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Abstract

This paper proposes a novel end-to-end ar-
chitecture for task-oriented dialogue systems.
It is based on a simple and practical yet
very effective sequence-to-sequence approach,
where language understanding and state track-
ing tasks are modeled jointly with a struc-
tured copy-augmented sequential decoder and
a multi-label decoder for each slot. The pol-
icy engine and language generation tasks are
modeled jointly following that. The copy-
augmented sequential decoder deals with new
or unknown values in the conversation, while
the multi-label decoder combined with the se-
quential decoder ensures the explicit assign-
ment of values to slots. On the generation
part, slot binary classifiers are used to improve
performance. This architecture is scalable to
real-world scenarios and is shown through an
empirical evaluation to achieve state-of-the-art
performance on both the Cambridge Restau-
rant dataset and the Stanford in-car assistant
dataset1.

1 Introduction

A traditional task-oriented dialogue system is of-
ten composed of a few modules, such as natural
language understanding, dialogue state tracking,
knowledge base (KB) query, dialogue policy en-
gine and response generation. Language under-
standing aims to convert the input to some prede-
fined semantic frame. State tracking is a critical
component that models explicitly the input seman-
tic frame and the dialogue history for producing KB
queries. The semantic frame and the correspond-
ing belief state are defined in terms of informable
slots values and requestable slots. Informable slot
values capture information provided by the user

∗Work mostly performed as an intern at Uber AI Labs
1The code is available at https://github.com/

uber-research/FSDM

so far, e.g., {price=cheap, food=italian} indicat-
ing the user wants a cheap Italian restaurant at this
stage. Requestable slots capture the information re-
quested by the user, e.g., {address, phone} means
the user wants to know the address and phone num-
ber of a restaurant. Dialogue policy model decides
on the system action which is then realized by a
language generation component.

To mitigate the problems with such a classic
modularized dialogue system, such as the error
propagation between modules, the cascade effect
that the updates of the modules have and the
expensiveness of annotation, end-to-end training
of dialogue systems was recently proposed (Liu
and Lane, 2018; Williams et al., 2017; Lowe
et al., 2017; Li et al., 2018; Liu et al., 2018;
Budzianowski et al., 2018; Bordes et al., 2017;
Wen et al., 2017b; Serban et al., 2016, among oth-
ers). These systems train one whole model to read
the current user’s utterance, the past state (that may
contain all previous interactions) and generate the
current state and response.

There are two main approaches for modeling the
belief state in end-to-end task-oriented dialogue
systems in the literature: the fully structured ap-
proach based on classification (Wen et al., 2017b,a),
and the free-form approach based on text genera-
tion (Lei et al., 2018). The fully structured ap-
proaches (Ramadan et al., 2018; Ren et al., 2018)
use the full structure of the KB, both its schema
and the values available in it, and assumes that the
sets of informable slot values and requestable slots
are fixed. In real-world scenarios, this assump-
tion is too restrictive as the content of the KB may
change and users’ utterances may contain informa-
tion outside the pre-defined sets. An ideal end-to-
end architecture for state tracking should be able
to identify the values of the informable slots and
the requestable slots, easily adapt to new domains,
to the changes in the content of the KB, and to the

https://github.com/uber-research/FSDM
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occurrence of words in users’ utterances that are
not present in the KB at training time, while at the
same time providing the right amount of inductive
bias to allow generalization.

Recently, a free-form approach called TSCP
(Two Stage Copy Net) (Lei et al., 2018) was pro-
posed. This approach does not integrate any infor-
mation about the KB in the model architecture. It
has the advantage of being readily adaptable to new
domains and changes in the content of the KB as
well as solving the out-of-vocabulary word prob-
lem by generating or copying the relevant piece
of text from the user’s utterances in its response
generation. However, TSCP can produce invalid
states (see Section 4). Furthermore, by putting
all slots together into a sequence, it introduces an
unwanted (artificial) order between different slots
since they are encoded and decoded sequentially.
It could be even worse if two slots have overlap-
ping values, like departure and arrival airport in a
travel booking system. As such, the unnecessary
order of the slots makes getting rid of the invalid
states a great challenge for the sequential decoder.
As a summary, both approaches to state tracking
have their weaknesses when applied to real-world
applications.

This paper proposes the Flexibly-Structured
Dialogue Model (FSDM) as a new end-to-end task-
oriented dialogue system. The state tracking com-
ponent of FSDM has the advantages of both fully
structured and free-form approaches while address-
ing their shortcomings. On one hand, it is still struc-
tured, as it incorporates information about slots in
KB schema; on the other hand, it is flexible, as
it does not use information about the values con-
tained in the KB records. This makes it easily adapt-
able to new values. These desirable properties are
achieved by a separate decoder for each informable
slot and a multi-label classifier for the requestable
slots. Those components explicitly assign values to
slots like the fully structured approach, while also
preserving the capability of dealing with out-of-
vocabulary words like the free-form approach. By
using these two types of decoders, FSDM produces
only valid belief states, overcoming the limitations
of the free-form approach. Further, FSDM has a
new module called response slot binary classifier
that adds extra supervision to generate the slots
that will be present in the response more precisely
before generating the final textual agent response
(see Section 3 for details).

