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Abstract

Slot filling is a core operation for utterance
understanding in task-oriented dialogue sys-
tems. Slots are typically domain-specific, and
adding new domains to a dialogue system in-
volves data and time-intensive processes. A
popular technique to address the problem is
transfer learning, where it is assumed the avail-
ability of a large slot filling dataset for the
source domain, to be used to help slot fill-
ing on the target domain, with fewer data.
In this work, instead, we propose to lever-
age source tasks based on semantically related
non-conversational resources (e.g., semantic
sequence tagging datasets), as they are both
cheaper to obtain and reusable to several slot
filling domains. We show that using auxiliary
non-conversational tasks in a multi-task learn-
ing setup consistently improves low resource
slot filling performance.

1 Introduction

Language understanding in task-oriented dialogue
systems involves recognizing information (i.e.,
slot filling) expressed in an utterance to accom-
plish a particular dialogue task. For example, in
a flight booking scenario, the utterance ”show me
all Delta flights from Milan to New York” contains
information belonging to slots in the flight do-
main, namely airline name (Delta), origin
(Milan), and destination (New York). Slots
are usually predefined and domain-specific, e.g.
in a hotel domain slots can be different, such as
room type, length of stay etc. Although
recent neural based models (Goo et al., 2018;
Wang et al., 2018; Liu and Lane, 2016) have
shown remarkable performance in slot filling, they
are still based on large labeled data, which means
that training a separate model for each domain in-
volves a resource intensive process. Thus, as more
domains are added to the system, methods that can

generalize slot filling to new domains with lim-
ited labeled data (i.e., low-resource settings) are
preferable.

Existing works in low resource slot filling are
mostly based on transfer learning (Mou et al.,
2016), whose aim is to leverage relatively large
resources in a source domain (DS) for a source
task (TS), to help a task (TT ) in a target domain
(DT ), where less data are available. Depending
on how the adaptation is performed, there are two
notable approaches: data-driven adaptation (Jaech
et al., 2016; Goyal et al., 2018; Kim et al., 2016),
and model-driven adaptation (Kim et al., 2017; Jha
et al., 2018). Essentially, both approaches produce
a model on the target domain performing training
on the same task (slot filling, in our case), i.e., as-
suming (TS = TT ), although from different do-
mains, i.e. (DS 6= DT ). All of these approaches
assume that slot filling datasets for the source do-
main are available, and little effort has been de-
voted in finding and exploiting cheaper TS , which
is crucial in a situation where a slot filling dataset
in DS is not ready yet (cold-start).

Accordingly, we attempt to leverage non-
conversational source tasks (TS 6= TT ) i.e., tasks
that use widely available non-conversational re-
sources, to help slot filling. These resources are
cheaper to obtain compared to domain-specific
slot filling datasets, and many of them are anno-
tated with rich linguistic knowledge, which is po-
tentially useful for slot filling (Chen et al., 2016).
Among these resources, we mention PropBank
(Palmer et al., 2005) and FrameNet (Baker et al.,
1998), which consist of annotated documents with
verb and frame-based semantic roles, respectively;
CoNLL 2003 (Tjong Kim Sang and De Meul-
der, 2003) and OntoNotes (Pradhan et al., 2013),
which provide named entity information; and Ab-
stract Meaning Representation (AMR) (Banarescu
et al., 2013), which provides a graph-based seman-
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Sentence what is the most expensive flight from boston to dallas

ATIS Slot O O O B-COST REL I-COST REL O O B-FROM LOC O B-TO LOC

NER O O O O O O O B-GPE O B-GPE

SemTag B-QUE B-ENS B-DEF B-TOP B-IST B-CON B-REL B-GPE O B-GPE

Table 1: An example of slot filling annotation from the ATIS (Airline Travel Information System) dataset and
author-annotated NER and SemTag in IOB format (Ramshaw and Marcus, 1995). Some ATIS slots correspond to
NER or SemTag labels, such as FROM LOC and TO LOC with GPE in NER and SemTag. Some slot tags can also
be composed of several SemTag labels such as COST REL which is composed of TOP (superlative positive) and
IST (intersective adjective).

