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Preface

Welcome to the 5th Workshop on Semantic Deep Learning (SemDeep-5), held in conjunction with IJ-
CAI 2019 (Macau, China). As a series of workshops and a special issue, SemDeep has been aiming to
bring together Semantic Web and Deep Learning research as well as industrial communities. It seeks to
offer a platform for joining computational linguistics and formal approaches to represent information and
knowledge, and thereby opens the discussion for new and innovative application scenarios for neural and
symbolic approaches to NLP, such as neural-symbolic reasoning.

SemDeep-5 features a shared task on evaluating meaning representations, the Word in Context (WiC)
challenge. It represents a joint task of semantic structure in the organization of senses and their represen-
tation. In addition to providing a reliable benchmark for studying an important linguistic phenomenon,
WiC is directly related to applications such as word sense disambiguation, entity linking, and semantic
search. In brief, the task consists in determining whether a given word is used in the same or different
senses given two different contexts. For the WiC challenge there were seven participant systems and three
papers could be accepted. Ansell et al. present an ELMo-inspired approach to tackle this challenge that
introduces a new similarity measure for an adapted version of contextualized representations. Loureiro
and Jorge combine word sense disambiguation with contextual embeddings and sense embeddings. Fi-
nally, Soler et al. utilize word and sentence embeddings paired with in-context substitute annotations.

In total, six research papers could be accepted for the workshop, four of which are long papers and two
are short, covering a wide variety of topics from neural question answering to knowledge representa-
tion and sequential tagging. Hommel et al. evaluate the impact of integrating linguistic features, such
as Part-of-Speech (PoS) and syntactic dependency relations, in a state-of-the-art question-answering ar-
chitecture and find a highly positive effect of this integration. Also along the lines of PoS, Wang et al.
analyze cross-linguistic aspects of tagging social media texts and propose a language-agnostic model that
utilizes a tagging scheme specific to this text genre, tested in Chinese. Concatenating rich features from a
gazetteer with input embeddings also proved as a successful integration strategy in Magnolini et al., who
analyze English and Italian data. More towards knowledge representation, Agibetov et al. focus on link
prediction utilizing hyperbolic embeddings specifically in the biological domain and Zhou et al. learn
household task knowledge from WikiHow descriptions. Finally, Deshmukh et al. extract structured data
from unstructured text by treating the problem as a sequence tagging task.

We would like to thank the Program Committee members for their support of this event in form of re-
viewing and feedback, without whom we would not be able to ensure the overall quality of the workshop.
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Abstract

Multilingual speakers often switch between
languages and generate enormous quantities
of cross-language data. This phenomenon is
more frequent observed in social media texts,
where a large body of user generated data is
produced every day. Such mix-lingual and
informal texts lead to a challenge for part-
of-speech (POS) tagging, which is one fun-
damental task in natural language processing.
In this paper, we propose a language-agnostic
POS tagger for social media texts, which is
able to learn from heterogeneous data with dif-
ferent genre and language type. Particularly,
in order to comprehensively evaluate POS tag-
ging performance, we propose a new tagging
scheme including exclusive tags for special
symbols in social media texts, and a human-
annotated dataset of Chinese-English mixed
social media texts is also developed. Experi-
ments on both synthetic and real datasets show
the validity and effectiveness of our model on
social media texts where it outperforms state-
of-the-art language-specific taggers.

1 Introduction

Part-of-speech tagging is the basic step of identify-
ing a token’s functional role within a sentence and
is the fundamental step in many NLP pipeline ap-
plications. It is well known that the performance
of complex NLP systems is negatively affected if
one of the preliminary stages is less than perfect.
For example, some tagging errors may change the
semantic interpretation of an entire sentence, typ-
ically due to assigning an entirely incorrect POS
category to a word, for example a Plural Noun
(NNS) incorrectly tagged as a Present Tense Verb
(VBZ). This alteration in the semantics has a dele-
terious effect on all the subsequent steps in the
NLP pipeline, e.g., Syntactic Parsing, Dependency
Parsing, etc. Compared with formal texts, like
newswire articles, the POS tagging performance

in the social media texts is still far from satisfac-
tory (Ritter et al., 2011; Gimpel et al., 2011). Most
state-of-the-art POS tagging approaches are based
on supervised methods, in which a large amount
of annotated data is needed to train models. How-
ever, many datasets constructed for the POS tag-
ging task are from carefully-edited newswire ar-
ticles, such as PTB (Marcus et al., 1993) and
CTB (Xia, 2000), which are greatly different from
social media texts. The difference in domains be-
tween training data and testing data may heavily
impact the performance of approaches based on
supervised methods. Hence, most state-of-the-art
POS taggers cannot achieve the same performance
as reported on newswire domain when applied on
social media texts (Owoputi et al., 2013).

However, enormous quantities of user generated
content on social media are giving increasing at-
tention as well as valuable sources for a variety of
applications, such as recommendation (Jiang and
Yang, 2017), disease prediction (Paul and Dredze,
2011). Yet, in such NLP tasks, one challenge is
that texts from social media platforms (e.g., Twit-
ter1, Weibo2) usually contain many informal in-
puts, such as acronym (as soon as possible →
asap), shorthand (technology → tech ), out-of-
vocabulary words ( meeeeee→ me), etc.

Another challenge is that many mix-lingual
cases exist in microblogs, which occurs frequently
in such informal texts. For example, according to
(Zhang et al., 2014), in Weibo7, the mixed usage
of Chinese and English is one of the most popular
phenomena with informal language. To illustrate

1http://www.twitter.com
2http://www.weibo.com
3http://nlp.stanford.edu:8080/parser/index.jsp
4https://github.com/fxsjy/jieba
5http://ictclas.nlpir.org/nlpir/
6Since the three POS taggers use different tag sets, so the

tags are a little different.
7The largest Chinese social media platform.
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Sent
今天帮我book一个会议室

help me book a meeting roomt today

Gold 今天/NT 帮我/AD 预定/VV 一/CD 个/M 会议室/NN

ST3 今天/NT 帮我/VV book一/CD 个/M 会议室/NN

Jieba4 今天/t 帮/v我/r book/eng 一个/m 会议室/n

NLPIR5 今天/T 帮/V 我/RR book/N 一个/MQ 会议室/N

Table 1: Tagging results on an example Chinese-
English Weibo by different Chinese POS taggers. In-
correct results are marked in red.6

such phenomenon, one example of microblogs ex-
tracted from real Weibo texts is shown in Table 1,
all of which are written in Chinese with a few En-
glish words.

In this paper, we focus on the task of anno-
tating Chinese-English social media texts from
Weibo, and implement automatic part-of-speech
(POS) tagging of these texts. To this end, we pro-
pose an approach to learning a POS tagger that can
be applied in truly cross-language social media
texts. We discuss techniques that allow us to learn
a tagger given only the amount of labeled data that
contains standard monolingual languages, specifi-
cally. Here, we improve the tagging performance
on Weibo texts, which involves Chinese and En-
glish, by using the semantic information from dif-
ferent sources of labeled data. Experimental re-
sults on both synthetic and real Weibo texts con-
firm the effectiveness of our method. Our contri-
butions can be concluded as follows:

• We explore to utilize multiple sources of an-
notated corpora to improve performance on
tagging cross-lingual Weibo texts. To this
end, we extends the bi-directional long short
term network with adversarial training.

• For the first time, we develop a cross-lingual
microblog corpus and give a quantitative
evaluation for POS tagging in such microblog
corpus.

• Experimental results show that our model is
better than existing state-of-the-art language
specific taggers.

2 Related Work

In essence, this paper is concerned with the in-
tersection of three topics: part-of-speech tagging,
processing of social media texts, and language-
switching in social media texts:

Part-of-speech tagging is widely treated as a se-
quence labeling problem, by assigning a unique
label over each sentential word (Fang and Cohn,
2016). Early studies on sequence labeling of-
ten use the models of HMM (Kupiec, 1992) and
CRF (Lafferty et al., 2001) based on manually-
crafted discrete features, which can suffer the fea-
ture sparsity problem and require heavy feature
engineering. Recently, neural network models
have been successfully applied to sequence label-
ing (Collobert and Weston, 2008). Among these
work, the model which uses BiLSTM for fea-
ture extraction has achieved state-of-the-art per-
formances (Huang et al., 2015), which is exploited
as the baseline model in our work.

However, regarding part-of-speech tagging so-
cial media texts, the aforementioned methods are
seldom used because of limited labeled data. Two
most similar earlier papers are the ARK tag-
ger (Gimpel et al., 2011) and T-Pos (Ritter et al.,
2011). Both these approaches adopt clustering to
handle linguistic noise, and train from a mixture of
hand-annotated tweets and existing POS-labeled
data. The ARK tagger reaches 92.8 % accuracy
at token level but uses a coarse, customized tagset.
T-Pos is based on the Penn Treebank dataset and
achieves an 88.4% token tagging accuracy.

In recent years, there have been several ef-
forts on social media text POS tagging, but al-
most exclusively on Twitter and mostly for En-
glish. However, it is noted that there are lim-
ited work on POS tagging cross-language texts,
especially for Chinese-English texts. (Moschitti
et al., 2014) reports achieving an accuracy of
over 90% on English-Hindi texts and (Lascarides
et al., 2009) propose a method to combine rule-
based and statistically induced taggers on han-
dling cross-language texts. However, these work
on POS tagging cross-language texts can not be
directly used to Chinese-English due to the great
difference between languages.