The main contributions of this work are

1. FSDM, a task-oriented dialogue system with
a new belief state tracking architecture that
overcomes the limits of existing approaches
and scales to real-world settings;

2. a new module, namely the response slot bi-
nary classifier, that helps to improve the per-
formance of agent response generation;

3. FSDM achieves state-of-the-art results on
both the Cambridge Restaurant dataset (Wen
et al., 2017b) and the Stanford in-car assistant
dataset (Eric et al., 2017) without the need for
fine-tuning through reinforcement learning

2 Related Work

Our work is related to end-to-end task-oriented di-
alogue systems in general (Liu and Lane, 2018;
Williams et al., 2017; Lowe et al., 2017; Li et al.,
2018; Liu et al., 2018; Budzianowski et al., 2018;
Bordes et al., 2017; Hori et al., 2016; Wen et al.,
2017b; Serban et al., 2016, among others) and those
that extend the Seq2Seq (Sutskever et al., 2014) ar-
chitecture in particular (Eric et al., 2017; Fung et al.,
2018; Wen et al., 2018). Belief tracking, which is
necessary to form KB queries, is not explicitly per-
formed in the latter works. To compensate, Eric
et al. (2017); Xu and Hu (2018a); Wen et al. (2018)
adopt a copy mechanism that allows copying in-
formation retrieved from the KB to the generated
response. Fung et al. (2018) adopt Memory Net-
works (Sukhbaatar et al., 2015) to memorize the re-
trieved KB entities and words appearing in the dia-
logue history. These models scale linearly with the
size of the KB and need to be retrained at each up-
date of the KB. Both issues make these approaches
less practical in real-world applications.

Our work is also akin to modularly connected
end-to-end trainable networks (Wen et al., 2017b,a;
Liu and Lane, 2018; Liu et al., 2018; Li et al., 2018;
Zhong et al., 2018). Wen et al. (2017b) includes
belief state tracking and has two phases in training:
the first phase uses belief state supervision, and
then the second phase uses response generation
supervision. Wen et al. (2017a) improves Wen et al.
(2017b) by adding a policy network using latent
representations so that the dialogue system can
be continuously improved through reinforcement
learning. These methods utilize classification as a
way to decode the belief state.
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Figure 1: FSDM architecture illustrated by a dialogue turn from the Cambridge Restaurant dataset with the follow-
ing components: an input encoder (green), a belief state tracker (yellow for the informable slot values, orange for
the requestable slots), a KB query component (purple), a response slot classifier (red), a component that calculates
word copy probability (grey) and a response decoder (blue). Attention connections are not drawn for brevity.

Lei et al. (2018) decode the belief state as well
as the response in a free-form fashion, but it tracks
the informable slot values without an explicit as-
signment to an informable slot. Moreover, the ar-
bitrary order in which informable slot values and
requestable slots are encoded and decoded suggests
that the sequential inductive bias the architecture
provides may not be the right one.

Other works (Jang et al., 2016; Henderson et al.,
2014; Bapna et al., 2017; Kobayashi et al., 2018;
Xu and Hu, 2018b) focus on the scalability of DST
to large or changing vocabularies. Rastogi et al.
(2017) score a dynamically defined set of candi-
dates as informable slot values. Dernoncourt et al.
(2016) addresses the problem of large vocabularies
with a mix of rules and machine-learned classifiers.

3 Methodology

We propose a fully-fledged task-oriented dialogue
system called Flexibly-Structured Dialogue Model
(FSDM), which operates at the turn level. Its over-
all architecture is shown in Figure 1, which illus-
trates one dialogue turn. Without loss of generality,
let us assume that we are on the t-th turn of a dia-

logue. FSDM has three (3) inputs: agent response
and belief state of the t− 1-th turn, and user utter-
ance of the t-th turn. It has two (2) outputs: the
belief state for the t-th turn that is used to query the
KB, and the agent response of the t-th turn based
on the query result. As we can see, belief track-
ing is the key component that turns unstructured
user utterance and the dialogue history into a KB-
friendly belief state. The success of retrieving the
correct KB result and further generating the correct
response to complete a task relies on the quality of
the produced belief state.