tic formalism.
In this work, we leverage non-conversational

tasks as auxiliary tasks in a multi-task learning
(MTL) (Caruana, 1997) setup. Given appropri-
ate auxiliary tasks, MTL has shown to be partic-
ularly effective in which labeled data is scarce and
has been applied to various NLP tasks such as
parsing (Søgaard and Goldberg, 2016), POS tag-
ging (Yang et al., 2016), neural machine transla-
tion (Luong et al., 2016), and opinion role label-
ing (Marasovic and Frank, 2018). While there are
potentially many non-conversational tasks that we
can use as auxiliary tasks, we focus on those that
assign semantic class categories to a word, as they
are similar in nature to slot filling. In particular,
in this work we choose Named Entity Recognition
(NER) and the recently introduced Semantic Tag-
ging (SemTag) (Abzianidze and Bos, 2017), moti-
vated by the following rationales:
• Both NER and SemTag are semantically related

to slot filling. As illustrated in Table 1, slot
labels may correspond to either NER or Sem-
Tag labels. In addition, SemTag complements
NER as its labels subsume NER labels, and thus
could be useful to address linguistic phenom-
ena (e.g. comparative expression, intersective
adjective) relevant for slot filling and that are
beyond named entities.
• Both NER and SemTag can be re-used in many

slot filling domains. Labels in both tasks are
typically more general (coarse-grained) com-
pared to labels in slot filling.
• The resources for both tasks are cheaper to

obtain compared to domain-specific slot fill-
ing datasets, as there have been several ini-
tiatives in constructing large datasets for NER
and SemTag, for example OntoNotes (Pradhan
et al., 2013) and Parallel Meaning Bank (PMB)
(Abzianidze et al., 2017) respectively. This is
beneficial in a cold-start situation in which no
slot filling dataset is already available in DS .

Although NER has been already used in slot
filling models, most of these approaches (Mes-
nil et al., 2013, 2015; Zhang and Wang, 2016;
Gong et al., 2019; Louvan and Magnini, 2018) use
and incorporate ground truth NER labels or output
of NER systems as features to train a slot filling
model, our work differs in the method of learning
and leveraging such features from disjoint datasets
through MTL and evaluating the performance in
low-resource settings.

Our contributions are: (i) we propose to lever-
age non-conversational tasks, namely NER and
SemTag, to improve low resource slot filling
through MTL; to our knowledge this MTL combi-
nation has not been explored before. (ii) We show
that MTL models with NER and SemTag strongly
improve single-task slot filling models on three
well known datasets. While we focus on using
NER and SemTag, our study has shed light on the
potential use of non-conversational tasks in gen-
eral to help low resource slot filling.

2 Approach

Slot filling is often modeled as a sequence label-
ing problem. Given a sequence of words x =
(x1, x2, ..., xn) as input, a model M predicts the
corresponding slot labels y = (y1, y2, ..., yn) as
output.

2.1 Base Model
State-of-the-art models on sequence labeling are
typically built based on bi-directional LSTM (bi-
LSTM), on top of which there is a CRF model
(Lample et al., 2016; Ma and Hovy, 2016). The
bi-LSTM takes x as input and each word xi is
represented as an embedding ei = [wi; ci] com-
posed of the concatenation of a word embedding
wi and character embeddings ci. The bi-LSTM
layer produces the forward output state −→hi and the
backward output state ←−hi . The concatenation of
the output states, hi = [

−→hi ;
←−hi ], is then fed to a
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feed-forward (FF) layer, followed by a CRF as the
final output layer that predicts a slot label yi by
taking into account the mixture of context infor-
mation captured by the last FF layer and the slot
prediction yi−1 from the previous word.

2.2 Multi-task Learning Models

In the context of MTL, models for TS , often re-
ferred as auxiliary tasks, and for TT , referred
as the target task, are simultaneously trained
(Yang et al., 2017). In order to perform adapta-
tion, the MTL model M is partitioned into task-
specific parts (MTS and MTT ) and task-shared-
parts (MTS∩TT ). We use two notable MTL archi-
tectures:
• MTL-Fully Shared Network (MTL-FSN).

The word and character embeddings, and the bi-
LSTM layers, are parts ofMTS∩TT . The hidden
state outputs of the bi-LSTM are passed to each
of the CRF output layers in MTS and MTT .
During training a mini-batch of a particular task,
the output layers of other tasks are not updated.
• Hierarchical-MTL (H-MTL). Inspired by

(Søgaard and Goldberg, 2016; Sanh et al.,
2019), we introduce a hierarchy of tasks inM
to create different levels of supervision. Instead
of placing the output CRF layers for all tasks
after the shared bi-LSTM layer, we add a task-
specific bi-LSTM in MTT after the shared bi-
LSTM and then attach the output layer. In other
words, we supervise TS , which have coarse-
grained labels in the lower level output layer and
TT , which has more fine-grained labels in the
higher level output layer.

3 Experiments

The main objective of our experiments is to vali-
date the hypothesis that using non-conversational
tasks as auxiliary tasks in a MTL setup can help
low resource slot filling. In our MTL configura-
tion, the target task (TT ) is slot filling, and the
auxiliary tasks (TS) are set to NER or SemTag or
both.

