
An ELMo-inspired approach to SemDeep-5’s Word-in-Context
task

Alan Ansell
Department of Computer Science

University of Waikato, New Zealand

Felipe Bravo-Marquez
Department of Computer Science
University of Chile & IMFD

Bernhard Pfahringer
Department of Computer Science

University of Waikato, New Zealand

Abstract

This paper describes a submission to the
Word-in-Context competition for the IJ-
CAI 2019 SemDeep-5 workshop. The task
is to determine whether a given focus word
is used in the same or different senses in
two contexts. We took an ELMo-inspired
approach similar to the baseline model in
the task description paper, where contex-
tualized representations are obtained for
the focus words and a classification is
made according to the degree of similar-
ity between these representations. Our
model had a few simple differences, notably
joint training of the forward and back-
ward LSTMs, a different choice of states
for the contextualized representations and
a new similarity measure for them. These
changes yielded a 3.5% improvement on
the ELMo baseline.

1 Introduction

Traditional word embedding systems such as
word2vec (Mikolov et al., 2013) assign each
word a single fixed embedding. One weakness
of these systems is that they are not well suited
for representing words which have multiple
meanings, as their embeddings are forced to
occupy a point in the vector space which cor-
responds to some combination of these mean-
ings. Much attention has been given to de-
veloping systems which can assign a word an
embedding specific to the sense in which it is
used in a given context (Huang et al., 2012;
Neelakantan et al., 2014; Chen et al., 2014;
Iacobacci et al., 2015; Li and Jurafsky, 2015;
Peters et al., 2018, among others). Such a sys-
tem could be thought of as yielding “sense
embeddings” rather than word embeddings.
Some sense embedding systems have shown
advantages over traditional word embeddings,

performing better on contextual word simi-
larity tasks (Neelakantan et al., 2014; Chen
et al., 2014, etc.) and relational similarity
tasks (Iacobacci et al., 2015). One of the great-
est successes has been the ELMo system (Pe-
ters et al., 2018) whose contextual embeddings
were used to obtain state-of-the-art results on
six NLP tasks.

The Word-in-Context (WiC) dataset (Pile-
hvar and Camacho-Collados, 2019) provides
an opportunity to evaluate sense embedding
systems by testing their ability to discriminate
between finely-grained meanings of a word.
Each instance in the dataset consists of two
sentences which both contain a certain “focus”
word. The instances must be classified accord-
ing to whether the focus word is used in the
same sense in the two sentences or not.

There are two main approaches to produc-
ing sense-specific embeddings. The first is to
learn a number of embeddings for each word
which correspond to its discrete senses, known
as multi-prototype embeddings (Huang et al.,
2012; Neelakantan et al., 2014; Chen et al.,
2014; Iacobacci et al., 2015; Li and Jurafsky,
2015). The second is to dynamically create a
unique embedding for a word for every context
it appears in, which attempts to capture the
particular shade of meaning the word has in
that context. Notable examples of these “con-
textualized word embedding” systems include
context2vec (Melamud et al., 2016) and ELMo
(Peters et al., 2018).

The ELMo1 baseline system in the task
description paper (Pilehvar and Camacho-
Collados, 2019) and our system can both be
thought of as having three components: the
LSTM-based (Hochreiter and Schmidhuber,
1997) language model; the “contextualization”
component, in which contextualized embed-



dings for the focus words are obtained using
the language model; and the “classification”
component, where some similarity measure be-
tween the two contextualized embeddings is
calculated and a positive classification is made
if it is above a threshold learned on the train-
ing set.

In ELMo1, the language model is as de-
scribed in (Peters et al., 2018), the contextu-
alized embeddings are the hidden states of the
first LSTM layer at the focus word’s position,
and the similarity measure is cosine similar-
ity. In sections 2.1, 2.2 and 2.3, we will de-
scribe how these three components operate in
our system.

2 System Description

2.1 Language Model

The system uses a bidirectional LSTM-based
language model. Instead of predicting the next
or previous word given a left or right side con-
text, the model predicts a missing word given
both a left and right context - in this sense
it is similar to context2vec. During training,
two LSTM layers are run over a complete in-
put sentence in both directions. The forward
and backward directions are independent until
the output layer, when they are used jointly
as inputs to the softmax layer. Specifically
the outputs of the second of two LSTM layers
over a sentence of n words give a sequence of
forward representations −→u 1,

−→u 2, ...,
−→u n ∈ Rd

and a sequence of backward representations
←−u 1,
←−u 2, ...,

←−u n ∈ Rd. For each non-edge posi-
tion 2 ≤ i ≤ n − 1 in the sentence, we define
a vector xi as [−→u i−1

←−u i+1], the concatenation
of the forward representation in the preceding
position and the backward representation in
the following position. xi is fed into a softmax
layer over the vocabulary:

p(i) = softmax(Wxi)

The objective is to maximise the predicted
probability of the observed sentences, or equiv-
alently minimise the cross entropy loss J :

J = −
n−1∑
i=2

log p(i)si ,

where si is the index in the vocabulary of the
word which appears in position i in the sen-
tence.