FSDM contains five (5) components that work
together in an end-to-end manner as follows: (1)
The input is encoded and the last hidden state of
the encoder serves as the initial hidden state of the
belief state tracker and the response decoder; (2)
Then, the belief state tracker generates a belief state
Bt = {It, Rt}, where It is the set of constraints
used for the KB query generated by the informable
slots value decoder and Rt is the user requested
slots identified by the requestable slots multi-label
classifier; (3) Given It, the KB query component
queries the KB and encodes the number of records
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returned in a one-hot vector dt; (4) The response
slot binary classifier predicts which slots should
appear in the agent response St; (5) Finally, the
agent response decoder takes in the KB output dt, a
word copy probability vector Pc computed from It,
Rt, St together with an attention on hidden states
of the input encoder and the belief decoders, and
generates a response At.

3.1 Input Encoder

The input contains three parts: (1) the agent re-
sponse At−1, (2) the belief state Bt−1 from the
(t− 1)-th turn and (3) the current user utterance Ut.
These parts are all text-based and concatenated, and
then consumed by the input encoder. Specifically,
the belief state Bt−1 is represented as a sequence
of informable slot names with their respective val-
ues and requestable slot names. As an example,
the sequence 〈cheap, end price, italian, end food,
address, phone, end belief 〉 indicates a state where
the user informed cheap and Italian as KB query
constraints and requested the address and phone
number.

The input encoder consists of an embedding
layer followed by a recurrent layer with Gated
Recurrent Units (GRU) (Cho et al., 2014). It
maps the input At−1 ◦ Bt−1 ◦ Ut (where ◦ de-
notes concatenation) to a sequence of hidden vec-
tors {hEi |i = 1, . . . , |At−1 ◦ Bt−1 ◦ Ut|} so that
hEi = GRUH(eAt−1◦Bt−1◦Ut) where e is the em-
bedding function that maps from words to vectors.
The output of the input encoder is its last hidden
state hEl , which is served as the initial state for
the belief state and response decoders as discussed
next.

3.2 Informable Slot Value Decoder

The belief state is composed of informable slot
values It and the requestable slots Rt. We describe
the generation of the former in this subsection and
the latter in the next subsection.

The informable slot values track information
provided by the user and are used to query the
KB. We allow each informable slot to have its own
decoder to resolve the unwanted artificial depen-
dencies among slot values introduced by TSCP
(Lei et al., 2018). As an example of artificial de-
pendency, ‘italian; expensive’ appears a lot in the
training data. During testing, even when the gold
informable value is ‘italian; moderate’, the decoder
may still generate ‘italian; expensive’. Modeling

one decoder for each slot exactly associates the
values with the corresponding informable slot.

The informable slot value decoder consists of
GRU recurrent layers with a copy mechanism as
shown in the yellow section of Figure 1. It is
composed of weight-tied GRU generators that take
the same initial hidden state hEl , but have differ-
ent start-of-sentence symbols for each unique in-
formable slot. This way, each informable slot value
decoder is dependent on the encoder’s output, but it
is also independent of the values generated for the
other slots. Let {kI} denote the set of informable
slots. The probability of the jth word P (yk

I

j ) being
generated for the slot kI is calculated as follows:
(1) calculate the attention with respect to the input
encoded vectors to obtain the context vector ck

I

j ,

(2) calculate the generation score φg(yk
I

j ) and the

copy score φc(yk
I

j ) based on the current step’s hid-

den state hk
I

j , (3) calculate the probability using
the copy mechanism:

ck
I

j = Attn(hkI

j−1, {hE
i }),

hkI

j = GRUI

(
(ck

I

j ◦ ey
kI

j ), hkI

j−1

)
,

φg(y
kI

j ) =WKI

g · hkI

j ,

φc(y
kI

j ) = tanh(WKI

c · hykI

j ) · hkI

j ,

yk
I

j ∈ At−1 ∪Bt−1 ∪ Ut,

P (yk
I

j |yk
I

j−1, h
kI

j−1) = Copy
(
φc(y

kI

j ), φg(y
kI

j )
)
,

(1)

where for each informable slot kI , yk
I

0 = kI and

hk
I

0 = hEl , ey
kI

j is the embedding of the cur-
rent input word (the one generated at the previous
step), and WKI

g and WKI

c are learned weight ma-
trices. We follow (Gu et al., 2016) and (Bahdanau
et al., 2015) for the copy Copy(·, ·) and attention
Attn(·, ·) mechanisms implementation respectively.

The loss for the informable slot values decoder
is calculated as follows:

LI =− 1

|{kI}|
1

|Y kI |
∑
kI

∑
j

logP (yk
I

j = zk
I

j |yk
I

j−1, h
kI

j−1),

(2)

where Y KI
is the sequence of informable slot value

decoder predictions and z is the ground truth label.

