Scoring Interactional Aspects of Human-Machine Dialog for Language
Learning and Assessment using Text Features

Vikram Ramanarayanan', Matt Mulholland* and Yao Qian’
Educational Testing Service R&D
90 New Montgomery Street, Suite 1500, San Francisco, CA
1660 Rosedale Rd., Princeton, NJ

<vramanarayanan,

Abstract

While there has been much work in the lan-
guage learning and assessment literature on
human and automated scoring of essays and
short constructed responses, there is little to
no work examining text features for scoring
of dialog data, particularly interactional as-
pects thereof, to assess conversational profi-
ciency over and above constructed response
skills.  Our work bridges this gap by in-
vestigating both human and automated ap-
proaches towards scoring human—machine text
dialog in the context of a real-world language
learning application. We collected conversa-
tional data of human learners interacting with
a cloud-based standards-compliant dialog sys-
tem, triple-scored these data along multiple
dimensions of conversational proficiency, and
then analyzed the performance trends. We fur-
ther examined two different approaches to au-
tomated scoring of such data and show that
these approaches are able to perform at or
above par with human agreement for a major-
ity of dimensions of the scoring rubric.

Index Terms: dialog systems, computer assisted
language learning, conversational assessment, di-
alog scoring, intelligent tutoring systems.

1 Introduction

Learning and assessment solutions in today’s ed-
ucational marketplace are placing increasing im-
portance and resources on developing technolo-
gies that are dialogic (as opposed to monologic)
in nature. Conversational proficiency is a crucial
skill for success in today’s workplace (Weldy and
Icenogle, 1997; Oliveri and Tannenbaum, 2019),
which makes R&D on technologies that help de-
velop and assess this skill important to comple-
ment our understanding from sociolinguistics (see
for example Young, 2011; Doehler and Pochon-
Berger, 2015). Dialog system technologies are
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one solution capable of addressing and automat-
ing this need by allowing learners to practice and
improve their interactional compentence at scale
(Suendermann-Oeft et al., 2017; Yu et al., 2019).
However, such conversational technologies need
to be able to provide targeted and actionable feed-
back to users in order for them to be useful to
learners and widely adopted. Automated scoring
of multiple aspects of conversational proficiency
is one way to address this need.

While the automated scoring of text and speech
data has been a well-explored topic for several
years, particularly for essays and short constructed
responses in the case of the former (Shermis and
Burstein, 2013; Burrows et al., 2015; Madnani
et al., 2017) and monolog speech for the latter
(Neumeyer et al., 2000; Witt and Young, 2000;
Xi et al.,, 2012; Bhat and Yoon, 2015), there
has been a relative dearth of work on the infer-
pretable automated scoring of dialog. Evanini
et al. (2015) examined the automatic scoring of
pseudo-dialogues, i.e., there were no branching di-
alog states; the system’s response was fixed and
did not vary based on the learner’s response. Lit-
man et al. (2016) developed a system to predict ex-
pert human rater scores based on audio signal and
fluency features. Ramanarayanan et al. (2017a)
analyzed this scoring problem at the level of each
response in the dialog (i.e., each turn) instead of
the entire conversation and across multiple dimen-
sions of speaking proficiency. However, no study
has performed a comprehensive examination of
the automated scoring of content of whole dia-
log responses (with branching) based primarily on
text features, based on a comprehensive multidi-
mensional rubric and scoring paradigm designed
specifically for dialog data, and interaction aspects
in particular.

This study describes our contributions toward
(1) developing a comprehensive rubric design
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Table 1: Human scoring rubric for interaction aspects of conversational proficiency. Scores are assigned on a
Likert scale from 1-4 ranging from low to high proficiency. A score of 0 is assigned when there were issues with
audio quality or system malfunction or off-topic or empty responses.

Construct Sub-construct | Description
Engagement Examines the extent to which the user engages with the dialog agent and
. responds in a thoughtful manner.
Interaction - - - -
Turn Taking Examines the extent to which the user takes the floor at appropriate
points in the conversation without noticeable interruptions or gaps.
Repair Examines the extent to which the user successfully initiates and com-
pletes a repair in case of a misunderstanding or error by the dialog agent.
Appropriateness | Examines the extent to which the user reacts to the dialog agent in a
pragmatically appropriate manner.