3 The Model

3.1 Overview

For most of Chinese POS taggers, there are usu-
ally two kinds of ways to tag foreign words: one
is to directly tag them as “foreign words”, which
is oversimplified; another is to give a POS tag sim-
ply based on a rule-based method, which is easy to
make incorrect tags and influences the further pro-
cessing for the syntactic and semantic analysis. To
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Type Input Segmentation & Part-Of-Speech

Zh-only 我希望你去采用下我的方法 我/PN希望/VV你去/AD采用/VV下/DT我/PN的/DEG方法/NN

Mixed 我希望你去follow下我的方法 我/PN希望/VV你去/VV follow/NN下/LC我/PN的/DEG 方法/NN

Table 2: POS tagging results by Standford POS Tagger 8. Incorrect results are marked in red.

illustrate the challenge, we take one of the state-
of-the-art Chinese POS taggers (Standford Chi-
nese POS tagger) as an example. From Table 2,
we can see that when the input only contains Chi-
nese words, the tagger can do a completely correct
tagging. But, when we replace a Chinese word
“采用” with its corresponding English translation
“follow”, we find that the tagger gives an incor-
rect tag “NN” to “follow”. A possible reason is
that Stanford Chinese POS tagger trains only on
the Chinese corpus, so it is “dull” to unseen En-
glish words. However, this situation happens a lot
in social media, such as Weibo.

Our goal is to train a POS tagger for Chinese
social media data, which contains user-generated
content and cross-language short text, specifically
Chinese-English text. Because there lacks an-
notated Chinese social media data, we consider
making use of out-of-domain (e.g., CTB (Xia,
2000)) and labeled data from other languages
(e.g., PTB (Marcus et al., 1993), ARK (Gim-
pel et al., 2011)), which are carefully annotated
and widely used in NLP-related tasks. The basic
model is shown in Figure 1, with its inputs from
different sources of labeled annotated data and the
output being a sequence of POS tags for the given
sentence. The feasibility of our method are based
on the following three points:

• We use a pre-trained cross-lingual embed-
ding, where words across two languages
share same semantic space, so their semantic
proximity could be correctly quantified.

• Previous work (Yang et al., 2017) has
shown that knowledge transfer is an effective
method on improving performance on a tar-
get task with few labeled training datasets. In
our setting, the knowledge learned from Chi-
nese and English datasets can be considered
as a process of knowledge transfer, which
jointly contribute to our task of tagging cross-
lingual texts.

• An adversarial network is implemented to
improve the share representation, aiming

at achieving better tagging performance on
cross-lingual texts.

Recent advances suggest that recurrent neural
networks are capable of learning useful represen-
tation information for modeling problems of se-
quential nature (Plank et al., 2016). In this sec-
tion, we describe our social media POS tagger,
which is based on bidirectional long short term
memory (BiLSTM). Since there is lack of anno-
tated social media data as training data, we con-
sider using other out-of-domain labeled data and
labeled from different languages, both of which
are monolingual. Instead of the common mono-
lingual embeddings, we use cross-lingual embed-
dings as a bridge between different languages.
Our joint model is trained based on different la-
beled datasets from different domains and lan-
guages. Furthermore, we improve the proposed
joint model with an adversarial training scheme.

3.2 Cross-lingual Token Representation
Considering that we need to tag texts containing
different languages, i.e. Chinese and English, we
hope semantics-close words from different lan-
guages can have close distributed word representa-
tions. Distributed word representations are useful
in NLP applications such as information retrieval,
search query expansions, or representing seman-
tics of words. A number of methods have been
explored to train and apply word embeddings us-
ing continuous models for language-specific cor-
pora. However, Chinese- and English- embed-
dings trained from their own language-specific
corpora usually share a totally different semantic
space since each language has its own vocabulary
space. Therefore, although the Chinese word “政
府” shares the same knowledge semantics with its
English translation “government”, their distance
in the distributed word representation space is not
close as we expect. Specially, we adopt two ap-
proaches to train a bilingual embeddings.

3.2.1 Unsupervised Training
We adopt the method proposed in (Zou et al.,
2013) to achieve bilingual embeddings. First, by

3



Figure 1: The general architecture of our proposed model. The green box and red box represents two feed-forward
networks, which are used for the tagging task and the language identification task, respectively. Note that we only
show the operation on the one hidden state of BiLSTM’s outputs, and other hidden states have the same operation.

using the machine translation word alignments ex-
tracted with the Berkeley Aligner (Liang et al.,
2006), two alignment matrices (Azh→en, Aen→zh)
are achieved. Next, two combined objectives are
optimized during training:

JCO−zh + λJTEO−en→zh (1)

JCO−en + λJTEO−zh→en (2)

Equation 1 and 2 are optimized for Chinese em-
beddings and English embeddings, respectively.
For example, for Chinese embedding, JCO−zh
is to keep the monolingual features of Chinese
language itself, and JTEO−en→zh is to optimize
the Translation Equivalence. The embeddings are
learned through curriculum training on the Chi-
nese Gigaword corpus.

3.2.2 Embedding Projection
Instead of training embeddings joint for two lan-
guages, we consider using existing embeddings
with projection. There are many available pre-
trained word embeddings trained from monolin-
gual corpora. Considering that in Weibo, most of
texts are written in Chinese, we project the En-
glish embedding space (S) into the Chinese em-
bedding space (T ). Instead of re-training from
parallel corpora, we adopt two methods proposed
in (Song and Lee, 2017) to do the embedding pro-
jection. We get 1,000 common Chinese words and
its corresponding English translations, which will
be used to calculate the projection function. In lin-
ear projection, the least square fitting is used to
solve the projection formula. For non-linear pro-
jection, the projection is implemented with a two-
layer perceptron.

3.3 The Joint Model

To utilize a set of labeled corpora from differ-
ent domains and languages to improve the tagging
performance on cross-lingual Weibo texts, we first
consider a joint model based on knowledge trans-
fer. To facilitate this, we give an explanation for
notations used in this paper. Formally, we refer to
Sk as a collection of source training datasets from
k labeled corpora. Mathematically,

Sk = {di}ki=1 (3)

di = {(xij , yij)}Li
j=1 (4)

xij = {wm}Nm=1 (5)

yij = {tm}Nm=1, tm ∈ T, (6)

where Li represents the number of sentences in
the corpus di; xij and yij denote a sentence and a
set of tags for the sentence from di, respetively;
N is the length of the given sentence, namely, the
number of words; wm and tm denote a word and
its corresponding POS tag, respectively; T is a set
of POS tags defined in our paper, which will be
described in Section 3.4.

3.3.1 The Part-of-speech Tagging Model
Let {x1, · · · , xn} be the sequence of words and
{y1, · · · , yn }be the sequence of POS tags. We
define the joint distribution as follows:

p(t1, t2, · · · , tn|x1, x2, · · · , xn)
=

∏

i=1

np(yi|x1, x2, · · · , xn), (7)

where p(yi|x1, x2, · · · , xn) uses a bidirectional
long short term memory (BiLSTM) (Graves and
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Schmidhuber, 2005). The update of each LSTM
unit can be written as follows:

←−
ht ,
−→
ht = BiLSTM(ht−1;xt; θ), (8)

where xt is a input at the current time step, ht−1 is
hidden value of last time step, and θ represents all
parameters.

For the given sequence x = (x1, x2, · · · , xn),
we first use an embedding layer to get the vector
representation (mix-lingual embeddings) of each
word xi. The output at the last moment ht can
be regarded as the representation of the whole se-
quence, which has a fully connected layer fol-
lowed by a softmax non-linear layer that predicts
the probability distribution over classes.

ŷ = softmax(Wp(
←−
ht +

−→
ht) + bp), (9)

where ŷ is prediction probabilities, Wp is the
weights which need to be learned, bp is a bias term.
Given a corpus with N training samples (xi, yi),
the parameters of the network are trained to min-
imise the cross-entropy of the predicted and true
distributions.

lp(ŷ, y) = −
N∑

i=1

C∑

j=1

yji log ŷ
j
i , (10)

where yji is the ground-truth label;ŷji is prediction
probabilities, and C is the class number.

3.3.2 Adversarial Training
The network described so far learns the abstract
features through hidden layers that are discrimina-
tive for the part-of-speech tagging task. However,
our goal is also to make these features invariant
across languages in order to adapt to cross-lingual
texts. To this end, we incorporate the adversarial
training into our baseline POS tagger. Adversar-
ial training (Goodfellow et al., 2014) is a powerful
regularization method, which have been explored
in the domain adaption (Ganin et al., 2016) and
image recognition (Shrivastava et al., 2017) to im-
prove the robustness of classifiers to input pertur-
bations. We introduce a language discriminator,
another neural network that takes the output hid-
den state of the BiLSTM network as input at each
time step, and tries to discriminate between Chi-
nese and English inputs in our case. Mathemat-
ically, the language discriminator is defined by a
sigmoid function, and the discrimination loss is
represented as the negative log-probability:

ld = d log(d̂) + (1− d) log(1− d̂) (11)

Special Word Example Tag

Text Emoji :-D EMOT

Pictorial Emoji [:-D] EMOJ

URLs https://weibo.com URL

Tel Number 88888 PHONE

At-mention @邓超 MENT

Topic #爸爸去哪儿# Hash

Table 3: Six specific tags for Weibo texts

where d ∈ {0, 1} denotes the language label (1 for
Chinese and 0 for English), and d̂ is the predicted
probability for d = 1.

The overall training objective of the joint model
can be written as follows:

l = lp − λld (12)

where the hyper-parameter λ controls the relative
strength of the two networks.

Specifically, in our gradient descent training,
the optimization is performed by reversing the
gradients of the language discrimination loss
ld (Ganin et al., 2016), when they are backprop-
agated to the shared layers. As shown in Figure
1, the gradient reversal is applied to the BiLSTM
layer and also to the layers that come before it.