3.3 Requestable Slot Binary Classifier

As the other part of a belief state, requestable slots
are the attributes of KB entries that are explicitly
requested by the user. We introduce a separate
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multi-label requestable slots classifier to perform
binary classification for each slot. This greatly re-
solves the issues of TSCP that uses a single decoder
with each step having unconstrained vocabulary-
size choices, which may potentially lead to generat-
ing non-slot words. Similar to the informable slots
decoders, such a separate classifier also eliminates
the undesired dependencies among slots.

Let {kR} denote the set of requestable slots. A
single GRU cell is used to perform the classifica-
tion. The initial state hEl is used to pay attention
to the input encoder hidden vectors to compute a
context vector ck

R
. The concatenation of ck

R
and

ek
R

, the embedding vector of one requestable slot
kR, is passed as input and hEl as the initial state
to the GRU. Finally, a sigmoid non-linearity is ap-
plied to the product of a weight vector WR

y and the
output of the GRU hk

R
to obtain yk

R
, which is the

probability of the slot being requested by the user.

ck
R

= Attn(hE
l , {hE

i }),

hkR

= GRUR

(
(ck

R

◦ ek
R

), hE
l

)
,

yk
R

= σ(WR
y · hkR

).

(3)

The loss function for all requestable slot binary
classifiers is:

LR =− 1

|{kR}|
∑
kR

zk
R

log(yk
R

) + (1− zk
R

) log(1− yk
R

).

(4)

3.4 Knowledge Base Query
The generated informable slot values It = {Y kI}
are used as constraints of the KB query. The KB
is composed of one or more relational tables and
each entity is a record in one table. The query
is performed to select a subset of the entities that
satisfy those constraints. For instance, if the in-
formable slots are {price=cheap, area=north}, all
the restaurants that have attributes of those fields
equal to those values will be returned. The output
of this component, the one-hot vector dt, indicates
the number of records satisfying the constraints. dt
is a five-dimensional one-hot vector, where the first
four dimensions represent integers from 0 to 3 and
the last dimension represents 4 or more matched
records. It is later used to inform the response slot
binary classifier and the agent response decoder.

3.5 Response Slot Binary Classifier
In order to incorporate all the relevant informa-
tion about the retrieved entities into the response,

FSDM introduces a new response slot binary classi-
fier. Its inputs are requestable slots and KB queried
result dt and the outputs are the response slots
to appear in the agent response. Response slots
are the slot names that are expected to appear in
a de-lexicalized response (discussed in the next
subsection). For instance, assume the requestable
slot in the belief state is “address” and the KB
query returned one candidate record. The response
slot binary classifier may predict name slot, ad-
dress slot and area slot, which are expected to ap-
pear in an agent response as “name slot is located
in address slot in the area slot part of town”2.

The response slots {kS} map one-to-one to the
requestable slots {kR}. The initial state of each
response slot decoder is the last hidden state of
the corresponding requestable slot decoder. In this
case, the context vector ck

S
is obtained by paying

attention to all hidden vectors in the informable
slot value decoders and requestable slots classifiers.
Then, the concatenation of the context vector ck

S
,

the embedding vector of the response slot ek
S

and
the KB query vector dt are used as input to a single
GRU cell. Finally, a sigmoid non-linearity is ap-
plied to the product of a weight vector WS

y and the
output of the GRU hk

S
to obtain a probability yk

S

for each slot that is going to appear in the answer.

ck
S

= Attn(hkR

,

{hkI

i |kI ∈ KI , i ≤ |Y kI

|} ∪ {hkR

|kR ∈ KR}),

hkS

= GRUS

(
(ck

S

◦ ek
S

◦ dt), hkR
)
,

yk
S

= σ(WS
y · hkS

).

(5)

The loss function for all response slot binary clas-
sifiers is:

LS =− 1

|{kS}|
∑
kS

zk
S

log(yk
S

) + (1− zk
S

) log(1− yk
S

).

(6)

3.6 Word Copy Probability and Agent
Response Decoder

Lastly, we introduce the agent response decoder.
It takes in the generated informable slot values,
requestable slots, response slots, and KB query re-
sult and generates a (de-lexicalized) response. We
adopt a copy-augmented decoder (Gu et al., 2016)
as architecture. The canonical copy mechanism
only takes a sequence of word indexes as inputs but

2 Before the agent response is presented to the user, those
slot names are replaced by the actual values of the KB entries.
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does not accept the multiple Bernoulli distributions
we obtain from sigmoid functions. For this reason,
we introduce a vector of independent word copy
probabilities PC , which is constructed as follows:

PC(w) =


yk

R

, if w = kR,

yk
S

, if w = kS ,

1, if w ∈ It,
0, otherwise,

(7)

where if a word w is a requestable slot or a re-
sponse slot, the probability is equal to their binary
classifier output; if a word appears in the generated
informable slot values, its probability is equal to 1;
for the other words in the vocabulary the probabil-
ity is equal to 0. This vector is used in conjunction
with the agent response decoder prediction proba-
bility to generate the response.