‘ Overall Holistic Performance ‘

Measures the overall performance. ‘

specifically tailored to conversational dialog along
multiple dimensions, particularly those focused on
interaction, (ii) triple-scoring a selection of dialog
data based on this rubric, and finally (iii) examin-
ing the performance of two methods for automated
scoring of such data — the first a state-of-the-art
feature engineering method that passes word and
character n-grams, length and syntax features into
multiple state-of-the-art classifiers, and the second
a model engineering method that leverages end-
to-end memory networks to model dependencies
between turn and prompt histories using memory
components — and analyzing this performance vis-
a-vis human raters. Note that for the purposes of
this paper, while our data is spoken dialog, we will
focus on text features derived from transcriptions,
and therefore will focus on how they can be used
to score various aspects of interaction in an inter-
pretable manner. A subsequent future analysis will
comprehensively examine how these can be com-
bined with speech features.

2 Data
2.1 Collection

We crowdsourced, using Amazon Mechanical
Turk, the collection of 2288 conversations of non-
native speakers interacting with a dialog appli-
cation designed to test general English speaking
competence in workplace scenarios, and prag-
matic skills in particular. The application, dubbed
“Request Boss” requires participants to interact
with their boss and request a meeting with her to
review presentation slides using pragmatically ap-
propriate language. To develop and deploy this ap-
plication, we leveraged HALEF!, an open-source
modular cloud-based dialog system that is com-
patible with multiple W3C and open industry stan-

'nttp://halef.org
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dards (Ramanarayanan et al., 2017b). The HALEF
dialog system logs speech data collected from par-
ticipants to a data warehouse, which are then tran-
scribed and scored.

2.2 Human Scoring

In order to understand how well participants per-
formed in our conversational task, we had each
of the 2288 dialog responses triple scored by hu-
man expert raters on a custom-designed rubric.
This rubric was iteratively modified and refined
to score constructs specific to dialog data’>. The
final conversational scoring rubric defined 12 sub-
constructs under the 3 broad constructs of linguis-
tic control, task fulfillment and interaction, apart
from an overall holistic score. However, for pur-
poses of this first study, we will focus on the rel-
atively understudied interaction construct, in par-
ticular aspects of engagement, turn-taking, repair
and (pragmatic) appropriateness. See Table 1 for
more details. We asked expert raters to score each
dialog for each rubric dimension on a scale from 1
to 4, and to assign dialogs that contained no or cor-
rupted or significantly off-topic audio responses a
score of 0. The expert raters were scoring leaders
with significant experience in scoring various spo-
ken and written assessments of English language
proficiency. We used an automatic randomized de-
sign to assign three (out of eight possible) raters
to every dialog such that (i) all raters had a com-
mensurate number of responses to rate, and (ii) the
same group of raters did not rate the same set of
files (achieved by randomization; this prevents un-
witting biases due to individual raters affecting the
overall score analysis).

>Three scoring leaders first collaboratively adapted a
rubric originally developed to score spoken interaction based
on selected benchmark dialog responses. Based on this mod-

ified rubric and accompanying scoring notes specific to the
task, 8 scoring leaders performed the final round of scoring.



Table 2: c-rater ML features used for machine scoring.

Feature Description

Word n-grams

Word n-grams are collected for n = 1 to 2. This feature captures
patterns about vocabulary usage (key words) in responses.

Character n-grams

Character n-grams (including whitespace) are collected for n =
2 to 5. This feature captures patterns that abstract away from
grammatical and other language use errors.

Response length

Defined as log(chars), where chars represents the total number of
characters in a response.

Syntactic dependencies

A feature that captures grammatical relationships between indi-
vidual words in a sentence. This feature captures linguistic infor-
mation about “who did what to whom” and abstracts away from
a simple unordered set of key words.

3 Machine Scoring

This section first lays out our setup for inter-
pretable machine scoring including details of the
feature extraction and machine learning methods.
We then analyze human performance (by exam-
ining inter-rater statistics) and use this to bench-
mark the performance of machine scoring meth-
ods. Following standardized convention in auto-
mated scoring, we only consider dialogs with a
non-zero score to train scoring models (because
a separate filtering mode is typically trained to
eliminate “unscorable” responses, which include
responses with no, garbled or out-of-topic audio
data, see Higgins et al., 2011, for a more detailed
motivation and rationale for this approach).