3.4 Part-of-Speech Tagsets
Since we use labeled datasets from different do-
mains and languages, we need to map different
tagsets to a uniform tagset. To do so, we use the
12 universal POS tags defined in (Petrov et al.,
2011): NOUN (nouns), VERB (verbs), ADJ (ad-
jectives), ADV (adverbs), PRON (pronouns), DET
(determiners and articles), ADP (prepositions and
postpositions), NUM (numerals), CONJ (conjunc-
tions), PRT (particles), ‘.’ (punctuation marks) and
X (a catch-all for other categories)9.

Besides, we design additional 6 tags specific to
Weibo texts: text emoticons; pictorial emoticons;
URLs; telephone number; Weibo hashtags, of the
form #tagname#, which the author may supply to
categorize a Weibo post; and Weibo at-mentions,
of the form @user, which link to other Weibo users
from within a Weibo post. The details of 6 social
media tags are shown in Table 3.

9The mapping rules for different tagsets are obtained from
https://github.com/slavpetrov/universal-pos-tags.
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Name # of Sen # of Chinese of English # of Other

S-weibo 1,000 10,901 1221 343

R-weibo 700 6,071 878 223

Table 4: Statistics of synthetic and manually-annotated
datasets, denoted as S-weibo and M-weibo, respec-
tively. (# of Chinese, English, Other denotes the num-
ber of words, respectively.)

4 Experiments

This section explains our experiments on the eval-
uation of our proposed model on POS tagging
cross-lingual Weibo texts. First, we describe how
we collect and annotate Weibo texts. A synthetic
method to generate language mixed Weibo texts
is also illustrated. Both of datasets are only used
for testing. Next, we explore the utility of cross-
lingual embeddings generated by the aforemen-
tioned two methods: unsupervised training and
embedding projection. Then, we evaluate the pro-
posed model on both the synthetic and manually-
annotated datasets.

4.1 Data Collection and Annotation

Synthetic Without annotated language mixed
posts from Weibo, we first propose a synthetic
method to generate such data as an alternative.
Considering that in Chinese-English mixed posts,
English words of noun, verb and adjective cate-
gories are the most commonly used, so we ran-
domly transform a certain percentage of Chi-
nese words with these POS tags. An annotated
Chinese-only Weibo dataset are obtained from
NLPCC 2015 Shared Task (Li et al., 2015).

Manual Annotation To validate the actual per-
formance, we develop a corpus by manually an-
notating text messages posted to Weibo. Initially,
we collect 500, 000 raw Weibo posts using Weibo
API on December 6, 2017. The posts are on var-
ious ‘hot’ topics (i.e., topics that are currently be-
ing discussed in news, social media, etc.). These
raw posts are then divided into three categories:
Chinese-only, Chinese-English and Other. The
language distribution of these posts and the fre-
quency of English words used in the Chinese-
English posts shown are shown in Figure 2. We
can see that over 70% mix-lingual Weibo posts
only contain one English word.

Next, we randomly choose 700 posts containng
both Chinese and English. Then, we ask three
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Figure 2: Left: Language distribution in Weibo posts.
(Zh: only contains Chinese words; Zh-En: con-
tains both Chinese and English words; Other: con-
tains words of more than two different languages);
Right: English words percentage in the Chinese-
English mixed Weibo posts

trained annotators to do the annotation task. Un-
like English language, a Chinese word usually
consists of two or more characters, so we need to
segment the posts before the annotation of the POS
tagging. In order to speed up the manual annota-
tion, we first pre-segment the 700 posts using a
Chinese Word Segmenter (Jieba), and these seg-
mented posts are then proofread and modified by
two trained annotators. Finally, two trained anno-
tators are asked to tag the segmented posts using
the 18 POS tags. Lastly, we ask the third annota-
tor to tag those words that are differently tagged
by the previous two annotators. Details of our ex-
periment datasets are shown in Table 4.

4.2 Experimental Setup
Our training data mainly consists of three sources:
PTB (Marcus et al., 1993), ARK (Gimpel et al.,
2011), and CTB (Xia, 2000). Different tagsets are
all mapped into the universal tagset described in
Section 3.4. Notice that since ARK is collected
from Twitter, also a kind of social media data,
so we keep Tweet-specific tags and map them to
our defined 6 Weibo-specific tags, for the reason
that some marks also appear in Weibo texts, such
as At-methion, URLs, and so on. We use three
language-specific Chinese POS taggers (ST, Jieba,
NLPIR) as our baseline models.

Besides, two models with and without adversar-
ial training, denoted as BiLSTM− and BiLSTM+,
are implemented to study the utility of the adver-
sarial training in our task. The hyper-parameters
used for our model are as follows:

• BiLSTM−: The hidden size is set to 150 and
other hyper-parameters are tuned on a devel-
opment set consisting of 10% randomly se-
lected sentences from the training data. RM-
Sprop (Graves, 2013) is used as optimizer.
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Corpus Models English Word
Chinese Word Weibo Word

OOV NOUN VERB ADJ Other

S-weibo

ST \ 0.611 0.802 0.557 \ 0.901 0.936
Jieba \ 0 0 0 \ 0.929 0.936
NLPI \ 0.691 0.866 0.628 \ 0.930 0.936

BiLSTM− \ 0.701 0.863 0.708 \ 0.908 0.936
BiLSTM+ \ 0.756 0.871 0.727 \ 0.912 0.936

R-weibo

ST 0.494 0.594 0.746 0.708 0.582 0.907 0.921
Jieba 0 0 0 0 0 0.896 0.921
NLPI 0.492 0.621 0.758 0.781 0.651 0.918 0.921

BiLSTM− 0.628 0.702 0.801 0.652 0.682 0.894 0.921
BiLSTM+ 0.672 0.731 0.812 0.703 0.697 0.900 0.921

Table 5: Experimental results (F1 scores) on synthetic and manually-annoated testing datasets, denoted as S-weibo
and R-weibo, respectively. In S-weibo, we only replace three types of English words using rules, so there is no
OOV and other English words in it. Besides, the Chinese POS tagger Jieba tags all foreign words as “eng”, so its
F1 scores are all considered to be 0 with regard to English words.

Emebdding Method Train-Data Test-data Accuracy

Uns-emb
BiLSTM PTB(en) CTB(zh) 0.511
BiLSTM CTB(zh) PTB(en) 0.486

Lprj-emb
BiLSTM PTB(en) CTB(zh) 0.346

BiLSTM CTB(zh) PTB(en) 0.310

Nprj-emb
BiLSTM PTB(en) CTB(zh) 0.467

BiLSTM CTB(zh) PTB(en) 0.406

Table 6: Experimental results by different cross-lingual
embeddings (Uns-emb, Lprj-emb, Nprj-emb are cross-
embeddings generated by unsupervised training, linear
embedding projection and non-linear embedding pro-
jection, respectively).

• BiLSTM+: We extend BiLSTM with an ad-
versarial training, aiming at improving the
share representation. The setting in the part
of BiLSTM is same with the baseline BiL-
STM. We adjust the discriminative ratio by
multiple iterations of adversarial training.

4.3 Exploration of Cross-lingual Embeddings
Chinese and English have many similarities in the
utterance, even if they have their own grammar
rules. Therefore, with a joint semantic space of
words across languages, it is possible that knowl-
edge can be transferred from one language to an-
other, and we can tag a corpus without having
training data that has the same language with it.
6 sets of experiments are designed, where the ef-
fectiveness of cross-lingual embedding generated
by three different methods is evaluated. The cri-
teria is the POS tagging performance and we use
BiLSTM as the evaluation model. In Table 6, we
use cross-lingual embeddings and train a BiLSTM

only on monolingual data. However, we still get
a comparative cross-lingual tagging performance.
In using the PTB (Marcus et al., 1993), an En-
glish annotated newswire corpus, as training data,
we get a 51.1% accuracy on tagging CTB, a Chi-
nese corpus (Xia, 2000). By the experiment, we
can see that cross-lingual embeddings generated
by the unsupervised training method achieve the
best tagging performance. Therefore, in the fol-
lowing experiments, if not particularly specified,
we use the cross-lingual embeddings trained by
the unsupervised method.

4.4 Evaluation Results

Table 5 shows the experimental results on both
synthetic and real cross-lingual Weibo posts. In
terms of the tagging performance of Chinese
words, our model achieves a comparable tagging
performance when compared with the other three
Chinese POS taggers (0.912 and 0.900, which
are 0.19 and 0.18 less than the best results, re-
spectively). One possible reason is that since our
model utilizes training datasets from different lan-
guages and domains, the tag selection may be im-
pacted by multiple factors and compromised when
compared with models trained on the training data
containing only one language .

However, our model achieves the best results on
tagging different types of English words, which
shows the effectiveness of our model. In addition,
from the tagging result of Weibo words, we can
see that using template rules can achieve a good
performance, 0.936 and 0.921 in S-weibo and R-
weibo, respectively. In Weibo (or other social
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metric sentence-level word-level

F1-score 0.68 0.61

Table 7: Comparison of POS tagging performance on
English words of R-weibo by using sentence-level and
word-level translation approaches.

media texts), these social symbols are rather lim-
ited and can be easily detected, and using template
rules is enough to achieve a satisfactory result.

4.5 Exploration of Translation Function

For a sentence containing both Chinese and En-
glish words, we explore the POS tagging perfor-
mance by utilizing the translation system10 and the
language-specific POS tagger11. The language-
mixed sentence is translated and then we use the
language-specific POS tagger to do the tagging. In
particular, we adopt two methods to do the trans-
lation as follows:

Sentence-level Translation The whole sentence
is input to the translation system, and the trans-
lated results of English words may be affected by
other Chinese words.