The agent response decoder is responsible for
generating a de-lexicalized agent response. The
response slots are substituted with the values of
the results obtained by querying the KB before the
response is returned to the user.

Like the informable slot value decoder, the agent
response decoder also uses a copy mechanism, so
it has a copy probability and generation probabil-
ity. Consider the generation of the jth word. Its
generation score φg is calculated as:

cA
E

j = Attn(hA
j−1, {hE

i }),

cA
B

j = Attn(hA
j−1, {hkI

i |kI ∈ KI , i ≤ |Y kI

|}

∪ {hkR

|kR ∈ KR}) ∪ {hkS

|kS ∈ KS}),

hA
j = GRUA

(
(cA

E

j ◦ cA
B

j ◦ eAj ◦ dt), hA
j−1

)
,

φg(y
A
j ) =WA

g · hA
j ,

(8)

where cA
E

j is a context vector obtained by attending

to the hidden vectors of the input encoder, cA
B

j is a
context vector obtained by attending to all hidden
vectors of the informable slot value decoder, re-
questable slot classifier and response slot classifier,
and WA

g is a learned weight matrix. The concate-
nation of the two context vectors cA

E

j and cA
B

j , the
embedding vector eAj of the previously generated
word and the KB query output vector dt is used as
input to a GRU. Note that the initial hidden state is
hA0 = hEl . The copy score φc is calculated as:

φc(y
A
j ) =


PC(yAj ) · tanh(WA

c · hyA
j ) · hA

j ,

if yAj ∈ It ∪KR ∪KS ,

PC(yAj ), otherwise,
(9)

where WA
c is a learned weight matrix. The final

CamRest: restaurant reservation
dialogue split train: 408 dev: 136 test: 136

# of keys informable: 3 requestable: 7 response: 7
database record 99

KVRET: navigation, weather, calendar scheduling
dialogue split train: 2425 dev: 302 test: 302

# of keys informable: 10 requestable: 12 response: 12
database record 284

Table 1: Dataset

probability is:

P (yAj |yAj−1, h
A
j−1) = Copy(φg(y

A
j ), φc(y

A
j )). (10)

Let z denote the ground truth de-lexicalized agent
response. The loss for the agent response decoder
is calculated as follows where Y A is the sequence
of agent response decoder prediction:

LA = − 1

|Y A|
∑
j

logP (yAj = zAj |yAj−1, h
A
j−1). (11)

3.7 Loss Function
The loss function of the whole network is the
sum of the four losses described so far for the in-
formable slot values LI , requestable slot LR, re-
sponse slot LS and agent response decoders LA,
weighted by α hyperparameters:

L = αILI + αRLR + αSLS + αALA. (12)

The loss is optimized in an end-to-end fashion, with
all modules trained simultaneously with loss gradi-
ents back-propagated to their weights. In order to
do so, ground truth results from database queries
are also provided to the model to compute the dt,
while at prediction time results obtained by using
the generated informable slot values It are used.

4 Experiments

We tested the FSDM on the Cambridge Restaurant
dataset (CamRest) (Wen et al., 2017b) and the Stan-
ford in-car assistant dataset (KVRET) (Eric et al.,
2017) described in Table 1.

4.1 Preprocessing and Hyper-parameters
We use NLTK (Bird et al., 2009) to tokenize each
sentence. The user utterances are precisely the
original texts, while all agent responses are de-
lexicalized as described in (Lei et al., 2018). We
obtain the labels for the response slot decoder from
the de-lexicalized response texts. We use 300-
dimensional GloVe embeddings (Pennington et al.,
2014) trained on 840B words. Tokens not present
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Dataset CamRest KVRET
Method Inf P Inf R Inf F1 Req P Req R Req F1 Inf P Inf R Inf F1 Req P Req R Req F1

TSCP/RL† 0.970 0.971 0.971 0.983 0.935 0.959 0.936 0.874 0.904 0.725 0.485 0.581
TSCP† 0.970 0.971 0.971 0.983 0.938 0.960 0.934 0.890 0.912 0.701 0.435 0.526
FSDM/Res 0.979 0.984 0.978 0.994 0.947 0.967 0.918 0.930 0.925 0.812 0.993 0.893
FSDM 0.983* 0.986* 0.984* 0.997* 0.952 0.974* 0.92 0.935* 0.927* 0.819* 1.000* 0.900*

Table 2: Turn-level performance results. Inf: Informable, Req: Requestable, P: Precision, R: Recall. Results
marked with † are computed using available code, and all the other ones are reported from the original papers. ∗
indicates the improvement is statistically significant with p = 0.05.

