((PGOAL usr [Day,Num]
 (DONE sys reserve([usr,vittorios,Day, T1, Num]))) 

 (PGOAL mary [Day,Num]
 (DONE sys reserve([mary,vittorios,Day, T2,Num]))))

If the system learns that Mary wants the

reservation to be at 7 pm, it can infer that the User

wants it then too.

The above examples show that the logic can

represent users’ utterances in response to slot-

filling questions that supply constraints on slot

values, but not the values themselves.

4 Towards Best Practices

This paper has provided a logical definition of the

DSTC 2/3 slot (and I+S slots more generally) as

a quantified-in formula stating the value that the

agent wants an action’s role to have. In addition,

the logic presented here captures a more general

concept than what I+S supports, in that it can

express multiple agents’ desires as well as non-

atomic constraints on attribute-value in logical

forms.

Still, our purpose here is not merely clarity

and good hygiene, but ultimately to build systems

that can engage in explainable, collaborative,

multiparty dialogues. Below we sketch how to

build systems that can handle the above issues,

some of which we have implemented in a

prototype system that uses the logic in this paper

to engage in collaborative knowledge-based

dialogues, including slot-filling. A report on this

system and approach will be provided in a

subsequent paper.

4.1 Enabling an operational semantics

Systems based on a BDI logic will often have

a belief-desire-intention architecture that serves as

an operational semantics for the logic (Rao and

Georgeff, 1995). By “operational semantics”, we

mean that the system’s operation behaves (or at

least approximates) the requirements of the logic.

For example, the adoption of a persistent goal to

achieve a state of affairs results in finding a plan

to achieve it, which then results in the agent’s

intending to perform the planned action. If the

system finds a persistent goal/intention to be

achieved, impossible or irrelevant, it drops that

mental state, which causes an unraveling of other

mental states as well. Our system in fact reasons

with the formulas shown here, engaging in slot-

filling and related question-answering dialogues.

However, other systems may be able to make such

distinctions without explicit logical reasoning.

4.2 A plan-based approach to dialogue

We advocate a plan-based model of dialogue

(Allen, 1979, Allen and Perrault, 1980; Allen et

al., 1995; Appelt, 1985; Cohen 1978; Cohen and

Perrault, 1979; Cohen and Levesque, 1990b;

Galescu et al., 2017; Litman and Allen 1987;

Perrault and Allen, 1980; Sadek et al., 1997;

Steedman and Petrick, 2007; Stone, 2004; Traum

and Hinkelman, 1992) such that the same

planning and plan recognition algorithms can

apply to both physical, digital, and

communicative acts. When applied to

communicative acts, the system plans to alter its

own and the users’ beliefs, goals, and intentions.

For example, goal (2) as applied to the slot

expression in (1) will cause it to plan the wh-

question “what day would you like me to reserve

Vittorio’s?” to alter the speaker’s KNOWREF in

goal (2) (see Appendix for definition of whq).

Conversely, as a collaborator, on identifying a

user’s speech act, the system asserts the user’s

goal was to achieve the effect of the speech act.

Based on that effect, the system attempts to

recognize the user’s larger plan, to debug that

plan, and to plan to overcome obstacles to it so

that the user may achieve his/her higher level

goals (Allen, 1979; Cohen, 1978; Cohen et al.,

1982). In this way, a system can engage in

collaborative non-I+S dialogues such as User:

“Where is Dunkirk playing?” System: “It’s

playing at the Roxy theater at 7:30pm, however it

is sold out. But you can watch it on Netflix.”

Finally, the system is in principle explainable

because everything it says has a plan behind it.

4.3 A hybrid approach to handling task-

oriented dialogue variability.

In order to incorporate such an approach into a

useful dialogue system, we advocate building a

semantic parser using the crowd-sourced

“overnight” approach (Duong et al., 2018; Wang

et al., 2015), which maps crowd-paraphrased

utterances onto LFs derived from a backend API

or data/knowledge base. This methodology

involves: 1) Creating a grammar of LFs whose

predicates are chosen from the backend

application/data base, 2) using that grammar to

generate a large number of LFs, 3) generating a

“clunky” paraphrase of an LF, and 4) collecting

206

enough crowd-sourced natural paraphrases of

those clunky paraphrases/LFs13. A neural

network semantic parser trained over such a

corpus can handle considerable utterance

variability, including the creation of logical forms

both for I+S utterances, and for complex

utterances not supportable by I+S approaches. In

the past, we have used this method to generate a

corpus of utterances and logical forms that

supported the semantic parsing/understanding of

the complex utterances in Section 2.2 (Duong et

al., 2017; Duong et al., 2018).

