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Abstract

Utterance-level analysis of the speaker’s inten-
tions and emotions is a core task in conversa-
tional understanding. Depending on the end
objective of the conversational understanding
task, different categorical dialog-act or affect
labels are expertly designed to cover specific
aspects of the speakers’ intentions or emotions
respectively. Accurately annotating with these
labels requires a high level of human exper-
tise, and thus applying this process to a large
conversation corpus or new domains is pro-
hibitively expensive. The resulting paucity of
data limits the use of sophisticated neural mod-
els. In this paper, we tackle these limitations
by performing unsupervised training of utter-
ance representations from a large corpus of
spontaneous dialogue data. Models initialized
with these representations achieve competi-
tive performance on utterance-level dialogue-
act recognition and emotion classification, es-
pecially in low-resource settings encountered
when analyzing conversations in new domains.

1 Introduction

Spontaneous human conversations have been col-
lected in different domains to support research in
data-driven dialogue systems (Serban et al., 2015),
affective computing (Zadeh et al., 2018; Busso
et al., 2008; Park et al., 2014), clinical psychology
(Althoff et al., 2016) and tutoring systems (Sinha
et al., 2015). These conversations are analyzed by
segmenting transcriptions into each speaker’s utter-
ances (Traum and Heeman, 1996), which are often
labeled with different types of information. The
exact type of label to be used depends on the down-
stream task or research questions to be answered,
and thus the tagging paradigms are varied and nu-
merous. For example, the speaker’s intention can
be specified using a dialogue acts (DAs) or speech
acts (Searle and Searle, 1969), which capture the
pragmatic or semantic function of the utterance.

Utterance DA

A: Hi Greeting
B: Hi, How are you? Greeting

A: Are you done with your homework? Question
B: Yeah Yes Answer

B: How about you? Question
A: I’m having trouble with Q4 Statement

B: Yeah Backchannel
A: so it’s going to take some time Statement

Table 1: Snippets of conversation with dialogue act
tags. “Yeah” is tagged differently in different contexts.

Utterances may also be tagged with traits such as
sentiment, emotion and valence labels (Busso et al.,
2008; Zadeh et al., 2018), speaker persuasiveness
(Park et al., 2014), speaker dominance(Busso et al.,
2008) and other characteristics at the utterance and
conversational level.

While these labels vary greatly, one constant
is that they are often ambiguous and context-
dependent (Table 1), making it challenging for hu-
mans to annotate efficiently and accurately. Thus,
curating large corpora is labor-intensive, and we are
always faced with a paucity of data in new domains
and labeling paradigms of interest.

Moreover, the label assigned to an utterance de-
pends on the current state of the dialogue (Stone,
2005) and prediction of an utterance’s label bene-
fits from referring to other utterances in context and
their labels (Jaiswal et al., 2019). Deep learning
models like RNNs and CNNs have proven effec-
tive tools to encode neighbouring utterances (Chen
et al., 2018; Liu et al., 2017; Blunsom and Kalch-
brenner, 2013; Bothe et al., 2018; Kumar et al.,
2017). However such models rely on large anno-
tated corpora that are prohibitively expensive to
procure, especially for niche domains.

One recently popular method to overcome the
dearth of supervised data in NLP is unsupervised
pretraining over large unlabeled corpora. For ex-
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ample, Melamud et al. (2016); Peters et al. (2018);
Devlin et al. (2018) use language modeling as an
unsupervised task to learn word embeddings in con-
text, and demonstrate remarkable improvements on
a number of downstream NLP tasks. However,
these methods learn representations for individual
words, whereas for dialog analysis tasks, we need
representations for utterances in the context of the
entire dialog.