Dataset CamRest KVRET
Method BLEU EMR SuccF1 BLEU EMR SuccF1

NDM 0.212 0.904 0.832 0.186 0.724 0.741
LIDM 0.246 0.912 0.840 0.173 0.721 0.762
KVRN 0.134 - - 0.184 0.459 0.540
TSCP 0.253 0.927 0.854 0.219 0.845 0.811
TSCP/RL † 0.237 0.915 0.826 0.195 0.809 0.814
TSCP† 0.237 0.913 0.841 0.189 0.833 0.81
FSDM/St 0.245 - 0.847 0.204 - 0.809
FSDM/Res 0.251 0.924 0.855 0.209 0.834 0.815
FSDM 0.258* 0.935* 0.862* 0.215 0.848* 0.821*

Table 3: Dialogue level performance results. SuccF1:
Success F1 score, EMR: Entity Match Rate. Results
marked with † are computed using available code, and
all the other ones are reported from the original papers.
∗ indicates the improvement is statistically significant
with p = 0.05.

user msg what is the date and time of
my next meeting and who will be attending it ?
belief state

GOLD informable slot (event=meeting),
requestable slot (date, time, party)

TSCP ‘meeting’ ‘〈EOS Z1〉’ ‘date’ ‘;’ ‘party’
FSDM event=meeting date=True time=True party = True

agent response
GOLD your next meeting is with

party SLOT on the date SLOT at time SLOT.
TSCP your next meeting is at time SLOT

on date SLOT at time SLOT .
FSDM you have a meeting on date SLOT

at time SLOT with party SLOT

Table 4: Example of generated belief state and response
for calendar scheduling domain

in GloVe are initialized to be the average of all
other embeddings plus a small amount of random
noise to make them different from each other.

We optimize both training and model hyperpa-
rameters by running Bayesian optimization over the
product of validation set BLEU, EMR, and SuccF1

using skopt3. The model that performed the best on
the validation set uses Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 0.00025
for minimizing the loss in Equation 12 for both
datasets. We apply dropout with a rate of 0.5 after

3https://scikit-optimize.github.io/

the embedding layer, the GRU layer and any linear
layer for CamRest and 0.2 for KVRET. The dimen-
sion of all hidden states is 128 for CamRest and
256 for KVRET. Loss weights αI , αR, αS , αA are
1.5, 9, 8, 0.5 respectively for CamRest and 1, 3, 2,
0.5 for KVRET.

4.2 Evaluation Metrics

We evaluate the performance concerning belief
state tracking, response language quality, and task
completion. For belief state tracking, we report
precision, recall, and F1 score of informable slot
values and requestable slots. BLEU (Papineni et al.,
2002) is applied to the generated agent responses
for evaluating language quality. Although it is a
poor choice for evaluating dialogue systems (Liu
et al., 2016), we still report it in order to com-
pare with previous work that has adopted it. For
task completion evaluation, the Entity Match Rate
(EMR) (Wen et al., 2017b) and Success F1 score
(SuccF1) (Lei et al., 2018) are reported. EMR eval-
uates whether a system can correctly retrieve the
user’s indicated entity (record) from the KB based
on the generated constraints so it can have only
a score of 0 or 1 for each dialogue. The SuccF1

score evaluates how a system responds to the user’s
requests at dialogue level: it is F1 score of the re-
sponse slots in the agent responses.

4.3 Benchmarks

We compare FSDM with four baseline methods
and two ablations.

NDM (Wen et al., 2017b) proposes a modu-
lar end-to-end trainable network. It applies de-
lexicalization on user utterances and responses.

LIDM (Wen et al., 2017a) improves over NDM
by employing a discrete latent variable to learn
underlying dialogue acts. This allows the system
to be refined by reinforcement learning.

KVRN (Eric et al., 2017) adopts a copy-
augmented Seq2Seq model for agent response gen-
eration and uses an attention mechanism on the KB.

https://scikit-optimize.github.io/
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It does not perform belief state tracking.
TSCP/RL (Lei et al., 2018) is a two-stage Copy-

Net which consists of one encoder and two copy-
mechanism-augmented decoders for belief state
and response generation. TSCP includes further
parameter tuning with reinforcement learning to
increase the appearance of response slots in the
generated response. We were unable to replicate
the reported results using the provided code4, hy-
perparameters, and random seed, so we report both
the results from the paper and the average of 5 runs
on the code with different random seeds (marked
with †).

FSDM is the proposed method and we report
two ablations: in FSDM/St the whole state track-
ing is removed (informable, requestable and re-
sponse slots) and the answer is generated from the
encoding of the input, while in FSDM/Res, only
the response slot decoder is removed.