Word-level Translation In this setting, without
providing the context words , we translate the En-
glish words one by one and select the first result
output by the translation system if there are multi-
ple translation results.

The experimental results on R-weibo are shown
in Table 7. We can observe that the sentence-
level translation gives the better performance. A
possible reason is that with a context, the transla-
tion system can give a better translation prediction
when an English word corresponds to many Chi-
nese expressions. However, such method is over-
simplified and the performance is lower than that
of our proposed method shown in Table 5, which
further validates the utility of our model.

Case Analysis Two real Chinese-English Weibo
posts are tagged using Standford Tagger and our
model, and the tagged results are shown in Ta-
ble 8. In the first case, the “push” is a verb in
English but is used as an adjective in the cur-
rent Chinese-English text. The Standford tagger
gives an incorrect tag “VERB” for “push” while
our model gives the correct tagging result, which

10http://fanyi.baidu.com
11Chinese POS tagger.http://ictclas.nlpir.org/nlpir/

Sent
这个老师太push∗ >_< ∗

Translation: This teacher is too strict ∗ >_< ∗

ST 这个/DET老师/NOUN太/ADV push/VERB ∗ >_< ∗/EMOJ

BiLSTM+ 这个/DET老师/NOUN太/ADV push/ADJ ∗ >_< ∗/EMOJ

Sent
整个场面我要Hold住

Transalation: I need to hold the whole scene

ST 整个/DET场面/NOUN我/PRON要/VERB Hold/ADV住/VERB

BiLSTM+ 整个/DET场面/NOUN我/PRON要/VERB Hold/VERB住/VERB

Table 8: Comparison results on two real cross-lingual
Weibo posts by Standford tagger and our model, re-
spectively. Incorrect results are marked in red.12

shows that our model have learned the knowledge
at both syntactic and semantic level via both Chi-
nese and English source data. Likewise, the En-
glish word “Hold” in the second case should serve
as a verb as most of cases in English, but Stand-
ford tagger gives a completely incorrect tag, which
indicates the constraints of language-specific tag-
gers in handling cross-lingual texts while shows
the robustness and utility of our model.

5 Conclusion

Language mixing has become a popular social
phenomenon, especially in informal text such as
Weibo and Twitter. In this paper, we focus on POS
tagging on Chinese social media texts via learning
from multiple sources of labeled corpora. To im-
prove tagging performance on social media texts,
adversarial training is adopted in our model to re-
duce the bias of the tagger on different languages.
Experimental results confirm the validity of our
approach. Compared with existing state-of-the-art
language-specific taggers, our model achieves a
better performance on tagging cross-lingual social
media texts. We believe that our results provide a
strong baseline in part-of-speech tagging Chinese
social media texts.
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Abstract

Recently proposed hyperbolic neural embed-
dings naturally represent latent hierarchical se-
mantic relations, and could provide a suitable
bridge from the discrete world of biological
networks to continuous geometric representa-
tions, enabling down-stream machine learning
tasks, such as link prediction. In some cases,
however, link prediction is modeled by sepa-
rating hyperbolic embeddings using classifiers
that operate in a flat Euclidean space, thus un-
derexploiting the inherently curved geometric
space of embeddings. Herein we present and
analyze how recently introduced large-margin
classifiers in hyperbolic space could be used
in conjunction with hyperbolic embeddings,
in order to perform biological link prediction,
which exploits the curved geometry of com-
plex biological information.

1 Introduction

Link prediction is the task of finding missing
or unknown links among inter-connected entities.
This assumes that entities and links can be rep-
resented as a graph, where entities are nodes and
links are edges (if relationships are symmetric)
or arcs (if relationships are asymmetric). When
dealing with link prediction in knowledge bases,
the semantic information contained is usually en-
coded as a knowledge graph (KG) (Sri Nurdiati
and Hoede, 2008). For the purposes of this work
we simply treat a knowledge graph as a graph
with labelled edges (arcs), meaning that two en-
tities may be connected with more than one link
of different types. In addition, we conform to the
closed-world assumption. This means that all the
existing (asserted) links are considered positive,
and all the links which are unknown are consid-
ered negative. This separation into positive and
negative links naturally allows us to treat the link
prediction problem as a supervised classification

problem with binary classifiers (one classifier for
each relation type). However, while this separa-
tion makes it possible to use a wide array of well-
studied machine learning algorithms for link pre-
diction, the main challenge is how to find the best
representations for the links. This is the core sub-
ject of the recent research trend in learning suit-
able representations for knowledge graphs, largely
dominated by so-called neural embeddings. Most
commonly, neural embeddings are numeric rep-
resentations of nodes and relations of the knowl-
edge graph in some continuous space with vecto-
rial structure. An overview of state-of-the-art ap-
proaches can be found in (Nickel et al., 2016).

Predicting links is especially relevant in the
biomedical domain, where biological knowledge
lends itself naturally to be modelled with knowl-
edge graphs. Indeed, biological entities such as
genes and gene functions can be modelled as
nodes, and links among these entities as edges or
arcs. Neural embeddings Θ for these biological
entities could be trained with embedding models.
And by training a binary classifier on these contin-
uous numeric representations Θ, we could, for ex-
ample, estimate the probability Pl((u, v) = 1 |Θ)
of having a link l = HAS-FUNCTION (e.g., la-
belled edge) between nodes u = TRIM28 GENE

and v = NEGATIVE REGULATION OF TRAN-
SCRIPTION BY RNA POLYMERASE II.

More recently, researchers in machine learning
have turned their attention to hyperbolic space as
a better candidate for continuous geometric rep-
resentation of graph-based data (Nickel and Kiela,
2017; Chamberlain et al., 2017; De Sa et al., 2018;
Nickel and Kiela, 2018). This approach could be
of special interest for the representation of com-
plex biological networks, which were found to in-
herently exhibit a hyperbolic structure (Krioukov
et al., 2010; Alanis-Lobato et al., 2016). How-
ever, as argued in (Cho et al., 2018), in many sit-
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uations hyperbolic embeddings are used in classi-
fication tasks (such as link prediction) that operate
in ill-fitted Euclidean space. This leads to a situ-
ation where (flat) Euclidean classifiers misuse all
the learned curved information that lives in hyper-
bolic embeddings.

Contribution of this work. In this work we
compare hyperbolic and Euclidean large-margin
classifiers when used for biological link prediction
with the embeddings learned in flat and curved
geometric spaces. We believe that the lessons
learned from this comparison will help in the iden-
tification of next steps required for end-to-end
hyperbolic embedding training pipelines to ade-
quately exploit inherently curved geometry, and
to uncover latent hierarchical semantic relations of
complex biological patterns.

2 Background and Methods

Hyperbolic space can not be embedded with-
out distortion in Euclidean space (Efimov, 1963),
however, there are several useful models of hy-
perbolic geometry formulated as a subset of Eu-
clidean space. Two related models of hyper-
bolic space, popular in the deep learning commu-
nity, are hyperboloid and Poincare-ball. In the
first model of n-dimensional hyperbolic geome-
try points are represented on the forward sheet
of a two-sheeted hyperboloid (generalization of
hyperbola) of (n + 1)-dimensional Minkowski
space. Minkowski space, roughly speaking, is
a linear ambient space endowed with a bilin-
ear metric (generalization of inner product) given
by 〈u, v〉n+1 = −u0v0 +

∑n
i=1 uivi. Thus,

an n-dimensional hyperboloid Hn is a collec-
tion of points Hn = {x ∈ Rn+1|〈x, x〉n+1 =
−1, xn+1 > 0}. Under this setting, the dis-
tance between two points on the hyperboloid is
computed with dHn(u, v) = cosh−1(−〈u, v〉n+1).
The second model of hyperbolic space is obtained
by projecting each point of Hn onto the hyper-
plane x0 = 0 using the rays emanating from
(−1, 0, . . . , 0). The latter gives us a Poincare
ball model, identified with the collection of points
Bn = {x : (x0, . . . , xn) ∈ Rn | ‖x‖2 < 1}.

Both models have found their use in litera-
ture. On one hand, the Poincare ball model
is more intuitive to visualize in lower dimen-
sions (Nickel and Kiela, 2017). On the other hand,
a hyperboloid model permits much simpler ex-
pression for parameter updates with Riemannian

gradient descent, and makes computation signifi-
cantly faster (Wilson and Leimeister, 2018; Nickel
and Kiela, 2018). These two models are equiv-
alent and points can be converted via diffeomor-
phisms from one space to another. Hyperboloid to
Poincare ball with p(x0, . . . , xn) = (x1,...,xn)

x0+1 , and
reciprocally with its inverse p−1(x1, . . . , xn) =
(1+‖x‖2,2x1,...,2xn)

1−‖x‖2 .

Datasets. In this work we consider two bi-
ological knowledge graphs: UMLS (subset of
the Unified Medical Language System (Bodenrei-
der, 2004) semantic network) and BIO-KG (Al-
shahrani et al., 2017). BIO-KG is a comprehensive
and curated biological knowledge graph that in-
corporates knowledge from several biological on-
tologies and databases, including human protein
interactions, human chemical-protein interactions
and drug side effects and drug indication pairs.
UMLS has 46 relation types, 137 biological enti-
ties and a total number of 6257 links, BIO-KG has
9 relation types, 346,225 biological entities and
1,619,239 links in total.