In this paper, we adapt the technique of learning
contextualized representations using unsupervised
pretraining to learn representations for utterances
in the context of the dialogue. We first introduce
a general model architecture consisting of a to-
ken, utterance, and conversation encoder. We then
present a method to efficiently train this model by
predicting the bag-of-word vectors of previous and
next utterances over a large heterogeneous corpus
of spoken dialogue transcripts. We quantify the
effectiveness of learnt contextual utterance repre-
sentations on two downstream utterance-labeling
tasks: DA tagging and emotion recognition. We
obtain competitive performance on two popular
DA tagging tasks (SwitchBoard and ICSI Meeting
Recorder) and an emotion labeling task (IEMO-
CAP). Particularly, we observe significant improve-
ments over training complex utterance tagging
models from scratch for simulated low-resource
settings for these tasks as well as for considerably
smaller DA datasets such as LEGO and Map Task.

2 Methodology

We consider a large collection of conversations,
where each conversation C is an ordered list of N
utterances C = {ui, u2, ..., uN} and each utterance
is a list of tokens, ui = {w1, w2, ...w|ui|}. Conver-
sations may also have labels for every utterance:
Y = {y1, y2, ..., yN} where each yi ∈ T , a finite
set of labels expertly defined for a domain.

2.1 Unsupervised Pretraining

Contextualized Utterance Representations
We adopt a hierarchical encoder model consisting
of a token encoder, an utterance encoder and
a conversation encoder, followed by an output
layer. The token encoder layer ENCtok encodes
every token wj in utterance ui into a fixed-size
embedding etokwj

, while the utterance encoder
ENCutt encodes token embeddings of an utterance
ui into a fixed-sized utterance representation euttui

.
For our specific instantiation, we combine both en-

u1 : Hi, How are
you?

u3 : Yeah,How
about you?

Transformer

ELMO BiLSTM ELMO BiLSTM ELMO BiLSTM ELMO BiLSTM

 h2,    h2

{ "Not", "yet" ,"," , "I'm", "finding", "it", "hard"}

MLP Forward

u4 : Not yet, I'm
finding it hard

u2 : I'm good,
Done with your

homework?

ELMO BiLSTM

u0 : Hey man!

{"Hey", "man", "!"}

MLP Backward

 h1,    h1   h3,    h3

eu1 eu2 eu3

Figure 1: Hierarchical conversation encoder model

coders: we use the pretrained ELMo (Peters et al.,
2018) model to encode the sequence of tokens
in an utterance ui and take the final state of the
forward and backward LSTMs (concatenated) as
our utterance representation euttui

, i = 1, 2, ..., N .
We specifically choose ELMo because it is a strong
general-purpose encoder and its character-based
representations may be more robust to noise
and OOV words in spontaneous conversations.
This is followed by a conversation encoder
ENCconv, which further converts this sequence of
context-independent representations of utterances
to a context-dependent sequence of utterance rep-
resentations. For ENCconv, we use an architecture
identical to the decoder variant of the Transformer
(Vaswani et al., 2017) with N = 2 layers. We
specifically choose the self-attentional Transformer
for this purpose, as it is efficient to train, can
easily capture long-distance dependencies over the
entire conversation, and empirically outperformed
other architectures such as LSTMs in preliminary
experiments. The outputs, hui , i = 1, 2, ..., N ,
of this hierarchical encoder of Figure 1 can be used
as contextualized representations for utterances.

Predicting Utterance Bag-of-words In order to
learn contextualized representations, the hierarchi-
cal encoder is trained to predict the bag-of-words
of the previous and next utterances in the conver-
sation using these representations. This training
is done in the forward and backward direction
respectively by allowing the self-attention layer
of the transformer to only attend to earlier posi-
tions and later positions in the utterance sequence
respectively (Figure 1). Hence, we learn con-
textual utterance embeddings in both directions:←−
hui ,
−→
hui ; i = 1, 2, ..., N . We use an MLP fol-

lowed by sigmoid function as the output layer over
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Corpus # Utterances # Tokens

SwitchBoard 460K 3M
Meeting Recorder 105K 11K

CALLHOME 27K 1M
AMI Meeting Corpus 150K 1M

BNC 1M 10M

Table 2: List of dialogue corpora for pretraining con-
textualized utterance representations

hui to predict the set of words in the neighboring
utterance. ui−1 is reconstructed from