4.4 Result Analysis

At the turn level, FSDM and FSDM/Res perform
better than TSCP and TSCP/RL on belief state
tracking, especially on requestable slots, as shown
in Table 2. FSDM and FSDM/Res use independent
binary classifiers for the requestable slots and are
capable of predicting the correct slots in all those
cases. FSDM/Res and TSCP/RL do not have any
additional mechanism for generating response slot,
so FSDM/Res performing better than TSCP/RL
shows the effectiveness of flexible-structured belief
state tracker. Moreover, FSDM performs better
than FSDM/Res, but TSCP performs worse than
TSCP/RL. This suggests that using RL to increase
the appearance of response slots in the response
decoder does not help belief state tracking, but our
response slot decoder does.

FSDM performs better than all benchmarks
on the dialogue level measures too, as shown in
Table 3, with the exception of BLEU score on
KVRET, where it is still competitive. Comparing
TSCP/RL and FSDM/Res, the flexibly-structured
belief state tracker achieves better task completion
than the free-form belief state tracker. Furthermore,
FSDM performing better than FSDM/Res shows
the effectiveness of the response slot decoder for
task completion. The most significant performance
improvement is obtained on CamRest by FSDM,
confirming that the additional inductive bias helps
to generalize from smaller datasets. More impor-

4https://github.com/WING-NUS/sequicity

tantly, the experiment confirms that, although mak-
ing weaker assumptions that are reasonable for real-
world applications, FSDM is capable of performing
at least as well as models that make stronger lim-
iting assumptions which make them unusable in
real-world applications.

4.5 Error Analysis

We investigated the errors that both TSCP and
FSDM make and discovered that the sequential
nature of the TSCP state tracker leads to the mem-
orization of common patterns that FSDM is not
subject to. As an example (Table 4), TSCP often
generates “date; party” as requestable slots even if
only “party” and “time” are requested like in “what
time is my next activity and who will be attending?”
or if “party”, “time” and “date” are requested like
in “what is the date and time of my next meeting
and who will be attending it?”. FSDM produces
correct belief states in these examples.

FSDM misses some requestable slots in some
conditions. For example, consider the user’s ut-
terance: “I would like their address and what part
of town they are located in”. The ground-truth re-
questable slots are ‘address’ and ‘area’. FSDM
only predicts ‘address’ and misses ‘area’, which
suggests that the model did not recognize ‘what
part of town’ as being a phrasing for requesting
‘area’. Another example is when the agent pro-
poses “the name SLOT is moderately priced and
in the area SLOT part of town . would you like
their location ?” and the user replies “i would
like the location and the phone number, please”.
FSDM predicts ‘phone’ as a requestable slot, but
misses ‘address’, suggesting it doesn’t recognize
the connection between ‘location’ and ‘address’.
The missing requestable slot issue may propagate
to the agent response decoder. These issues may
arise due to the use of fixed pre-trained embeddings
and the single encoder. Using separate encoders for
user utterance, agent response and dialogue history
or fine-tuning the embeddings may solve the issue.

5 Conclusion

We propose the flexibly-structured dialogue model,
a novel end-to-end architecture for task-oriented
dialogue. It uses the structure in the schema of
the KB to make architectural choices that intro-
duce inductive bias and address the limitations of
fully structured and free-form methods. The exper-
iment suggests that this architecture is competitive

https://github.com/WING-NUS/sequicity
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with state-of-the-art models, while at the same time
providing a more practical solution for real-world
applications.

Acknowledgments

We would like to thank Alexandros Papangelis,
Janice Lam, Stefan Douglas Webb and SIGDIAL
reviewers for their valuable comments.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In International
Conference on Learning Representations, San Diego,
California, USA.

Ankur Bapna, Gökhan Tür, Dilek Z. Hakkani-Tür, and
Larry P. Heck. 2017. Towards zero-shot frame
semantic parsing for domain scaling. In INTER-
SPEECH.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media, Inc.

Antoine Bordes, Y-Lan Boureau, and Jason Weston.
2017. Learning end-to-end goal-oriented dialog. In
International Conference on Learning Representa-
tions, Toulon, France.

Pawe Budzianowski, Iigo Casanueva, Bo-Hsiang
Tseng, and Milica Gai. 2018. Towards end-to-end
multi-domain dialogue modelling. Technical Report
CUED/F-INFENG/TR.706, Cambridge University.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In EMNLP, pages
1724–1734. ACL.

Franck Dernoncourt, Ji Young Lee, Trung H. Bui, and
Hung H. Bui. 2016. Robust dialog state tracking
for large ontologies. In IWSDS, volume 427 of Lec-
ture Notes in Electrical Engineering, pages 475–485.
Springer.