3.1 Feature Engineered Content Scoring

We used a set of features that have been employed
in many previously published approaches to build-
ing content scoring models (see Madnani et al.,
2017, 2018, for instance). We refer to this system
as c-rater ML; see Table 2 for more details. All of
the features are binary (indicating presence or ab-
sence) and try to capture how well responses con-
tain (a) the right concepts (approximately captured
by words and bigrams), (b) the right syntactic rela-
tionships between those concepts (approximately
captured by dependency triples), (c) spelling and
morphological relations (character n-grams) and
(d) length of the response (captured by length fea-
tures).

We used SKLL,? an open-source Python pack-
age that wraps around the scikit-learn package
(Pedregosa et al., 2011) to perform machine learn-
ing experiments. We experimented with rescaled
linear support vector machine (SVM) and multi-
layer perceptron (MLP) regressors. The former

3'https ://github.com/EducationalTestingService/skll
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allows us to interpret how the algorithm performs,
while the latter is used for comparison purposes to
understand how deep neural networks might per-
form on this task given the data we have. In our
case, we found that the SVM classifier beat the
MLP across the board, possibly because our fea-
ture space is sparse and high-dimensional, con-
sisting of binary presence/absence features. We
ran 10 fold cross-validation experiments and re-
port the best overall results for the SVM system.
We used cross entropy (log-loss) as an objective
function for optimizing learner performance. We
further tuned and optimized the free parameters of
each learner using a grid-search method. We com-
puted both accuracy and quadratic weighted kappa
(which takes into account the ordered nature of the
categorical labels) as metrics, reported in Table 3.

3.2 End to End Memory Network
(MemN2N) architecture

We also investigated the efficacy of the End
to End Memory Network (MemN2N) architec-
ture (Sukhbaatar et al., 2015; Chen et al., 2016)
adapted to the dialog scoring task. The end to
end MemN2N architecture models dependencies
in text sequences using a recurrent attention model
coupled with a memory component, and is there-
fore suited to modeling how response and prompt
histories contribute to a dialog score. In our case,
the MemN2N architecture learns a mapping be-
tween an output score and an input tuple consist-
ing of the current response, the response history
and the prompt history. See Figure 1. We modified
the original MemN2N architecture in Sukhbaatar
et al. (2015) in the following ways: (i) instead
of the original (query, fact history, answer) tuple
that is used to train the network in the original pa-
per, we have an (current response, response his-
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Figure 1: Schematic of a single hop module of our modified end-to-end memory network (MemN2N) adapted
from Sukhbaatar et al. (2015) for our dialog scoring experiments. Stacking modules on top of each other allows us

to model multiple hops.

Table 3: Human and machine score statistics

Construct Sub-construct c-rater ML MemN2N c-rater ML + MemN2N Human Metrics
Accuracy QWk | Accuracy QWk | Accuracy QWx Conger k  Krippendorff v

Engagement 0.70 0.70 0.65 0.65 0.71 0.72 0.69 0.72

Interaction Turn Taking 0.69 0.67 0.68 0.40 0.71 0.70 0.71 0.74

Repair 0.66 0.60 0.64 0.58 0.67 0.64 0.73 0.72

Appropriateness 0.67 0.67 0.62 0.58 0.67 0.67 0.70 0.72

Overall Holistic Performance 0.69 0.72 0.66 0.65 0.70 0.72 0.75 0.75

tory, prompt history, score) tuple in our case. In
other words, we not only embed and learn mem-
ory representations between the current response
and the history of previous responses, but the his-
tory of prior system prompts that have been en-
countered thus far; (i) we used an LSTM instead
of a matrix multiplication at the final step of the
network before prediction; and (iii) we experi-
mented with Google word2vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014) initial-
izations for word embeddings in addition to ex-
perimenting with multiple memory hops. We train
the network at the turn level; in other words, for
each turn, the training data would consist of an in-
put of (response for current turn, response history,
prompt history) and an output of the dialog-level
score (in other words, each turn is assumed to have
the same score as that of the full dialog). During
testing, we compute the score for each dialog in
the test set as the median of scores predicted by
the trained network for each turn in that dialog.

We used a similar crossvalidation setup as de-
scribed in §3.1 with the exact same 10 folds with

experiments optimizing a cross-entropy-based ob-
jective function as in the earlier case to enable a
fair comparison. We tuned hyperparameters of
the network using the hyperas toolkit*. This in-
cluded the number of neurons in the Dense and
LSTM layers as well as the addition of Dropout
layers after each memory component. We exper-
imented with 1, 2 and 3 memory hops and found
2 to be optimal. Interestingly, we also found that
initializing the memory embedding matrics with
pretrained Google word2vec or GloVe embeddings
worked better than randomly-initialized ones for
prompt history encoding as compared to response
history encoding.