Whereas much utterance variability and

uncertainty can be captured via the above

approach, we believe there is less variability at the

level of the goal/intention lifecycle, which

includes goal adoption, commitment, planning,

achievement, failure, abandonment,

reformulation, etc. (Galescu et al., 2018; Johnson

et al., 2018). This goal lifecycle would be directly

supported by the BDI architecture and therefore

would be available for every domain. Rather than

train a dialogue system end-to-end where we

would need many examples of each of these goal

relationships, we believe a domain independent

dialogue manager can be written once,

parameterized by the contents of the knowledge

representation (Allen et al., 2019; Galescu et al.,

2018). Beyond learning to map utterances to

logical forms, the system needs to learn how to

map utterances in context to goal relationships.

For example, what does “too early” in Utterance

(5) of Section 2.4 mean? Is that a rejection of a

contextually-specified proposal? The system

also needs to learn how actions in the domain may

lead to goals for which the user may want the

system’s assistance. In order to be helpful to the

user, the system must recognize the user’s goals

and plan that led to his/her utterance(s) (Allen and

Perrault, 1980; Sukthankar et al., 2014; Vered et

al., 2016). One approach is to collect the action

data needed to support plan recognition via

crowdsourcing and text mining (Branavan et al.,

2012; Fast et al., 2016; Jiang and Riloff, 2018).

The upshot will be a collaborative dialogue

manager that can be used directly in a dialogue

system, or can become a next generation user

simulator with which to train a dialogue manager

(Schatzman et al., 2007; Shah et al., 2018).

13 This might take longer than overnight (vs. Wang et

al. 2015).

Acknowledgments

This paper benefitted from insightful

comments by the reviewers, Drs. Mark Johnson,

Lizhen Qu, and Mor Vered.

5 References

Allen, J. F. A plan-based approach to speech act

recognition, PhD Thesis, Dept. of Computer

Science, University of Toronto, 1979.

Allen, J. F. and Perrault, C. R., Analyzing

intention in utterances, Artificial intelligence 15

(3), 143-178.

Allen, J. F., Schubert, L K., Ferguson, G.

Heeman, P. Hwang, C. H., Kato, T., Light, M.

Martin, N., Miller, B., Poesio, M., Traum, D. R.,

The TRAINS project: A case study in building

a conversational planning agent Journal of

Experimental and Theoretical Artificial

Intelligence, 1995
Allen, J. F., André, E., Cohen, P. R., Hakkani-Tür,

D., Kaplan, R., Lemon, O., Traum, D.,

Challenge discussion: Advancing multimodal

dialogue, Chapter 5 in Handbook of

Multimodal-Multisensor Interfaces, Oviatt, S.

L., Schuller, B., Cohen, P. R., Sonntag, D.,

Potamianos, G., and Krüger, A., ACM

Press/Morgan and Claypool Publishers, 2019.

Appelt, D. Planning English Sentences,

Cambridge University Press, Cambridge, UK,

1985

Barcan, R. C., A Functional Calculus of First

Order Based on Strict Implication, Journal of

Symbolic Logic, 11, 1946.

Bapna, A., Tür, G., Hakkani-Tür, D., and Heck,

L., Sequential dialogue context modelling for

spoken language understanding, Proc. of

SIGDIAL, 2017, 103-114.

Bobrow, D. G., Kaplan, R. M., Kay, M., Norman,

D. A., Thompson, H., and Winograd, T. GUS, a

frame-driven dialog system. Artificial

Intelligence, 8(2), 1977, 155-173.

Bohus, D. and Rudnicky, A. I., The RavenClaw

dialogue management framework, Computer

Speech and Language, 23, 2009, 332-361.

Branavan, R.K., Kushman, N., Lei, T., Barzilay,

R. Learning High-Level Planning from Text,

Proc. ACL-12, 2012, 126-135.