2.2 Contextualization

Let f1 and f2 be the position of the focus word
in sentences 1 and 2 of an example in the WiC
dataset. Rather than using −→u f or ←−u f as con-
textualized word representations for the focus
word f , we instead use xf , the vector which
would be used to predict the focus word. xf

is a representation of the expectations we have
about the focus word given the context, and so

we would expect x
(1)
f1

and x
(2)
f2

to differ signifi-
cantly when the focus word is being used in a
different sense.

2.3 Classification

We tried several similarity measures between

x
(1)
f1

and x
(2)
f2

, including dot product and cosine
distance. The best-performing measure in our
experiments was a weighted dot product

d(x
(1)
f1

,x
(2)
f2

) = w>(x
(1)
f1
◦ x(2)

f2
)

where ◦ denotes element-wise product and w
is a trainable weight vector. Learning w was
treated as a logistic regression problem on the

training set with feature vector x
(1)
f1
◦ x(2)

f2
.

2.4 Corpus, Preprocessing and
Hyperparameters

The model was trained on a 2018 Wikipedia
dump. All tokens were lowercased. Those
which appeared at least 300 times were in-
cluded in the vocabulary, and others were re-
placed with <UNK>, resulting in a vocabu-
lary size of ∼100,000. The corpus was split
into training examples at sentence boundaries,
each example containing as many sentences as
possible followed by padding to reach a 50 to-
ken limit. Each example was capped with a
<START> and <END> token. The exam-
ples were randomly shuffled so that each batch
would contain a diverse range of texts.

Each token in the vocabulary and
<START>, <END> and <UNK> were as-
signed a randomly initialized 256-dimensional
embedding. The LSTM cells had 2048
hidden units which were projected to a 256-
dimensional output. There was no sharing
of weights for the LSTM cells between layers
or the two directions. There was an addi-
tional residual connection which fed the raw
embeddings directly into the second LSTM
layer.



The weight vector w had dimension 512
(as x is the concatenation of two LSTM out-
put vectors), and the training set contained
∼5,500 examples. w was fitted using Scikit-
Learn’s LogisticRegression with L2 regulariza-
tion with parameter C (“inverse of regulariza-
tion strength”) set to 0.2. This value was ob-
tained through tuning on the development set.

3 Results and Analysis

3.1 Results

A single submission was made to the competi-
tion during the evaluation period with param-
eters as described above, scoring 61.2% on the
test set. This result and the results of a num-
ber of other system configurations are shown
in Table 1.

Another submission made in the post-
evaluation period attempted to improve on the
original submission by using a model trained
on a corpus consisting of the Wikipedia dump
combined with a corpus of books, “BookCor-
pus” (Zhu et al., 2015). It also used stronger
regularization when learning w, setting C =
0.02. This submission scored 62.4%.

3.2 Analysis

Our system demonstrated significant improve-
ment on the baseline models using relatively
simple techniques. There are only a few signif-
icant differences between our system and the
baseline model ELMo1:

• Input is whole-token based rather than
character based.

• Different training corpora - the ELMo
version used was trained on the 1 Billion
Word Benchmark.

• Forward and backward LSTMs are
trained jointly.

• Contextualized embedding for a word is
the vector used to predict the word rather
than the output vector for the word’s po-
sition in the sentence.

• Different similarity measure for contextu-
alized embeddings.

We note that when ELMo1’s contextualiza-
tion and classification methods (i.e. first layer

hidden states, cosine similarity) are used with
our trained language model, the test set accu-
racy is 54.9% compared with the 57.7% quoted
in (Pilehvar and Camacho-Collados, 2019) for
ELMo1. This suggests that our system may
have performed better with better language
model implementation or training.

Comparing the “predictor” to the “hidden”
states with cosine similarity, we see that this
different choice of contextualized embedding is
worth 4.2% on the test set.

While the use of weighted dot product was
worth 7.2% compared to unweighted dot prod-
uct on the dev set, this translated to only a
2.1% improvement on the test set, suggesting
that some overfitting occurred when learning
the dot product weights w despite the use of
a regularization parameter fitted on the dev
set. This may be because there is a greater
degree of similarity between the train and dev
sets than the train and test sets, as suggested
in (Pilehvar and Camacho-Collados, 2019).

3.3 Limitations

There are a number of potential areas for im-
provements in our system:

• Since xf is determined only by the con-
text of the focus word, the focus word
itself has no impact on the model’s pre-
dictions. It seems as though it should be
possible to improve performance by utilis-
ing knowledge about the focus word, but
we did not manage to find a convincing
method.