Neural embedding models. We compare two
shallow semi-supervised neural embedding mod-
els (Nickel and Kiela, 2017; Agibetov and
Samwald, 2018), which aim at learning entity em-
beddings Θ in a d-dimensional Hyperbolic Hd and
Euclidean Rd spaces, respectively. Both models
are simple. They embed observed connected pairs
of entities (positives) close to each other, and place
entities that do not share any links (generated neg-
atives) farther apart. As in many neural embedding
approaches, the weight matrix Θ of the hidden
layer of the neural network represents entity em-
beddings (latent representations). The neural net-
work is trained by minimizing, for each observed
connected pair (u, v), the following loss function

arg minΘ L(Θ) :=
∑

(u,v) log e−d(Θ(u),Θ(v))
∑

(u,v′)∈Negu
e−d(Θ(u),Θv′) ,

(1)
where Θ(u) is the currently learned d-dimensional
representation of entity u, and Negu represents all
negative pairs of u (i.e., u, v′ do not share any
link). Both models have the same signature, but
operate in different spaces, which means that dis-
tance d and parameters Θ are computed/updated
differently. For the hyperbolic model we em-
ploy the hyperbolic distance dHn and Riemanian
SGD with geodesic updates (Wilson and Leimeis-

11



ter, 2018), the implementation of which is avail-
able on GitHub 1. The Euclidean model is trained
with StarSpace toolkit 2; details on preparing data
and training neural embeddings with this model
can be found in (Agibetov and Samwald, 2018).

Large-margin classification in Hyperbolic
space. In (Cho et al., 2018) authors propose
Hyperbolic Linear Support Vector classification
as the extension of the well-known Euclidean
SVM to hyperbolic geometry. Analogously to
the Euclidean case, we consider a set of decision
functions that lead to linear decision boundaries
in the hyperbolic space. Linear decision bound-
aries in hyperbolic space are a set of geodesics
(curves) that are obtained by intersecting the
hyperboloid Hn with an n-dimensional hyper-
plane (〈w, x〉n+1 = 0) in the ambient space
Rn+1. Authors (Cho et al., 2018) formulate the
optimization problem to solve maximum margin
classification with linear decision boundaries in
hyperbolic space as

argmin
w∈Rn+1

f(w) := − 1

2
〈w,w〉n+1+

C
m∑

j=1

max(0, sinh
−1

(1)− sinh
−1

(y
(j)

(〈w, x
(j)〉n+1))),

(2)

which closely resembles the Euclidean version,
where Euclidean inner products are replaced with
Minkowski inner products. The parameter C
in Eq. 2 controls the tradeoff between minimiz-
ing misclassification and maximizing margin. In
all our experiments we use our own Python im-
plementation 3 of Hyperbolic Linear SVM com-
patible with scikit-learn (Pedregosa et al., 2011),
which we based on the official open source imple-
mentation in Matlab 4.

Link prediction with neural embeddings. The
usual way to perform link prediction with neural
embeddings Θ is to use them as some kind of rep-
resentation of a link li between u and v. In Eu-
clidean space, one could leverage the underlying
vector space structure and come up with link rep-
resentations, such as vector addition (li := Θ(u)+
Θ(v)) and element-wise multiplication of vector
elements (Grover and Leskovec, 2016). Once we

1
https://github.com/lateral/

geodesic-poincare-embeddings
2
https://github.com/facebookresearch/StarSpace

3
https://github.com/plumdeq/hsvm

4
https://github.com/hhcho/hyplinear

fix our link representation method, we can train
binary classifiers f(li) to perform link prediction
(i.e., f(li) > 0.5 if there is a link between u and
v and f(li) ≤ 0.5 otherwise). Such link repre-
sentations may take into account more geomet-
rical patterns than those that rely on the notion
of distance alone (e.g., Fermi-Dirac distribution
P ((u, v) = 1 |Θ) = 1/(e(d(Θ(u),Θ(v))−r)/t + 1)
as in (Nickel and Kiela, 2017)).

Experimental setting. For each knowledge
graph we perform a nested cross-validation pro-
cedure for 10 runs. In each run, first, we split
independently positive links 10 times into train
(80%) and test (20%) datasets. We further gen-
erate negative links for each split dataset with the
positive to negative ratio 1:1 (i.e., both train and
test datasets have this ratio). We then use positive
links of the train dataset to compute neural em-
beddings in hyperbolic ΘHn and Euclidean spaces
ΘRn by minimizing the loss function in Eq. 1.
Note that we pre-train hyperbolic embeddings on
flat graph-representations of knowledge graphs,
i.e., all edges are unlabelled, and each pair is con-
nected with at most one edge (the description of
this pipeline in Euclidean space in (Agibetov and
Samwald, 2018)). Next, we train separate binary
classifiers for each relation type with Euclidean
and hyperbolic SVM classifiers. Performance of
binary classifiers is evaluated with the area un-
der the receiver-operator curve (ROC AUC), and
is averaged over all 10 runs. This nested cross-
validation procedure with 10 runs is computed
separately in Euclidean and hyperbolic cases for
dimensions d ∈ {2, 5, 10}. For a fair comparison
we train embeddings for 500 epochs each time. In
both hyperbolic and Euclidean SVMs, the parame-
ter C ∈ {0.1, 1, 10} (Eq.2) is optimized separately
on the training dataset for each run.

3 Results and discussion

Table 1 summarizes results of our experiments,
where we compared the classification performance
of Euclidean and hyperbolic embeddings in con-
junction with Euclidean and hyperbolic large-
margin classifiers. Each score in this table repre-
sents an average classification score of 10 nested
cross-validation runs over all relations in the
knowledge graph (each relation score itself is an
average over 10 runs, and the final score is the
average over all relations). Our comparisons are
reported for a increasing number of dimensions
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Euclidean embeddings Hyperbolic embeddings

dim d Euc SVM Hyp SVM Euc SVM Hyp SVM

UMLS
2 0.661± 0.023 0.616± 0.019 0.695± 0.026 0.703 ± 0.018
5 0.780 ± 0.023 0.743± 0.024 0.735± 0.030 0.743± 0.024
10 0.793 ± 0.025 0.754± 0.022 0.767± 0.031 0.742± 0.026

BIO-KG

2 0.692 ± 0.010 0.691± 0.010 0.613± 0.006 0.676± 0.009
5 0.776 ± 0.010 0.771± 0.011 0.697± 0.008 0.756± 0.011
10 0.732± 0.009 0.723± 0.008 0.711± 0.010 0.763 ± 0.010

Table 1: Performance comparison of flat and curved embeddings and large-margin classifiers for biological link
prediction task. Link prediction is performed by training large-margin classifiers in Euclidean (Euc SVM) and
hyperbolic (Hyp SVM) spaces on Euclidean and hyperbolic embeddings (classifiers and embeddings are trained
separately). Embeddings are trained once per graph, while one separate classifier is trained for each type of
relation. Performance of a classifier to predict a link of a certain type is measured with ROC AUC score. Each
cell represents a ROC AUC score (± SD (standard deviation)) averaged over all relations in a graph (each relation
ROC AUC score is itself averaged after a 10 fold cross-validation.

(d ∈ [2, 5, 10]).

Results for UMLS confirmed the main hypoth-
esis supported in (Nickel and Kiela, 2017; De Sa
et al., 2018) that hyperbolic embeddings outper-
form Euclidean embeddings with fewer dimen-
sions. And, as reported in (Cho et al., 2018), that
large-margin classification in hyperbolic space uti-
lizes the curved geometry of the learned embed-
dings better than its flat counterpart (linear eu-
clidean SVM classifier). Moreover, the UMLS
graph contains many links (e.g., PART OF) that
inherently encode hierarchical semantic relations
between the nodes, which are better represented in
the hyperbolic space. However, as we increase the
number of dimensions, Euclidean embeddings and
Euclidean SVM outperform its hyperbolic com-
petitors.

In case of a bigger and complex graph (BIO-
KG) the situation seems to be the exact opposite
– hyperbolic toolbox largely outperforms its Eu-
clidean counterpart as we increase the size of di-
mensions (d = 10), while flat classifier and flat
embeddings perform better with fewer dimensions
(d = 2, 5). This could be due to the fact that 500
epochs are not enough to disentangle complex bio-
logical knowledge in the hyperbolic space in lower
dimensions.

In all of our experiments Hyperbolic SVM had
significantly better training performance (ROC
AUC) than Euclidean SVM, which shows that the
curved hyperbolic space does represent the train-
ing data better, however, has a poorer generaliza-
tion trait than its Euclidean counterpart.

4 Lessons learned and future directions

The benefit of learning hyperbolic embeddings is
that they require fewer dimensions to capture la-
tent semantic and hierarchical information. This is
important for scalability and interpretability (eas-
ier to visualize 2 or 3 dimensional embeddings).

From our preliminary results we observed that
hyperbolic embeddings capture latent hierarchi-
cal semantic relations of the UMLS graph better
than Euclidean embeddings in lower dimensions,
similar to the state-of-the-art results for the recon-
struction of hierarchical relationships (Nickel and
Kiela, 2017, 2018; Ganea et al., 2018). For com-
plex and big graphs, such as BIO-KG, we would
recommend training hyperbolic embeddings for
longer periods (> 500 epochs) in order to better
disentangle complex information.

While training hyperbolic embeddings is notori-
ous for long computational time, recent advances
in Riemannian SGD optimization in hyperboloid
model of hyperbolic space (Wilson and Leimeis-
ter, 2018) provide us with computational tools
that run much faster than analogous approaches
in Poincare ball model (Nickel and Kiela, 2017)
(still much slower than in the Euclidean case). Fi-
nally, we believe that in order to learn better hyper-
bolic embeddings (and do it faster), the next steps
should be focused on end-to-end hyperbolic em-
bedding training, where hyperbolic large-margin
classifier loss is directly incorporated during the
training process.
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embeddings for learning hierarchical representa-
tions. arXiv:1705.08039 [cs, stat].