Clark, H. H., and Wilkes-Gibbs, D., Referring as

a collaborative process, Cognition(22), 1986, l-

39

https://www.tandfonline.com/doi/abs/10.1080/09528139508953799
https://www.tandfonline.com/doi/abs/10.1080/09528139508953799
https://www.sciencedirect.com/science/journal/00043702
https://www.sciencedirect.com/science/journal/00043702

207

Cohen, P. R. On knowing what to say: Planning

speech acts. PhD Thesis, Dept. of Computer

Science, University of Toronto, 1978.

Cohen, P. R. and Levesque, H. J., Intention is

choice with commitment, Artificial Intelligence,

42 (2-3), 1990, 213-261.

Cohen, P. R, and Levesque, H. J. , Rational

Interaction as the Basis for Communication

Intentions in Communication, Cohen, P. R.,

Morgan, J. and Pollack, M.E., MIT Press,

1990a.

Cohen, P. R. and Perrault, C. R., Elements of a

plan-based theory of speech acts, Cognitive

Science, 3(3), 1979.

Cohen, P. R., Perrault, C. R., and Allen, J. F.,

Beyond question-answering, in Strategies for

Natural Language Processing, Lehnert, W. and

Ringle, M. (eds)., Lawrence Erlbaum

Associates, 1982.

Duong, L., Afshar, H., Estival, D., Pink, G.,

Cohen, P. R., and Johnson M. Multilingual

Semantic Parsing and Code-switching, Proc. of

the 21st Conf. on Computational Natural

Language Learning (CoNLL 2017), 2017, pp.

379-389.

Duong, L., Afshar, H. Estival, D., Pink, G.,

Cohen, P., Johnson M.,Active learning for deep

semantic parsing. Proceedings of the 56th

Annual Meeting of the Association for

Computational Linguistics, 2018, 43-48.

Fast, E., McGrath, W., Rajpurkar, P. and

Bernstein, M., Augur: Mining Human

Behaviors from Fiction to Power Interactive

Systems. Proc. of the 2016 CHI Conference on

Human Factors in Computing Systems, ACM

Press, 2016.

Galescu, L., Teng, C. M., Allen J. F., and

Pereira, I. Cogent: A Generic Dialogue

System Shell Based on a Collaborative

Problem Solving Model, Proceedings of

SigDial, 2018, 400-409.

Gašić, M., Mrkšić, N., Rojas-Barahona, L. M., Su,

P-H., Ultes,S., Vandyke, D., Wen, T-H., and

Young, S., Dialogue manager domain

adaptation using Gaussian process

reinforcement learning, Computer Speech and

Language 45, 2016, 552-569.

Grice, H.P. Logic and Conversation, Syntax and

Semantics, vol.3 P. Cole and J. Morgan (eds.),

Academic Press, 1975.

Henderson, M., Machine learning for dialog state

tracking: A review, Proceedings of The First

International Workshop on Machine Learning

in Spoken Language Processing, 2015.

Horvitz, E., Reflections on challenges and

promises of mixed-initiative interaction, AI

Magazine, 28(2), 2007, 19-22.

Johnson B., Floyd M.W., Coman A., Wilson

M.A., Aha D.W. Goal reasoning and trusted

autonomy. In: Abbass H., Scholz J., Reid D.

(eds), Foundations of Trusted Autonomy.

Studies in Systems, Decision and Control, vol

117. Springer, 47-66, 2018.

Kaplan, D. Quantifying in, Synthese 19(1/2),

1968, 178-214.

Konolige, K., On the relation between

autoepistemic logic and circumscription:

Preliminary Report, Proc. of IJCAI, 1989, 1213-

1218.

Kripke, S. A. Semantical Considerations on

Modal Logic Acta Philosophica Fennica 16

1963, 83-94.

Jiang, T., and Riloff, E., Learning prototypical

goal activities for locations, Proc. of Assoc. for

Comp. Ling., 2018, 1297-1307.

Larsson, S. and Traum, D. R., Information state

and dialogue management in the TRINDI

Dialogue Move Engine Toolkit, Natural

Language Engineering 6(3-4), 2000, 323-340.

Litman, D. J. and Allen, J. F., A Plan Recognition

Model for Subdialogues in Conversations,

Cognitive Science, 11, 1987, 163-200.

Miller, T., Felli, P., Muise, C., Pearce, A. R., and

Sonenberg, L. ‘Knowing whether’ in Proper

Epistemic Knowledge Bases, Proc. of AAAI,

2017.