←−
hui and ui+1

from
−→
hui . We use binary cross entropy (BCE) loss,

where the target is a vocabulary-sized binary vector
with words present in the utterance marked 1 and
others 0. Notably this formulation reduces training
time by relaxing word-order in the reconstruction
loss, unlike other methods that predict words in or-
der for surrounding utterances (Kiros et al., 2015).
For utterances ui−1 and ui+1 with vocabulary vec-
tors Ui−1 and Ui+1 ∈ {0, 1}|V | respectively, the
bag-of-word loss for utterance ui is given by:

LBOW (ui) = BCE(MLP(
←−
hui), Ui−1)

+BCE(MLP(
−→
hui), Ui+1). (1)

where,

BCE(x,y) =

|V |∑
n

[ynlog(xn)+(1−yn)log(1−xn)]

For conversation C = {u1, u2, ..., uN},

LBOW (C) = 1

N

N∑
i=0

LBOW (ui). (2)

2.2 Utterance Tagging
Once we have learned contextualized utterance rep-
resentations, we can use them to predict the se-
quence of labels Y = {y1, y2, ..., yN}, such as
dialogue acts, for utterances in the conversation. In
this work we use a linear-chain conditional random
field (Lafferty et al., 2001) as used in previous state-
of-the-art models for DA tagging (Kumar et al.,
2017; Chen et al., 2018) to predict one of the |T |
tags for each ui, where the utterance is represented
as the concatenation of the forward and backward
contextualized vectors:

←−
hui ,
−→
hui .

3 Experiments

Pretraining Datasets and Hyperparameters
We train contextualized utterance representations

on transcriptions of spontaneous human-human
conversation corpora (Serban et al., 2015). We
choose the corpora presented in Table 2 for this
work. A majority of the conversations are dia-
logues, and utterances across all corpora are 10
words long on average. However, the chosen cor-
pora have conversations of widely varying lengths
(no. of utterances/conversation). For computa-
tion/memory efficiency, and also because more dis-
tant utterances likely have diminishing influence
on discourse modeling, we divide each conversa-
tion into conversational snippets of length 64 1 by
moving a 64-length window over the conversation
with stride 1 and train the bag-of-word loss on each
snippet thus obtained. For the conversational en-
coder, we use 2 layers of the transformer with 8
attention heads of 64 dimensions each. All feed-
forward networks use 2 layers with hidden size of
512. For training and fine-tuning, we use the Adam
(Kingma and Ba, 2014) with learning rate 0.0001.

Tasks We evaluate performance of our model on
these utterance-level tagging tasks:

SwDA, the Switchboard Dialogue Act Corpus,
annotates 1,155 telephonic conversations (224K
utterances) with one of the 42 DAs in the DAMSL
(Jurafsky, 1997) taxonomy.

MRDA, the ICSI Meeting Recorder Dialogue Act
corpus annotates 75 multi-party meetings (105K ut-
terances) with DAs according to 5 domain-specific
tags (Dhillon et al., 2004).

IEMOCAP, an emotion recognition dataset of
12 hours of dyadic improvisations or scripted sce-
narios, with eight categorical emotion labels (Park
et al., 2014) (10K utterances).

LEGO, a subset (14K utterances) of the Lets
Go bus-information dialogue system corpus (Raux
et al., 2006) annotated with the ISO 24617-2 stan-
dard for conversation functions of task by (Ribeiro
et al., 2016).

Map Task, (Carletta et al., 1997; Anderson et al.,
1991) is 18 hrs of dialogue where speakers collabo-
rate to complete a map (5K utterances).

To simulate low-resource settings for the larger
datasets like SWDA and MRDA, we experiment
with different sizes of the training datasets and eval-
uate on the standard test set for these. For LEGO
and MapTask, we use 10-fold cross validation.