Maximilian Nickel and Douwe Kiela. 2018. Learning
continuous hierarchies in the lorentz model of hy-
perbolic geometry. arXiv.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and
Evgeniy Gabrilovich. 2016. A review of relational
machine learning for knowledge graphs. Proc.
IEEE, 104(1):11–33.

Fabian Pedregosa, Gal Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
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Abstract

Considerable progress in neural question an-
swering has been made on competitive general
domain datasets. In order to explore methods
to aid the generalization potential of question
answering models, we reimplement a state-
of-the-art architecture, perform a parameter
search on an open-domain dataset and eval-
uate a first approach for integrating linguis-
tic input features such as part-of-speech tags,
syntactic dependency relations and semantic
roles. The results show that adding these in-
put features has a greater impact on perfor-
mance than any of the architectural parameters
we explore. Our findings suggest that these
layers of linguistic knowledge have the poten-
tial to substantially increase the generalization
capacities of neural QA models, thus facilitat-
ing cross-domain model transfer or the devel-
opment of domain-agnostic QA models.

1 Introduction

Recently, deep neural network approaches for
question answering (QA) have gained traction.
The strong interest in this task may be explained
by two promises that resonate in neural QA ap-
proaches: For one thing, QA is claimed to bear
the potential to subsume a lot of other NLP chal-
lenges. From this perspective, almost every task
can be framed as a natural language question (Ku-
mar et al., 2016). Thus, a QA model with the
capacity to learn mappings from natural language
terminology to formal linguistic concepts could be
used as a surrogate model, reducing annotation
and training effort and providing fast solutions to
potentially complex NLP problems. For another,
QA systems have always been considered as in-
tuitive natural language interfaces for information
access in various domains of (technical) knowl-
edge.

As any other practical NLP solution targeting

specialized domains, QA systems face the inher-
ent challenges of cross-domain generalization or
domain adaptation, respectively. However, QA ap-
proaches can be considered particularly suitable
for this kind of problem, as the semantic underpin-
nings of question/answer pairs capture a universal
layer of meaning that is domain-agnostic to some
extent (but might require fine-tuning wrt. particu-
lar domain concepts or terminology).

We hypothesize that a promising approach to-
wards rapid information access in specialized do-
mains would be (i) to learn the aforementioned
universal meaning layer from large collections of
open-domain question/answer pairs, and (ii) adapt
the resulting meaning representations to more spe-
cific domains subsequently. In this paper, we focus
on the first problem.

Our work is based on the assumption that rich
representations of linguistic knowledge at high
levels of syntactic and semantic abstraction fa-
cilitates neural NLP models to capture “univer-
sal”, domain-agnostic meaning, which in turn fos-
ters performance in open-domain QA. Against this
backdrop, we evaluate the impact of explicitly en-
coded linguistic information in terms of part-of-
speech tags, syntactic dependencies and seman-
tic roles on open-domain performance of a state-
of-the-art neural QA model. We find that our
re-implementation of the deep neural QANet ar-
chitecture (Yu et al., 2018) benefits considerably
from these linguistically enriched representations,
which we consider a promising first step towards
generalizable, rapidly adaptable QA models.

2 Related Work

In recent years, research about feature engineer-
ing for NLP models has subsided to some extent.
This might be attributed to the ability of neural
networks to perform hierarchical feature learning
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(Bengio, 2009). Using neural approaches, many
of the core NLP tasks like part-of-speech (PoS)
tagging (Koo et al., 2008), dependency parsing
(Chen and Manning, 2014), named entity recog-
nition (Lample et al., 2016) and semantic role la-
belling (Roth and Woodsend, 2014; Zhou and Xu,
2015) have been improved. However, recent pa-
pers that make use of the improved performance
in these areas are few (Alexandrescu and Kirch-
hoff, 2006; Sennrich and Haddow, 2016). Thus,
we want to evaluate whether adding linguistic in-
formation to the inputs of a QA model improves
the performance. Our approach to integrating lin-
guistic input features by embedding each individu-
ally and concatenating the embeddings is inspired
by Sennrich and Haddow (2016), who apply this
approach in the context of machine translation.

This paper builds upon a host of recent develop-
ments in neural architectures for question answer-
ing or reading comprehension. While most ap-
proaches rely heavily on recurrent layers (Huang
et al., 2017; Hu et al., 2018; Seo et al., 2016; Shen
et al., 2017; Wang et al., 2017; Xiong et al., 2016),
we chose to reimplement QANet, a self-attention
based architecture (Yu et al., 2018).

Apart from that, we use the tools from Roth
and Woodsend (2014) for extracting semantic
roles over the whole Stanford Question Answer-
ing Dataset (SQuAD) (Rajpurkar et al., 2016).

3 Extending QANet with Linguistic
Input Features

As a testbed in order to assess the impact of lin-
guistic input features in neural QA models, we
make use of (a re-implementation of) QANet (Yu
et al., 2018). By default, QANet solely uses word
and character inputs. However, numerous off-the-
shelf NLP tools are available that could be used
to enrich these inputs with explicit linguistic infor-
mation. This option is potentially interesting when
trying to adapt a model to other domains: While
additional training data might be expensive to ob-
tain, these linguistic input features could boost
the performance by providing a scalable, domain-
agnostic source of information. We expand the
per-word inputs with three different kinds of lin-
guistic features: part-of-speech (PoS) tags, depen-
dency relation labels and semantic roles.

PoS Tags. We hypothesized that the information
about the part-of-speech of input tokens would
help the neural network by reducing the number of

answer candidates for specific types of questions.
To extract POS tags for all contexts and questions,
we used the coarse-graind PoS tag set of the spaCy
library1.

Dependency Relation Labels. We expected
that syntactic information might help the model to
predict the boundaries of spans with more preci-
sion. Again, we use spaCy to extract dependency
information for questions and contexts. To extract
dependency information per input word, we use
the type label of that dependency relation in which
the word is the child.

Semantic Roles. Semantic Role Labeling (SRL)
deals with the problem of finding shallow seman-
tic structure in sentences by identifying events
(“predicates”) and their participants (“semantic
roles”). By identifying predicates and related
participants and properties, SRL helps to answer
“who” did “what” to “whom”, “where”, “when”
and “how”? To do that, each constituent in a sen-
tence is assigned a semantic role from a predifined
set of roles like agent, patient or location (Márquez
et al., 2008). Since semantic role labeling aims at
identifying relevant aspects of events that are di-
rectly related to the above-mentioned WH ques-
tions, question answering models should directly
benefit from this kinds of information.

We used the mate-plus tools (Roth and Wood-
send, 2014) for parsing the complete SQuAD
dataset and to obtain PropBank-labeled semantic
roles per input word (Palmer et al., 2005). We
added the role <PREDICATE> to the set of se-
mantic roles to provide the model with pointers to
the basic events. Words that did not correspond
to any semantic role were assigned a <NOROLE>
label.

Integration of Linguistic Features in QANet.
In the standard QANet architecture, words and
corresponding characters are embedded individ-
ually and then concatenated to obtain one repre-
sentation vector per input word. Following Sen-
nrich and Haddow (2016), we enrich this process
by mapping each of the linguistic input features
described above to its own embedding space and
then including them into the concatenation. Fig-
ure 1 shows an updated version of the input em-
bedding layer of QANet that includes the linguis-
tic input features.

1Available at https://spacy.io/

16



Figure 1: The low-level structure of the input embedding layer, enriched with additional linguistic inputs.

Each embedding vector consists of the embed-
ded information of the word, its characters, its PoS
tag, the label of the dependency relation in which
the respective word is the child and its semantic
roles. While the PoS tags and dependency relation
labels are single word-level features and can be
embedded by standard indexing and look-up, each
word can have multiple semantic roles. Therefore,
we embed each semantic role separately and ag-
gregate over them. After preliminary experimen-
tation with convolution, summing and taking the
maximum, we decided for summing along each
dimension of the semantic role embeddings2. This
results in one aggregated semantic role embedding
vector per input word. Note that we intentionally
do not compute any combinations of the features
mentioned above manually. We simply enrich the
available word-level input information and rely on
the network to find meaningful connections.

4 Experiments

To obtain a baseline, we reimplemented QANet
and performed a parameter search. After that, we
evaluated the integration of linguistic input fea-
tures against that baseline.

4.1 Parameter Exploration in QANet
In the first experiment, we explore the effect of
various parameters on open-domain QA perfor-

2We set the maximum of semantic roles per word to 8

mance in our re-implementation of QANet. The
aim is to understand the impact of each parameter
to compare it to the contribution of linguistic input
features.

Dataset. We use the Stanford Question Answer-
ing Dataset (SQuAD) (Rajpurkar et al., 2016) for
parameter search. Yu et al. (2018) state that the re-
sults on development and test set are strongly cor-
related. Thus, improvements on the development
set of SQuAD should also lead to improvements
on the test set. Based on this claim, we only re-
port results on the development set, since the test
set of SQuAD is not publicly available. The train-
ing set consists of 87599 samples and the test set
consists of 10570 samples. All texts are in English
language.

Preprocessing. To preprocess SQuAD, we used
the spaCy library for tokenization. We truncated
or padded each paragraph to length 400 and each
question to length 30. Each token was transformed
into lower case and embedded using pre-trained
GloVe (Pennington et al., 2014) embeddings. All
words that were either out-of-vocabulary or not
present at training time were mapped to a ran-
domly initialized unknown token (<UNK>). For
each token, we extracted all characters and then
truncated or padded them to 16 characters per
word. Each character embedding was initialized
randomly.
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Parameter ∆F1 ∆EM

word embeddings 2.4 1.8
character embeddings 1.6 1.7
# convolutional layers 1.5 2.2
shared wheights in encoding 1.3 1.3
# encoder blocks 0.9 0.9
# attention heads 0.6 1.2
# highway layers 0.4 1.0
model dimensionalty 0.5 0.8
pointwise feed-forward layers 0.2 0.0

combination of best settings 1.7 1.9

Table 1: Impact of evaluated individual parameters and
the combination of their best settings on F1 and exact
match (EM) scores.