4 Observations and Results

The final two columns of Table 3 display two inter-
rater agreement statistics — Conger  and Krippen-
dorff o — for the human expert scores assigned to
the data. Recall that each dialog was scored by 3
out of 8 possible raters. We observe a moderate to
high agreement between raters for all dimensions

*nttp://maxpumperla.com/hyperas/

106



of the scoring rubric, which is not too surprising
given that all our raters had significant experience
in rating monologic speech data.

Table 3 also shows the performance of our two
different systems in scoring various aspects of in-
teraction at the level of the entire dialog. Observe
that fusing the MemN2N with the c-rater ML sys-
tem leads to a small but significant improvement
over either of the systems alone. Additionally, it
is interesting to note that the quadratic weighted
kappa (QW k) of the fusion system is in a similar
ballpark as the x and o metrics for human inter-
rater agreement, particularly for engagement and
turn-taking subscores. While these measures are
not directly comparable, this trend is encouraging
nonetheless, suggesting that a combination of n-
gram, length, syntactic dependency and memory-
based attention over embedding representations of
words over the entire dialog are useful in captur-
ing at least some aspects of these sub-constructs
of interaction. On the other hand, the fusion sys-
tem performance for repair and appropriateness
subscores is still below par, suggesting that more
feature engineering and modeling research is re-
quired to model these aspects of interaction. These
dimensions of interaction are also harder to pre-
dict, given that repair and pragmatic appropriate-
ness are more high-level and abstract in nature.

5 Discussion

This paper has examined approaches to both hu-
man and machine scoring of text dialogs collected
as part of a language learning application, partic-
ularly looking at interactional aspects. We ob-
served, through careful design of the human scor-
ing paradigm, a moderate-to-high agreement be-
tween the raters. We further examined two meth-
ods for automated scoring of such data — the first
a feature engineering method that passes word
and character n-grams, length and syntax features
into an SVM based classifier, and the second a
model engineering method that leverages end-to-
end memory network (MemN2N) to model depen-
dencies between turn and prompt histories using
memory components — and found that a fusion of
both methods performs close to or at par with hu-
man inter-rater agreement statistics.

While our results are encouraging, there is still
much work ahead in understanding and scoring in-
teractional competence. One of the key reasons
for this has to do with the fact that the features
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were considered were text-based, and it is unclear
how some features that don’t directly consider in-
formation from audio or visual channels are use-
ful in predicting properties related to interaction
(engagement, for instance). Repair and appropri-
ateness, and even turn taking to a lesser extent are
related to proficiency in language use, and hence
it makes sense that features such as n-grams and
syntax use might be somewhat useful in predict-
ing these aspects of interaction. However, some
of the results might also be explained by some
of our examined features being highly correlated
with more interpretable/relevant features. For in-
stance, length might be an indication of a more
proficient and verbose speaker, which might in
turn correlate with a high level of engagement.
Nonetheless, an understanding of how meaningful
our text-based results are will be incomplete with-
out examining features derived from audio (and
visual streams, if available), including non-verbal
and prosodic cues.

It is also worth mentioning tangentially related
work on dialog interaction quality at this point (see
for instance Schmitt and Ultes, 2015; Stoyanchev
et al., 2019; See et al., 2019). While such work
primarily focuses on investigating techniques to
measure and improve the quality of the overall di-
alog interaction as opposed to providing targeted
assessment and feedback on the quality of spo-
ken language used during interactions, it might
nonetheless be useful to take this body of work
into account while developing techniques for au-
tomated proficiency scoring.

This lays out multiple avenues for future work.
First, as mentioned earlier, would be examining
both text and speech signals for a more complete
examination of the scoring problem. Second, we
would like to look at other broad aspects of con-
versational proficiency, such as delivery (for in-
stance, fluency, intonation, vocabulary and gram-
mar) and topic development (elaboration and task
specificity, for example) in addition to building
on the interaction aspects described here. Third,
we will investigate combining feature-engineering
and model-engineering approaches towards devel-
oping specific features and model architecture im-
provements that will help us push the automated
scoring performance even higher. These will feed
into our ultimate goal of being able to provide lan-
guage learners with targeted, actionable feedback
on different facets of conversational proficiency.
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