Experimental Settings We use four different ex-
perimental settings to measure the efficacy of our

1tuned model hyper-parameter
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Figure 2: Performance by training data sizes. SOTA:
comparable state-of-the-art model trained on tagging
task for entire dataset.

pretrained utterance representations : No Context -
With no conversational encoder (i.e. independently
encoding every utterance using ELMo); Random
Initialization - with the conversational encoder ran-
domly initialized and trained on only the down-
stream tagging task; Freeze Network - the conver-
sational encoder initialized using the model pre-
trained on our bag-of-word objective and kept fixed
for downstream task; Pre-trained Initialization -
the initialized conversation encoder fine-tuned on
the downstream task. These settings are used to
isolate the gains from using (1) contextualized rep-
resentations, (2) pretraining them and then (3) fine-
tuning them on the downstream task.

4 Result and Discussion

We observe that using pretrained utterance repre-
sentations shows improved performance over ran-
dom initialization and is competitive with exist-
ing state-of-the-art works by Kumar et al. (2017)
for SwDA and MRDA, and Poria et al. (2017) for
IEMOCAP that use similar hierarchical architec-

DA Category % Increase Example
in accuracy

Agree/Accept 43 That’s exactly it.
Summarize/ Oh, you mean you
Reformulate 180 switched schools..
Statement-Opinion 55 I think it’s great.
Yes-Answer 33 Yes
Hold before answer
or agreement 300 I’m drawing a blank

Table 3: SwDA DA categories that improve using pre-
trained utterance embeddings with % improvements in
accuracy over other experimental settings.

DA Corpus Pretrained Random SOTA

LEGO 93.70 92.98 88.75
Map Task 79.34 77.91 72.50

Table 4: Results on LEGO and Map Task

tures but are only trained on the task (Random
initialization setting). From Figure 2, we observe
that the pretraining-based initialization is especially
helpful when the amount of training data is signifi-
cantly reduced for SWDA, MRDA and IEMOCAP,
over other experimental settings. The improved
performance of the random initialization setting
over fixing the pretrained conversational encoder
parameters underscores the need to fine-tune for
downstream tasks. Our pretrained model also out-
performs random initialization and existing best
results (Ribeiro et al., 2015; Sridhar et al., 2009)
for truly low-resource datasets like LEGO and Map
Task, as shown in Table 4. We also analyze the gain
in accuracy by dialogue act category for the pre-
trained model over other experimental settings. We
find that the pretrained model shows improvements
in the categories listed in Table 3 over random ini-
tialization. These acts typically requires models to
keep track of longer contexts than other DAs like
questions and back-channels. Dialogue examples
in Table 5 further illustrate this.

5 Conclusion

We show that using large dialogue corpora to
train contextualized utterance embeddings using
a bag-of-word reconstruction loss is beneficial for
utterance-level tagging in the low-resource set-
ting, indicating that these embeddings learn useful
and generalizeable properties of conversational dis-
course. Future work involves incorporating speaker
identity, utterance duration and speech/prosody fea-
tures.
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Utterance Gold Pre-trained Random No Context

B: where are you going to move to? Wh-Question Wh-Question Wh-Question Yes-No-Q
A: Uh, Maryland. Statement Statement Statement Hedge
B: Oh, are you? Backchannel Backchannel Backchannel Yes-No-Q

question question question
A: Uh-huh. Yes answers Yes answers Yes answers Backchannel
B: Do you have friends there? Yes-No-Q Yes-No-Q Yes-No-Q Yes-No-Q
B: or, Abandoned Abandoned Abandoned Uninterpret.
A: My fiancee is down there 〈laughter〉. Statement Statement Statement Statement
B: Oh, I see. Resp. Ack Resp. Ack Resp. Ack Resp. Ack
B: So, does he work for Yes-No-Q Yes-No-Q Yes-No-Q Yes-No-Q
a company down there?
A: Yeah, Yes answers Yes answers Yes answers Yes answers
A: he works for the government. Statement Statement Statement Statement
B: Oh, I see. Resp. Ack Resp. Ack Resp. Ack Resp. Ack
B: Oh, the big company. Summarize/ Summarize/ Statement Statement