Morbini, F., DeVault, D., Sagae, K., Gerten, J.,

Nazarian, A., and Traum D., FLoReS: A

Forward Looking, Reward Seeking, Dialogue

Manager, Proceedings of the 4th International

Workshop on Spoken Dialog Systems

November, 2012, 151-162.

Moore, Robert C, Reasoning about knowledge

and action, Proc. of IJCAI, 1977.

Perrault, C. R. and Allen, J. F., A plan-based

analysis of indirect speech acts, Computational

Linguistics, 6(3-4), 1980, 167-182.

Rao, A. and Georgeff, M. BDI-agents: From

Theory to Practice". Proceedings of the First

International Conference on Multiagent

Systems, 1995.

Rao, A. and Georgeff, M. Decision procedures for

BDI logics, Journal of Logic and Computation

8(3), 1998.

Quine, W. V. O. Quantifiers and propositional

attitudes, Journal of Philosophy 53(5), 1956,

177-187.

http://www.aclweb.org/anthology/K17-1038
http://www.aclweb.org/anthology/K17-1038
https://philpapers.org/s/Saul%20A.%20Kripke
https://philpapers.org/go.pl?id=KRISCO&proxyId=&u=http%3A%2F%2Fsaulkripkecenter.org%2Fwp-content%2Fuploads%2F2019%2F03%2FSemantical-Considerations-on-Modal-Logic-PUBLIC.pdf
https://philpapers.org/go.pl?id=KRISCO&proxyId=&u=http%3A%2F%2Fsaulkripkecenter.org%2Fwp-content%2Fuploads%2F2019%2F03%2FSemantical-Considerations-on-Modal-Logic-PUBLIC.pdf
https://philpapers.org/asearch.pl?pub=11
https://www.aaai.org/Papers/ICMAS/1995/ICMAS95-042.pdf
https://www.aaai.org/Papers/ICMAS/1995/ICMAS95-042.pdf

208

Sadek, D., Bretier, P., and Panaget, F., ARTIMIS:

Natural dialogue meets rational agency, Proc.

IJCAI-15, 1997, pp. 1030-1035.

Schatzmann, J., Thomson, B., Weilhammer, K.,

Ye, H., and Young, S., Agenda-Based User

Simulation for Bootstrapping a POMDP

Dialogue System, Proc. of NAACL-HLT, 2007.

Shah, P., Hakkani-Tür, D., Tür, G., Rastogi, A.,

Bapna, A., Nayak, N., Heck, L., Building a

conversational agent overnight with dialogue

self-play, arXiv: 1801.04871v1, Jan., 2018.

Smith, I. A., and Cohen, P. R. Toward a semantics

for an agent communications language Proc.

AAAI-96, 24-31.

Steedman, M. and Petrick, R. Planning dialogue

actions, Proc. of SigDial, 2007.

Stone, M. Intention, interpretation and the

computational structure of language, Cognitive

Science 28, 2004, 781–809.

Sukthankar, G., Geib, C., Bui, H., Pynadath, D.,

and Goldman, R., Plan, Activity, and Intent

Recognition: Theory and Practice, San

Francisco: Morgan Kauffman Publishers, 2014.

Traum, D. R. and Hinkelman, E. A., Conversation

acts in task-oriented spoken dialogue,

Computational Intelligence, 8(3), 575-599.

Ultes, S. Budzianowski, P., Casanueva, I., Rojas-

Barahona, L., Tseng B-H., Wu, Y-C., Young,

S., and Gašić, M. Addressing Objects and Their

Relations: The Conversational Entity Dialogue

Model, Proc. of SigDial 2018.

Vered, M., Kaminka, G. A. and Biham S. Online

Goal Recognition through Mirroring: Humans

and Agents. In Proceedings of the Annual

Conference on Advances in Cognitive Systems

(ACS), 2016.

Wang, Y., Berant, J., and Liang, P., Building a

semantic parser overnight, Proc. of Assoc. for

Comp. Ling., 2015, 1332–1342.

Williams, J. D., and Young, S. Partially

observable Markov decision processes for

spoken dialog systems, Computer Speech and

Language 21 (2007), 393-422.

Woods, W. A. What's in a Link: Foundations for

Semantic Networks. In D. Bobrow and A.

Collins (eds.), Representation and

Understanding: Studies in Cognitive Science,

New York: Academic Press, 1975.

Young, S., Gašić, M., Keizer, S., Mairesse, F.,

Schatzmann, J., Thomson, B., and Yu, K. The

Hidden Information State model: A practical

framework for POMDP-based spoken dialogue

management, Computer Speech and Language

24, 2010, pp. 150-174.