Training Parameters. For regularization, we
adopted the methods from Yu et al. (2018): We
apply L2 weight decay on all trainable variables
with λ = 3 × 10−7 and dropout on word embed-
dings (p = 0.1), as well as on character embed-
dings (p = 0.05). Additionally, a dropout of rate
0.1 is applied on every layer except from the out-
put layer. Apart from that, we employ the stochas-
tic depth method (Huang et al., 2016) inside each
stack of encoder blocks during training. In order
to compute the probabilities pl we use a linear de-
cay rule: pl = 1 − l

L(1 − pL), following Huang
et al. (2016); Yu et al. (2018). L denotes the index
of the last layer in a stack of encoder blocks and
the corresponding probability pL is set to 0.9.

As an optimizer, we use ADAM (Kingma and
Ba, 2014) with β1 = 0.8, β2 = 0.999 and ε =
10−7 (Yu et al., 2018). To prevent an exploding
gradient, we use gradient norm clipping (Pascanu
et al., 2013) with a threshold of 5. We use a learn-
ing rate warm-up schema with a logarithmic in-
crease from 0.0 to 0.001 in the first 1000 gradient
steps. After that, the learning rate is kept fixed
at 0.001. Finally, we apply an exponential mov-
ing average with decay rate 0.9999 on all trainable
variables. We implemented our model in PyTorch3

(Paszke et al., 2017) and trained on a geforce GTX
1080 GPU with 12gb RAM.

Results. For evaluation, we use the F1 and ex-
act match (EM) metrics from the official SQuAD
evaluation script. See Table 1 for an overview of
the impact of parameters on the scores.

3pytorch.org

Looking at the individual impact, the most in-
fluential parameters are the dimensionality of the
inputs, namely the word and character embedding
sizes. The parameter with the highest impact on
F1 and the second highest impact on Exact Match
is the word embedding size (∆F1 = 2.4, ∆EM =
1.8). Surprisingly, the best setting is the smallest
embedding size (50). In contrast, bigger character
embedding sizes perform better than smaller ones.
The best setting was a size of 300 (∆F1 = 1.6,
∆EM = 1.7). Possibly, using no word embed-
dings at all and scaling up the character embed-
dings could increase the performance further and
eliminate the need for pre-trained embeddings al-
together. The most influential architectural pa-
rameter was the number of convolutional layers in
model encoder blocks (∆F1 = 1.5, ∆EM = 2.2),
with the highest impact of all parameters on the
exact match score when using 5 convolutional lay-
ers instead of 2. The second most influential struc-
tural parameter was sharing the weights between
the embedding encoder layers for question and
context (∆F1 = 1.3, ∆EM = 1.3). The third
most influential structural parameter was the num-
ber of encoder blocks in the model encoder layer,
where 5 instead of 7 blocks yielded the best re-
sult (∆F1 = 0.9, ∆EM = 0.9). The number
of attention heads had a minor influence on F1
(∆F1 = 0.6) but a notable influence on exact
match (∆EM = 1.2). Fortunately, these results
are due to using only 2 attention heads. Thus, we
propose to use less attention heads in order to im-
prove results and reduce computational processing
costs. The remaining parameters (the number of
highway layers in the input embedding layer, the
model dimensionality and the usage of pointwise
feed-forward layers) all had negligible impacts on
the performance. In general, we propose to set
them to small values to reduce computational cost.

Combining the best settings for each parame-
ter in isolation did not yield the best overall re-
sults in either F1 or exact match (∆F1 = 1.7,
∆EM = 1.9). This combination was, however, the
second best option for both F1 and exact match.
Since this balanced quality was not apparent in any
other setting, we decided to use this combination
of parameters for all later experiments. The final
performance of this baseline model was F1 = 67.8
and Exact Match = 55.5.
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F1 EM

Baseline 67.8 55.5
50d PoS embeddings 69.6 58.1
100d PoS embeddings 69.7 58.9
200d PoS embeddings 69.7 57.8
300d PoS embeddings 69.5 57.9

50d DL embeddings 68.6 56.6
100d DL embeddings 68.9 57.8
200d DL embeddings 67.8 56.6
300d DL embeddings 69.0 57.2

50d SRL embeddings 67.9 55.1
100d SRL embeddings 68.0 55.5
200d SRL embeddings 68.8 56.6
300d SRL embeddings 68.7 56.0

Table 2: Results of enriching the inputs with linguistic
input embeddings of different sizes, in terms of F1 and
exact match (EM) scores. DL refers to dependency la-
bels, SRL to sematic role labels. No linguistic features
were used in the baseline.

4.2 Impact of Linguistic Input Features

For evaluating the impact of linguistic input fea-
tures, we used the same evaluation setup as for
the baseline, including training data and meta-
parameter choices. The embeddings for linguistic
inputs were initialized randomly and then included
as trainable parameters. Table 2 shows the results
for varying the embedding dimensionality for each
type of input feature, respectively, and also their
combination.

PoS Tags. Adding PoS tags to the embedding
space improves the overall performance of the net-
work, regardless of the size of the embeddings.
The best result is obtained by using PoS embed-
dings of size 100 (∆F1 = 1.9,∆EM = 3.4).

Dependency Relation Labels. Enriching the in-
puts with dependency relation information im-
proves the overall performance. To achieve a
strong improvement, the size of the embeddings
matters: While embeddings of size 200 only im-
prove the exact match (∆F1 = 0.0,∆EM = 1.1),
all other sizes increase the F1 score as well. The
biggest improvement in F1 score was achieved by
an embedding size of 300 (∆F1 = 1.2), while the
biggest improvement in EM score was achieved by
an embedding size of 100 (∆EM = 2.3).

F1 EM

Baseline (QANet Re-Impl.) 67.8 55.5
Baseline + Linguistic Inputs 70.5 60.2

Table 3: Results of using the combination of all three
linguistic input features, using the previously opti-
mized embedding sizes (PoS and dependency tags of
size 100, semantic role labels of size 200). No linguis-
tic features were used in the baseline setting.

Semantic Role Labels. Again, the linguistic
inputs improve upon the baseline performance.
However, in the setting with embedding size 50,
the performance slightly deteriorates. The best
performance is achieved when using embeddings
of size 200 (∆F1 = 1.0,∆EM = 1.1).

Combination of all Linguistic Input Features.
Table 3 shows the results for the combination of all
three linguistic input features. The performance is
the best in all our experiments, beating the pre-
vious baseline and individual linguistic input fea-
tures (∆F1 = 2.7,∆EM = 4.7).

5 Discussion

Due to a gap in performance between our imple-
mentation of QANet (cf. Table 3) and the results
from the original paper4, we are not able to tell
whether our optimized parameters are specific to
our settings or should be preferred in general. The
mismatch in performance could be due to various
implementational differences (such as using Py-
Torch instead of Tensorflow), variation in prepro-
cessing (e.g. tokenization with spaCy instead of
NLTK) or the training procedure (such as trainable
word embeddings). Still, we consider the relative
improvements due to linguistic inputs compared to
our baseline to be very insightful and promising.

Overall, each individual linguistic input
achieved a small improvement of the performance.
The best performing feature were the PoS embed-
dings, with the biggest improvements in both F1
and exact match (∆F1 = 1.9,∆EM = 3.4). The
second best feature were the dependency relation
labels (∆F1 = 1.1,∆EM = 2.3), followed by
semantic role labels (∆F1 = 1.0,∆EM = 1.1).
Combining all linguistic input features led to even
better results (∆F1 = 2.7,∆EM = 4.7). This
indicates that although the PoS tag embeddings

4F1=82.7, EM=73.6, as reported by Yu et al. (2018).
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have the strongest impact on the performance, de-
pendency relation and semantic role embeddings
still provide useful additional information.

Importantly, this also shows that adding lin-
guistic features into a model that incorporates op-
timally selected hyperparameters yields an addi-
tional performance benefit, suggesting that lin-
guistic input features have a bigger impact on
model performance than hyperparameter opti-
mization alone. These findings underline the use-
fulness of linguistic features as a simple and read-
ily available tool for enhancing the performance
of QA models. Contrary to our intutions, the in-
crease in performance seems to be lower in those
features that are higher up in the hierarchy of lin-
guistic abstraction: PoS tags, which merely pro-
vide a shallow and coarse-grained approximation
of meaning, perform better than semantic roles,
which provide a lot of information that should sup-
port the question answering task. This could be
explained as follows: First, PoS tags (and depen-
dency relation labels) are available for every word
in a sentence, but only some words correspond to
semantic roles. This sparsity renders this input
feature less reliable. Second, our current aggrega-
tion approach towards semantic role embeddings
might not be optimal.

The results suggest that syntactic information in
dependency labels might help the model to find
more precise boundaries: While the F1 score only
increased by 1.1, the exact match was improved by
2.3. Even though the employed embedding pro-
cess for the dependency labels was rather simple
and not tailored to the underlying dependency tree
structure, the feature was useful to the network.
Probably, the performance of this feature could be
increased either by classical feature engineering to
construct more specific information from the de-
pendency tree or by using a more suitable network
architecture for embedding such structures.