Mihail Eric, Lakshmi Krishnan, Francois Charette, and
Christopher D. Manning. 2017. Key-value retrieval
networks for task-oriented dialogue. In SIGDIAL
Conference, pages 37–49. Association for Compu-
tational Linguistics.

Pascale Fung, Chien-Sheng Wu, and Andrea Madotto.
2018. Mem2seq: Effectively incorporating knowl-
edge bases into end-to-end task-oriented dialog sys-
tems. In ACL (1), pages 1468–1478. Association for
Computational Linguistics.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In ACL (1). The As-
sociation for Computer Linguistics.

Matthew Henderson, Blaise Thomson, and Steve J.
Young. 2014. Robust dialog state tracking using
delexicalised recurrent neural networks and unsu-
pervised adaptation. 2014 IEEE Spoken Language
Technology Workshop (SLT), pages 360–365.

Takaaki Hori, Hai Wang, Chiori Hori, Shinji Watanabe,
Bret Harsham, Jonathan Le Roux, John R. Hershey,
Yusuke Koji, Yi Jing, Zhaocheng Zhu, and Takeyuki
Aikawa. 2016. Dialog state tracking with attention-
based sequence-to-sequence learning. In SLT, pages
552–558. IEEE.

Youngsoo Jang, Jiyeon Ham, Byung-Jun Lee, Young-
jae Chang, and Kee-Eung Kim. 2016. Neural di-
alog state tracker for large ontologies by attention
mechanism. 2016 IEEE Spoken Language Technol-
ogy Workshop (SLT), pages 531–537.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations, San Diego,
California, USA.

Yuka Kobayashi, Takami Yoshida, Kenji Iwata, Hi-
roshi Fujimura, and Masami Akamine. 2018. Out-
of-domain slot value detection for spoken dialogue
systems with context information. 2018 IEEE Spo-
ken Language Technology Workshop (SLT), pages
854–861.

Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun
Ren, Xiangnan He, and Dawei Yin. 2018. Sequic-
ity: Simplifying task-oriented dialogue systems with
single sequence-to-sequence architectures. In ACL.

Xiujun Li, Sarah Panda, Jingjing Liu, and Jianfeng Gao.
2018. Microsoft dialogue challenge: Building end-
to-end task-completion dialogue systems. volume
abs/1807.11125.

Bing Liu and Ian Lane. 2018. End-to-end learning of
task-oriented dialogs. In Proceedings of the NAACL-
HLT.

Bing Liu, Gokhan Tur, Dilek Hakkani-Tur, Pararth
Shah, and Larry Heck. 2018. Dialogue learning with
human teaching and feedback in end-to-end train-
able task-oriented dialogue systems. In NAACL.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Michael
Noseworthy, Laurent Charlin, and Joelle Pineau.
2016. How NOT to evaluate your dialogue system:
An empirical study of unsupervised evaluation met-
rics for dialogue response generation. In EMNLP,
pages 2122–2132. The Association for Computa-
tional Linguistics.

Ryan Thomas Lowe, Nissan Pow, Iulian Vlad Serban,
Laurent Charlin, Chia-Wei Liu, and Joelle Pineau.
2017. Training end-to-end dialogue systems with



187

the ubuntu dialogue corpus. Dialogue and Dis-
course, 8(1):31–65.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In ACL, pages 311–
318. ACL.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP, pages 1532–1543. ACL.

Osman Ramadan, Paweł Budzianowski, and Milica Ga-
sic. 2018. Large-scale multi-domain belief track-
ing with knowledge sharing. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
432–437.

Abhinav Rastogi, Dilek Hakkani-Tur, and Larry Heck.
2017. Scalable multi-domain dialogue state track-
ing. In Proceedings of IEEE ASRU.

Liliang Ren, Kaige Xie, Lu Chen, and Kai Yu. 2018.
Towards universal dialogue state tracking. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2780–
2786.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Ben-
gio, Aaron C. Courville, and Joelle Pineau. 2016.
Building end-to-end dialogue systems using gener-
ative hierarchical neural network models. In AAAI,
pages 3776–3784. AAAI Press.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston,
and Rob Fergus. 2015. End-to-end memory net-
works. In NIPS, pages 2440–2448.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In NIPS, pages 3104–3112.

Haoyang Wen, Yijia Liu, Wanxiang Che, Libo Qin, and
Ting Liu. 2018. Sequence-to-sequence learning for
task-oriented dialogue with dialogue state represen-
tation. pages 3781–3792.

Tsung-Hsien Wen, Yishu Miao, Phil Blunsom, and
Steve J. Young. 2017a. Latent intention dialogue
models. In ICML, volume 70 of Proceedings of Ma-
chine Learning Research, pages 3732–3741. PMLR.

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić,
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