Zue, V. W., Glass, J., Goodine, D., Hirschman,

L. Leung, H. C., Phillips, M., Polifroni, J.,

Seneff, S. "The MIT ATIS system: Preliminary

development, spontaneous speech data

collection, and performance evaluation", Proc

of EUROSPEECH, 1991, 537-540.

http://u.cs.biu.ac.il/~veredm/Papers/acs16.pdf
http://u.cs.biu.ac.il/~veredm/Papers/acs16.pdf
http://u.cs.biu.ac.il/~veredm/Papers/acs16.pdf

209

Appendix

The Language L

Variables and constants

<Action-var> ::= a, b, a 1 , a 2 . . . b1, b 2 . . . e,

e1, e2 . . .

<Agent-var> :: = x, y, x1, x2 y1, y2 . .

<Regular-var> ::= i,j, i1, i2 . . . j1, j2 . . .

<Variable>:: = <Agent-var>|<Action-var> |

< Regular-var> |

[<Variable1> …<Variablen>] , i.e.,

(a list of variables)

Predicates and Formulas

<Role>::= distinguished Role symbols for a

given action

<Role-list> ::= [<Role>1 :<Variable> 1,. . .,

<Role>n:<Variable>n]

<Pred-symbol> ::= an element of a

distinguished set of predicate symbols

<Pred> :: = (<Pred-symbol>) .

Well-formed formulas (WFFS)

<Wff> ::= <Pred> | ~<Wff> | <Wff> 

<Wff> | <Wff>  <Wff> | <Variable>

<Wff> |

<Wff > — <Wff > is true eventually

<Wff > — <Wff > is always true (note that

<Pred>=def ~ ~ <Pred>)

<Variable> = <Variable>

(DOES <Action-expr>) — <Action-expr>

happens next,

(DONE <Action-expr>) —

<Action-expr> has just happened,

(Agt <Agent-var> <Action-var>):

<Agent-var> is the only agent of

<Action-var>,

(BEL <Agent-var> <Wff>) —

meaning <Wff> follows from

<Agent-var>'s beliefs,

(GOAL <Agent-var> <Wff>) —

meaning <Wff> follows

from <Agent-var>'s goals,

<Time-proposition> ::= <Numeral>

(LATER <Wff>) ::= ~<Wff>  <Wff>

<Wff> is false now but eventually true

(BEFORE <Wff>1 <Wff>2)

 before <Wff>1 becomes true,

Action expressions:

<Action-name> ::= an element of a

designated set of action names

<Action-expr> :: =

<Action-var> or one of the following:

<Action> ::= <Action-name (Role-list>)

<Action-expr>;<Action_expr>—

 sequential action,

<Action-expr> | <Action-expr> —

 nondeterministicchoice action,

<Wff>? — test action

<Action-expr>||<Action-expr> —

 concurrent action

<Action-expression>*: iterative action.

Examples of Well-formed Formulas:

(DONE joe eat(joe,vittorios,mond,7pm))

Joe has just eaten at Vittorio’s on Monday at 7pm.

(GOAL joe (DONE joe eat(joe,vittorios, mond,7pm))

Joe’s goal is to eventually have eaten at Vittorio’s at

Monday at 7pm.

 (BEL john (PGOAL mary (KNOWREF john variable:Time

 (PGOAL mary

 eat(mary,vittorios,mond,Time))

John believes Mary has a persistent goal for him to

know the time that Mary wants to eat at Vittorio’s on

Monday.

inform([Speaker, Listener, Pred])

Precondition: (BEL Speaker Pred)
Effect: (BEL Listener Pred)

Constraint: Speaker  Listener

whq([Speaker, Listener, Var, Pred])

Precondition: (KNOWREF Listener, Var, Pred)
Effect: (KNOWREF Speaker, Var, Pred)

Constraint: Speaker  Listener

ynq([Speaker, Listener, Pred]),

Precondition: (KNOWIF Listener Pred)
Effect: (KNOWIF Speaker Pred)

Constraint: Speaker  Listener

informref([Speaker, Listener, Var, Pred])
Precondition: (KNOWREF Speaker, Var, Pred)
Effect: (KNOWREF Listener, Var, Pred)

Constraint: Speaker  Listener

Speech Act definitions