Baselines. We compare the two MTL ap-
proaches (see §2.2) with the following baselines:
• Single-Task Learning (STL). The base model

is directly trained and tested on TT , without in-
corporating any information from TS . The base
model (see §2.1) is a bi-LSTM-CRF which is
the core of many models for slot filling (Goo

Dataset Task #train #dev #test #label

ATIS Slot Filling 4478 500 893 79
MIT Restaurant Slot Filling 6128 1532 3385 8
MIT Movie Slot Filling 7820 1955 2443 12
OntoNotes 5.0 NER 34970 5896 2327 18
PMB SemTag 67965 682 650 73

Table 2: Statistics about the datasets, reporting the
number of sentences in train/dev/test set, and the num-
ber of labels.

et al., 2018; Wang et al., 2018; Liu and Lane,
2016) and sequence tagging tasks in general.
• STL + Feature Based (STL + FB). The same

model as STL but incorporating the outputs
of the independently trained NER and SemTag
models as an additional feature in the input em-
beddings.

Datasets. The language of all the datasets that
we use is English. We evaluate our approach
on three slot filling datasets, namely ATIS (Price,
1990), MIT Restaurant, and Movie (Liu et al.,
2013). ATIS is a widely used dataset for spo-
ken language understanding which contains utter-
ances requesting flight related information. While
MIT Restaurant and Movie contain utterances re-
questing information related to restaurants and
movies. For NER, we use the newswire section
of OntoNotes 5.0 (Pradhan et al., 2012), which
is compiled from English Wall St. Journal. For
SemTag, we use Parallel Meaning Bank (PMB)
(Abzianidze et al., 2017) 2.2.0. The PMB dataset
is constructed from twelve different sources, in-
cluding OPUS News Commentary (Tiedemann,
2012), Tatoeba1, Sherlock-Holmes stories, Rec-
ognizing Textual Entailment (Giampiccolo et al.,
2007), and the bible (Christodoulopoulos and
Steedman, 2015). Following the previous pub-
lication related to SemTag (Abzianidze and Bos,
2017), we train the SemTag model using the silver
data and test on gold data. For all datasets, we use
the provided train/dev/test splits. Table 2 shows
the overall statistics of each dataset. To simulate
the low resource settings, in all experiments we
only use 10% training data on TT .

Training. We do not tune the hyperparameters2

but follow the suggestions and adapt the imple-
mentation of Reimers and Gurevych (2017)3. The
MTL models are trained in an alternate fashion

1https://tatoeba.org/eng/
2The hyperparameters are listed in Appendix B
3https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf
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(Jaech et al., 2016) between TT and TS . Conse-
quently, as the training data size of TS is larger
than TT , the same TT data is reused until the whole
TS is used in the training. We evaluate the perfor-
mance by computing the F1-score on the test set
using the standard CoNLL-2000 evaluation4.

4 Results and Discussion

Model TS TT

ATIS MIT-R MIT-M

STL - 87.910.56 67.370.26 80.710.63

STL+FB - 87.790.67 67.270.64 80.560.54

MTL-FSN N 89.560.16 68.820.18 80.770.13

S 89.190.26 68.210.71 80.570.32

N,S 89.100.41 68.210.43 79.690.33

H-MTL N 89.170.33 69.221.00 81.790.26

S 88.960.41 69.090.24 81.590.17
N,S 88.780.37 68.960.50 81.150.25

Table 3: Average F1-score and standard deviation
(numbers in subscript) of the performance on the test
sets. For the TT training split, only 10% data is used.
Bold indicates the best score for each TT . N and S in
TS denote NER and SemTag, respectively.

Overall Performance. Table 3 lists the over-
all performance of the baselines and of the MTL
models. We report the average F-1 score and
also the standard deviation, as recommended by
Reimers and Gurevych (2018), over three runs
from different random seeds. For all TT , it is
evident that the MTL models with NER or Sem-
Tag combinations yield the best results compared
to STL. MTL models also outperform the STL
+ FB baseline, indicating that training the model
simultaneously with the auxiliary task is better
than incorporating the output of the independently
trained auxiliary models as features for the slot
filling model. In terms of the effectiveness of the
auxiliary tasks, using NER produces the best re-
sults compared to the other TS combinations. The
difference between MTL with NER and MTL with
SemTag is marginal. Regarding the MTL models,
on average, H-MTL yields better scores compared
to MTL-FSN in MIT-R and MIT-M, which sug-
gests that supervising tasks with coarse-grained la-
bels and fine-grained labels on different layers is
beneficial.