reformulate reformulate
A: Yeah Agree/Accept Yes Answer Yes Answer Yes Answer

A: and I said no, I’m just twenty-three, Statement Statement Statement Statement
B: Uh-huh. Backchannel Backchannel Backchannel Abandoned
A: you know, because I don’t think of Statement Statement Statement Statement
myself as needing to have children
A: but the first thing he says is, well, Statement Statement Statement Statement
don’t you miss that part of your life.
A: And I just, Abandoned Abandoned Abandoned Uninterpret.
A: my, my mind just went, Statement Statement Statement Statement
B: You didn’t know what Collaborative Collaborative Statement Statement
you’re going to be missing. Completion Completion
A: I went, what. Statement Statement Statement Statement
B: 〈Laughter〉. Non-verbal Non-verbal Non-verbal Non-verbal

Table 5: Dialogue Examples from SwitchBoard with dialogue acts as labelled under different experimental settings.
The pre-trained network performs better on categories like Summarizing and Collaborative Completion

Acknowledgments

We thank the reviewers for their insightful com-
ments. This work was supported by the National
Institute of Health (NIH) grant no. R01MH096951-
08.

References

Tim Althoff, Kevin Clark, and Jure Leskovec. 2016.
Large-scale analysis of counseling conversations:
An application of natural language processing to
mental health. Transactions of the Association for
Computational Linguistics, 4:463–476.

Anne H Anderson, Miles Bader, Ellen Gurman Bard,
Elizabeth Boyle, Gwyneth Doherty, Simon Garrod,
Stephen Isard, Jacqueline Kowtko, Jan McAllister,

Jim Miller, et al. 1991. The hcrc map task corpus.
Language and speech, 34(4):351–366.

Phil Blunsom and Nal Kalchbrenner. 2013. Recurrent
convolutional neural networks for discourse compo-
sitionality. In Proceedings of the 2013 Workshop on
Continuous Vector Space Models and their Composi-
tionality. Proceedings of the 2013 Workshop on Con-
tinuous Vector Space Models and their .

Chandrakant Bothe, Cornelius Weber, Sven Magg, and
Stefan Wermter. 2018. A context-based approach
for dialogue act recognition using simple recurrent
neural networks. arXiv preprint arXiv:1805.06280.

Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe
Kazemzadeh, Emily Mower, Samuel Kim, Jean-
nette N Chang, Sungbok Lee, and Shrikanth S
Narayanan. 2008. Iemocap: Interactive emotional
dyadic motion capture database. Language re-
sources and evaluation, 42(4):335.



73

Jean Carletta, Amy Isard, Stephen Isard, Jacqueline C
Kowtko, Gwyneth Doherty-Sneddon, and Anne H
Anderson. 1997. The reliability of a dialogue struc-
ture coding scheme. Computational Linguistics.

Zheqian Chen, Rongqin Yang, Zhou Zhao, Deng Cai,
and Xiaofei He. 2018. Dialogue act recognition via
crf-attentive structured network. In The 41st Inter-
national ACM SIGIR Conference on Research & De-
velopment in Information Retrieval, pages 225–234.
ACM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Rajdip Dhillon, Sonali Bhagat, Hannah Carvey, and
Elizabeth Shriberg. 2004. Meeting recorder project:
Dialog act labeling guide.

Mimansa Jaiswal, Zakaria Aldeneh, Cristian-Paul Bara,
Yuanhang Luo, Mihai Burzo, Rada Mihalcea, and
Emily Mower Provost. 2019. Muse-ing on the im-
pact of utterance ordering on crowdsourced emotion
annotations. arXiv preprint arXiv:1903.11672.

Dan Jurafsky. 1997. Switchboard swbd-damsl shallow-
discourse-function annotation coders manual. Insti-
tute of Cognitive Science Technical Report.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294–3302.

Harshit Kumar, Arvind Agarwal, Riddhiman Dasgupta,
Sachindra Joshi, and Arun Kumar. 2017. Dialogue
act sequence labeling using hierarchical encoder
with crf. arXiv preprint arXiv:1709.04250.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML
’01, pages 282–289, San Francisco, CA, USA. Mor-
gan Kaufmann Publishers Inc.