• The dataset contains many examples
where the focus words in the two sen-
tences share the same root but have differ-
ent inflectional morphology, e.g. “break”
and “breaks”. This may cause some false
negative classifications because the focus
words having different tense or plurality
is likely to result in differences in their x
vectors in the dimensions relating to these
features. Using the weighted dot prod-
uct may alleviate this problem somewhat
because it allows reduced weight to be
assigned to dimensions which correspond
to tense and plurality. A better solution
however might be to preprocess the train-
ing corpus and all examples in the dataset
to remove inflection entirely.



States Similarity measure Dev. Test Notes

Predictor Weighted dot product 67.4 61.2 Submitted to competition
Predictor Unweighted dot product 60.2 59.1
Predictor Cosine similarity 60.5 59.1
Hidden Cosine similarity 55.2 54.9 cf. ELMo1 “threshold” version.
Hidden Weighted dot product 54.1 53.1

Table 1: Results with different system configurations. All results listed were obtained with the same
training run of the language model trained on Wikipedia 2018. “Predictor” refers to the use of the x
vectors used for predicting missing words, while “hidden” refers to the outputs of the first LSTM layer
for both directions concatenated.

4 Conclusions and Future Work

We discovered several improved ways of us-
ing ELMo-type contextualized word embed-
dings to perform word sense disambiguation in
the Word-in-Context task. When the forward
and backward LSTMs were trained jointly, we
found that it is better to use the concatenation
of output states from the forward LSTM at
the position before the focus and the backward
LSTM at the position after the focus than it is
to use hidden states from the focus position.
We also found that a weighted dot product
performs better than unweighted dot product
or cosine similarity as a metric for determining
whether two contextualized word embeddings
refer to the same sense of the word or not.
This suggests that some dimensions of such
embeddings carry more information related to
the human notion of word sense than others.
Together these improvements yielded a 3.5%
gain over the ELMo1 baseline of (Pilehvar and
Camacho-Collados, 2019), and there is reason
to think that a better implemented language
model could do even better.

A surprising aspect of our system is that it
never looks at the focus word itself, only the
context. Future work on this system might
center on exploiting what we know about the
focus word to improve performance.

5 Acknowledgements

Felipe Bravo-Marquez was funded by Millen-
nium Institute for Foundational Research on
Data.

References

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun.
2014. A unified model for word sense represen-
tation and disambiguation. In Proceedings of

the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages
1025–1035, Doha, Qatar. Association for Com-
putational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Eric H. Huang, Richard Socher, Christopher D.
Manning, and Andrew Y. Ng. 2012. Improving
word representations via global context and mul-
tiple word prototypes. In Proceedings of the 50th
Annual Meeting of the Association for Compu-
tational Linguistics: Long Papers - Volume 1,
ACL ’12, pages 873–882, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Ignacio Iacobacci, Mohammad Taher Pilehvar, and
Roberto Navigli. 2015. SensEmbed: Learning
sense embeddings for word and relational simi-
larity. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Lin-
guistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume
1: Long Papers), pages 95–105, Beijing, China.
Association for Computational Linguistics.

Jiwei Li and Dan Jurafsky. 2015. Do multi-sense
embeddings improve natural language under-
standing? In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1722–1732, Lisbon, Portugal.
Association for Computational Linguistics.

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. context2vec: Learning generic context
embedding with bidirectional lstm. In Proceed-
ings of The 20th SIGNLL Conference on Com-
putational Natural Language Learning, pages
51–61.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space.

Arvind Neelakantan, Jeevan Shankar, Alexandre
Passos, and Andrew McCallum. 2014. Efficient
non-parametric estimation of multiple embed-
dings per word in vector space. In Proceedings

https://doi.org/10.3115/v1/D14-1110
https://doi.org/10.3115/v1/D14-1110
https://doi.org/10.1162/neco.1997.9.8.1735
http://dl.acm.org/citation.cfm?id=2390524.2390645
http://dl.acm.org/citation.cfm?id=2390524.2390645
http://dl.acm.org/citation.cfm?id=2390524.2390645
https://doi.org/10.3115/v1/P15-1010
https://doi.org/10.3115/v1/P15-1010
https://doi.org/10.3115/v1/P15-1010
https://doi.org/10.18653/v1/D15-1200
https://doi.org/10.18653/v1/D15-1200
https://doi.org/10.18653/v1/D15-1200
https://doi.org/10.18653/v1/K16-1006
https://doi.org/10.18653/v1/K16-1006
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.3115/v1/D14-1113
https://doi.org/10.3115/v1/D14-1113
https://doi.org/10.3115/v1/D14-1113


of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages
1059–1069, Doha, Qatar. Association for Com-
putational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. 2018. Deep contex-
tualized word representations. In Proceedings
of NAACL, pages 2227–2237, New Orleans,
Louisiana. Association for Computational Lin-
guistics.

Mohammad Taher Pilehvar and Jose Camacho-
Collados. 2019. Wic: the word-in-context
dataset for evaluating context-sensitive mean-
ing representations. In Proceedings of NAACL,
Minneapolis, United States.

Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. 2015. Aligning books
and movies: Towards story-like visual explana-
tions by watching movies and reading books.

https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202