Slot-wise Performance. One of our motivations
for using NER and SemTag is that their labels are

4https://www.clips.uantwerpen.be/conll2000/

TT
Concept Model

STL MTL

ATIS LOC 94.740.37 95.820.34

ORG 92.520.89 93.370.29

MIT-R LOC 75.290.46 76.020.39

MIT-M PER 85.040.24 84.580.56

Table 4: Performance on slots related to person (PER),
location (LOC), and organization (ORG) concepts. We
use the best MTL from Table 3 for each TT .

coarse-grained, and that they can be re-used for
several slot filling domains. We are interested to
see whether MTL improves the performance of
slots related to these coarse-grained concepts. In
order to do this, we manually created a mapping5

from the slots to some coarse-grained entity con-
cepts used by CoNLL-2003 (Tjong Kim Sang and
De Meulder, 2003) including Person, Organiza-
tion, and Location. For example, in ATIS, the slot
airline name is mapped to Organization, the
slot fromloc.city name is mapped to Loca-
tion, etc. We perform the analysis on the dev set by
re-running the evaluation based on the mapping.
Results in Table 4 show that in ATIS and MIT-R,
MTL brings improvements on slots related to Lo-
cation and Organization. However, MTL does not
help in slots related to Person names in MIT-M.
Based on our observation on the prediction results,
most errors come from misclassifying DIRECTOR
slots as ACTOR slots.

Figure 1: Gain (∆F1) obtained using MTL over STL
on increasing training data. Positive numbers mean
MTL is better, negative numbers mean MTL is worse.
We use the best MTL from Table 3 for each TT .

Performance Gain on Increasing Data Size.
We also carried on an experiment by increasing

5We provide the mapping in Appendix A
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the amount of training data on TT , and evaluated
the performance on the dev set to understand the
usefulness of MTL on varying data size. As shown
in Figure 1, as we increase the size of the training
data, the gain that we obtain using MTL tends to
decrease. The results suggest that MTL is indeed
more useful in very low resource scenarios, ac-
cording to our initial hypothesis. After 40% train-
ing data size is used (around 2K utterances), MTL
is less useful. We believe that this is because the
slot filling datasets are relatively simple, e.g. the
texts are short and most of them express a single
specific request, thus, it is relatively easy for the
model to capture the regularities.

Impact on Auxiliary Tasks Performance. We
also perform an analysis to understand the ef-
fect of MTL to the model performance for TS .
The STL performance of OntoNotes and Seman-
tic Tagging are around 89% and 96% respectively
in terms of F1-score. With MTL, on average, the
TS model performance decrease about 0.7 points
for OntoNotes and 0.2 points for Semantic Tag-
ging. This suggests that TS models do not benefit
from the low resource TT through the MTL frame-
work and the training mechanism that we use. In
general, whether MTL can benefit model perfor-
mance in a target task given auxiliary tasks (or
vice versa) is still a question and beyond the scope
of this paper. While there is no exact answer yet
for this question, we refer to (Bingel and Søgaard,
2017; Alonso and Plank, 2017) which study the
characteristics of auxiliary tasks that is potential to
help target task performance (Bingel and Søgaard,
2017; Alonso and Plank, 2017) .

5 Conclusions

We proposed to leverage non-conversational tasks,
Named Entity Recognition and Semantic Tagging,
through multi-task learning to help low resource
slot filling. Our experiments demonstrate that: (i)
non-conversational tasks are effective to improve
slot filling performance, and they are reusable in
different slot filling domains; (ii) incorporating a
task-hierarchy in the multi-task architecture based
on the granularity of the labels is beneficial for the
model performance on two out of three datasets.

In the future, we plan to explore other non-
conversational resources such as FrameNet (Baker
et al., 1998) which provide a repository of event
frames and semantic roles that can be relevant for
intent classification and slot filling in task-oriented

dialogue systems. Also another direction is to
apply fine-tuning with the recently popular pre-
trained language model e.g. BERT (Devlin et al.,
2018).
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Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua
Bengio. 2013. Investigation of recurrent-neural-
network architectures and learning methods for spo-
ken language understanding. In INTERSPEECH.

Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu,
Lu Zhang, and Zhi Jin. 2016. How Transferable are
Neural Networks in NLP Applications? In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 479–489.
Association for Computational Linguistics.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An Annotated Cor-
pus of Semantic Roles. Computational linguistics,
31(1):71–106.

https://www.aclweb.org/anthology/W07-1401
https://www.aclweb.org/anthology/W07-1401
https://doi.org/10.18653/v1/N18-2118
https://doi.org/10.18653/v1/N18-2118
https://doi.org/10.18653/v1/N18-3018
https://doi.org/10.18653/v1/N18-3018
https://doi.org/10.18653/v1/N18-3018
https://doi.org/10.18653/v1/N18-3019
https://doi.org/10.18653/v1/N18-3019
https://doi.org/10.18653/v1/N18-3019
https://doi.org/10.18653/v1/P17-1060
https://doi.org/10.18653/v1/P17-1060
http://aclweb.org/anthology/C/C16/C16-1193.pdf
http://aclweb.org/anthology/C/C16/C16-1193.pdf
https://doi.org/10.18653/v1/N16-1030
http://aclweb.org/anthology/W/W16/W16-3603.pdf
http://aclweb.org/anthology/W/W16/W16-3603.pdf
http://aclweb.org/anthology/W/W16/W16-3603.pdf
http://dl.acm.org/citation.cfm?id=2817174.2817185
http://dl.acm.org/citation.cfm?id=2817174.2817185
http://dl.acm.org/citation.cfm?id=2817174.2817185
https://doi.org/10.18653/v1/D16-1046
https://doi.org/10.18653/v1/D16-1046


91

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards Ro-
bust Linguistic Analysis using OntoNotes. In Pro-
ceedings of the Seventeenth Conference on Com-
putational Natural Language Learning, pages 143–
152.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 Shared Task: Modeling Multilingual Unre-
stricted Coreference in OntoNotes. In EMNLP-
CoNLL Shared Task.

Patti J Price. 1990. Evaluation of Spoken Language
Systems: The ATIS Domain. In Speech and Natu-
ral Language: Proceedings of a Workshop Held at
Hidden Valley, Pennsylvania, June 24-27, 1990.

Lance Ramshaw and Mitch Marcus. 1995. Text
Chunking using Transformation-Based Learning. In
Third Workshop on Very Large Corpora.

Nils Reimers and Iryna Gurevych. 2017. Reporting
Score Distributions Makes a Difference: Perfor-
mance Study of LSTM-networks for Sequence Tag-
ging. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 338–348, Copenhagen, Denmark.

Nils Reimers and Iryna Gurevych. 2018. Why Com-
paring Single Performance Scores Does Not Allow
to Draw Conclusions About Machine Learning Ap-
proaches. CoRR, abs/1803.09578.

Victor Sanh, Thomas Wolf, and Sebastian Ruder. 2019.
A Hierarchical Multi-task Approach for Learning
Embeddings from Semantic Tasks. AAAI.

Anders Søgaard and Yoav Goldberg. 2016. Deep
Multi-task Learning with Low Level Tasks Super-
vised at Lower Layers. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), vol-
ume 2, pages 231–235.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In LREC.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 Shared
Task: Language-independent Named Entity Recog-
nition. In Proceedings of the seventh conference
on Natural language learning at HLT-NAACL 2003-
Volume 4, pages 142–147. Association for Compu-
tational Linguistics.

Yu Wang, Yilin Shen, and Hongxia Jin. 2018. A bi-
model based rnn semantic frame parsing model for
intent detection and slot filling. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short
Papers), pages 309–314. Association for Computa-
tional Linguistics.

Zhilin Yang, Ruslan Salakhutdinov, and William W.
Cohen. 2016. Transfer Learning for Sequence Tag-
ging with Hierarchical Recurrent Networks. CoRR,
abs/1703.06345.

Zhilin Yang, Ruslan Salakhutdinov, and William W
Cohen. 2017. Transfer Learning for Sequence Tag-
ging with Hierarchical Recurrent Networks. In
ICLR.

Xiaodong Zhang and Houfeng Wang. 2016. A joint
model of intent determination and slot filling for
spoken language understanding. In IJCAI.

A Mapping of entity concepts and slots
for each dataset

Concept ATIS MIT-R MIT-M

LOC fromloc.airport code location -
fromloc.airport name
fromloc.city name
fromloc.state code
fromloc.state name
stoploc.airport name
stoploc.city name
stoploc.state code
toloc.airport code
toloc.airport name
toloc.city name
toloc.country name
toloc.state code
toloc.state name

ORG airline name - -

PER - - character
actor
director

Table 5: The mapping of entity concepts, namely Lo-
cation (LOC), Organization (ORG), and Person (PER)
to their corresponding slots in each dataset.

B Hyperparameters

Hyperparameter Value

LSTM cell size 100
Dropout 0.5
Word embedding dimension 300
Character embedding dimension 100
Mini-batch size 32
Optimizer Adam
Number of epoch 50
Early stopping 10
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