Yang Liu, Kun Han, Zhao Tan, and Yun Lei. 2017. Us-
ing context information for dialog act classification
in dnn framework. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2170–2178.

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. context2vec: Learning generic context em-
bedding with bidirectional lstm. In Proceedings
of The 20th SIGNLL Conference on Computational
Natural Language Learning, pages 51–61, Berlin,
Germany. Association for Computational Linguis-
tics.

Sunghyun Park, Han Suk Shim, Moitreya Chatterjee,
Kenji Sagae, and Louis-Philippe Morency. 2014.
Computational Analysis of Persuasiveness in Social
Multimedia: A Novel Dataset and Multimodal Pre-
diction Approach. In Proceedings of the 16th In-
ternational Conference on Multimodal Interaction,
pages 50–57. ACM Press.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), volume 1,
pages 2227–2237.

Soujanya Poria, Erik Cambria, Devamanyu Hazarika,
Navonil Majumder, Amir Zadeh, and Louis-Philippe
Morency. 2017. Context-dependent sentiment anal-
ysis in user-generated videos. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 873–883.

Antoine Raux, Dan Bohus, Brian Langner, Alan W
Black, and Maxine Eskenazi. 2006. Doing research
on a deployed spoken dialogue system: One year of
let’s go! experience. In Ninth International Confer-
ence on Spoken Language Processing.

Eugénio Ribeiro, Ricardo Ribeiro, and David Martins
de Matos. 2015. The influence of context on dialog
act recognition. arXiv preprint arXiv:1506.00839.

Eugénio Ribeiro, Ricardo Ribeiro, and David Martins
de Matos. 2016. Mapping the dialog act annotations
of the lego corpus into the communicative functions
of iso 24617-2. arXiv preprint arXiv:1612.01404.

John R Searle and John Rogers Searle. 1969. Speech
acts: An essay in the philosophy of language, vol-
ume 626. Cambridge university press.

Iulian Vlad Serban, Ryan Lowe, Peter Henderson, Lau-
rent Charlin, and Joelle Pineau. 2015. A survey of
available corpora for building data-driven dialogue
systems. arXiv preprint arXiv:1512.05742.

Tanmay Sinha, Ran Zhao, and Justine Cassell. 2015.
Exploring socio-cognitive effects of conversational
strategy congruence in peer tutoring. In Proceedings
of the 1st Workshop on Modeling INTERPERsonal
SynchrONy And infLuence, pages 5–12. ACM.

Vivek Kumar Rangarajan Sridhar, Srinivas Bangalore,
and Shrikanth Narayanan. 2009. Combining lexi-
cal, syntactic and prosodic cues for improved online
dialog act tagging. Computer Speech & Language,
23(4):407–422.

Matthew Stone. 2005. Communicative intentions
and conversational processes in humanhuman and
human-computer dialogue. Approaches to studying
world-situated language use, pages 39–70.

http://www1.icsi.berkeley.edu/ftp/global/pub/speech/papers/MRDA-manual.pdf
http://www1.icsi.berkeley.edu/ftp/global/pub/speech/papers/MRDA-manual.pdf
http://dl.acm.org/citation.cfm?id=645530.655813
http://dl.acm.org/citation.cfm?id=645530.655813
http://dl.acm.org/citation.cfm?id=645530.655813
http://www.aclweb.org/anthology/K16-1006
http://www.aclweb.org/anthology/K16-1006
https://doi.org/10.1145/2663204.2663260
https://doi.org/10.1145/2663204.2663260
https://doi.org/10.1145/2663204.2663260


74

David R Traum and Peter A Heeman. 1996. Utterance
units in spoken dialogue. In Workshop on Dialogue
Processing in Spoken Language Systems, pages 125–
140. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Po-
ria, Erik Cambria, and Louis-Philippe Morency.
2018. Multimodal language analysis in the wild:
Cmu-mosei dataset and interpretable dynamic fu-
sion graph. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 2236–
2246.