Feature Engineering for Neural Architectures
At least in higher-level tasks like QA, we observe
a recent trend in the literature to focus on improv-
ing model architecture over improving input fea-
tures, possibly due to the ability of neural net-
works to learn hierarchical features. Following
this paradigm, the state-of-the-art in many tasks
has recently been improved, for example in se-
mantic role labeling through a deep highway BiL-
STM (He et al., 2017). However, the last papers
that make use of semantic roles are mostly from

the last decade (Shen and Lapata, 2007; Kaisser
and Webber, 2007; Sammons et al., 2009; Wu and
Fung, 2009; Liu, 2009; Gao and Vogel, 2011).
Most current QA architectures use word and char-
acter embeddings only (Seo et al., 2016; Wang
et al., 2017; Xiong et al., 2016; Shen et al., 2017;
Hu et al., 2018; Yu et al., 2018).

Our results suggest that the QANet model ben-
efits more from better inputs than from optimiz-
ing its structure: When exploring the parameters,
we observed that the embedding dimensionality
of words and characters had the biggest impact.
In the experiments regarding linguistic input fea-
tures, we found that injecting linguistic informa-
tion into the input had a stronger effect than any of
the previously explored parameters.

Based on this, it might be worthwhile to invest
more work into the investigation of the type of in-
puts one feeds into a neural model. An advantage
of better inputs is their adaptability, since input
features can possibly be used off-the-shelf for a
wide range of tasks, while architectures typically
have to be fine tuned on supervised training data.
Another advantage might be that empirical gains
are better interpretable: In our experiments, lin-
guistic input features had a bigger impact on exact
match (finding exact boundaries of the correct an-
swer) than on F1 (overlap with correct answer).
A thorough investigation of this intuitive link be-
tween input and output qualities would be neces-
sary to support this claim.

6 Conclusion

This paper addresses the question as to whether
neural QA models benefit from linguistic input
features at different levels of abstraction in terms
of their presumed generalization capacities across
domains. To this end, we evaluate the impact of
injecting different linguistic inputs (PoS tags, syn-
tactic dependencies, semantic roles) into a deep
neural QA architecture on open-domain perfor-
mance over SQuAD, which constitutes the largest
open-domain benchmark data set currently avail-
able.

In our experiments, the highest individual per-
formance gain was achieved by adding PoS tags to
the input representation, but a combination of all
evaluated linguistic features led to the best results
overall. We noticed that linguistic input features
had a bigger impact on the exact match score than
on the F1 score. Thus, we hypothesize that the lin-
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guistic information facilitates boundary detection,
while locating answer candidates in general may
largely depend on word-level semantics.

In future work, it might be instructive to explore
how well linguistic features perform without word
or character inputs. This would give a better ba-
sic intuition about the performance of each indi-
vidual feature. Another interesting research direc-
tion could be to investigate further linguistic in-
formation like lemmatized words, subword tags
and morphological features (Sennrich and Had-
dow, 2016), named entity recognition and distance
and position features. Apart from that, novel ap-
proaches for integrating this information could be
worthwhile: While features that have one value
per word (like PoS tags) can be easily embedded,
relational features or features with multiple values
per word (like semantic roles) need some kind of
aggregation. While we chose summing over indi-
vidual dimensions, various other approaches like
convolution, recurrent layers or even self-attention
might lead to better results. Tree-structured fea-
tures like dependency trees might benefit from re-
cursive encoding layers (Socher et al., 2011).

We conclude that linguistic input features pro-
vide meaningful information to neural QA mod-
els and that they improve performance on a gen-
eral domain dataset. In future, we plan to evaluate
whether they might be employed for generalizing
QA models to new specialized domains.
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Abstract

Although the use of end-to-end neural archi-
tectures has been proven to be effective on
several sequence labeling tasks, the use of
gazetteers in these architectures is still rather
unexplored. We investigate several options,
aiming at exploiting gazetteers to extract rel-
evant features, and then at integrating these
features in a neural model for entity recogni-
tion. We provide experimental evidences on
two datasets (named entities and nominal enti-
ties) and two languages (English and Italian),
showing that extracting features from a rich
model of the gazetteer and then concatenating
such features with the input embeddings of a
neural model is the best strategy in all our ex-
perimental settings, significantly outperform-
ing more conventional approaches.

1 Introduction

In the recent years a number of neural architec-
tures have been successfully applied to several se-
quence labelling tasks, including, among others,
part-of-speech tagging (Choi, 2016), named entity
recognition (Ma and Hovy, 2016), and semantic
role labeling (He et al., 2017). It has been shown
that these architectures can achieve state-of-art
performance with an end-to-end configuration, i.e.
without recurring either to linguistic features or
to external knowledge sources (e.g. gazetteers).
However, experiments have been often conducted
over datasets with large amount of training data
and in a rather limited spectrum of experimental
conditions. Overall, we think that there has not
been much discussion about the use of gazetteers
together with neural models, and that a deeper in-
vestigation is necessary.

In this paper we focus on the role of gazetteers
for entity recognition. The following are our two
main research questions: (i) As neural networks
architectures are highly modular, which is the best

way to integrate information from gazetteers? (ii)
What is the impact of the size of both training data
and gazetteers over the performance of a neural
model for entity recognition?

As mentioned, we focus on entity recognition
and refer to the Automatic Content Extraction pro-
gram - ACE (Doddington et al., 2004). In this
context, entity recognition has been approached
as a sequence labeling task. Given an utterance
U = {t1, t2, ..., tn} and a set of entity categories
C = {c1, c2, ..., cm}, the task is to label the to-
kens in U that refer to entities belonging to the
categories in C. As an example, using the IOB
format (Inside-Outside-Beginning, (Ramshaw and
Marcus, 1995)), the sentence “I would like to order
a salami pizza and two mozzarella cheese sand-
wiches” could be labeled as shown in Table 1.
ACE distinguishes two main entity classes: named
entities and nominal entities, and we consider both
of them for our experiments.

The first entity class, named entities, roughly
corresponds to proper names, and named enti-
ties recognition (NER) tools for frequent cate-
gories (i.e. persons as “Barack Obama”, loca-
tions as “New York”, and organizations as “IBM”)
have been developed for many languages. Sev-
eral datasets are available for training purposes
(e.g. the Conll-2003 datasets (Tjong Kim Sang
and De Meulder, 2003)). It has been a common
practice of NER systems to make use of gazetteers
(i.e. lists of entity names), considering the pres-
ence of a token in certain gazetteer as an additional
feature for the classifier (see, for instance, the use
of the Stanford NER useGazettes parameter for
the CRF classifier (Finkel et al., 2005)).

Nominal entities, on the other hand, are noun
phrase expressions describing an entity. Differ-
ently from named entities, nominal entities are
typically compositional, as they do allow mor-
phological and syntactic variations (e.g. for food
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I would like to order a salami pizza and two mozzarella cheese sandwiches
O O O O O O B-FOOD I-FOOD O O B-FOOD I-FOOD I-FOOD

Table 1: IOB annotation of food entities inside user request.

names, spanish baked salmon, roasted salmon and
hot smoked salmon), which makes it possible to
combine tokens of one entity name with tokens of
another entity name to generate new names (e.g.
for food names, salmon tacos is a potential food
name given the existence of salmon and tacos).
In the framework of the ACE program there have
been several attempts to develop supervised sys-
tems for nominal entities (Biggio et al., 2010);
these systems, however, had to face the problem
of the scarcity of annotated data, and, for this rea-
son, were developed for few entity types.

In this paper we make use of an end-to-end
state-of-art entity recognition system (described
in Section 2), and investigate the combination
with gazetteers under several integration methods,
which are described in Section 3 and 4. Datasets
for our experiments are described in Section 5,
while results are presented and discussed in Sec-
tion 6.

2 Core Entity Recognition System

In order to investigate the use of gazetteers in com-
bination with neural models we first need an entity
recognition system. For our experiments we have
adopted the neural system proposed in (Ma and
Hovy, 2016), which achieved state-of-art perfor-
mance for named entity recognition for English on
the ConLL-2003 dataset (see section 5). Specifi-
cally, we use the most recent implementation of
the system in Pytorch distributed by the authors1,
and called NeuroNLP2. The system is composed
of three layers (Figure 1): (i) a CNN that allows to
extract information from the input text without any
pre-processing; (ii) a bidirectional LSTM layer
that presents each sequence forwards and back-
wards to two separate LSTM; (iii) a CRF layer that
decodes the best label sequence.

For each token in the input sequence, first a
character-level representation is computed by a
CNN with character embeddings as inputs. Then
the character-level representation vector is con-
catenated with the word embedding vector to feed
the BLSTM network. The CNN for Character-
level Representation is an effective approach to

1https://github.com/XuezheMax/NeuroNLP2

Figure 1: The main NeuroNLP2 structure. Dashed ar-
rows indicate dropout layers applied on both the input
and output vectors of BLSTM.

extract morphological information (like the pre-
fix or suffix of a word) from characters of words
and encode it into neural representations. In Neu-
roNLP2 the CNN is similar to the one proposed in
(Chiu and Nichols, 2015), except that it uses only
character embeddings as inputs, without character
type.

At the second layer each input sequence is pre-
sented both forwards and backwards to a bidirec-
tional LSTM, whose output allows to capture past
and future information. LSTMs (Hochreiter and
Schmidhuber, 1997) are variants of recurrent neu-
ral networks (RNNs) designed to cope with gradi-
ent vanishing problems. The LSTMs hidden state
takes information only from the past, knowing
nothing about the future. However, for many tasks
it is beneficial to have access to both past (left) and
future (right) contexts. A possible solution, whose
effectiveness has been proven by previous work
(Dyer et al., 2015), is provided by bi-directional
LSTMs (BLSTM). (Ma and Hovy, 2016) apply a
dropout layer on both the input and output vectors
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of the BLSTM.
Finally, the third layer implemented by Neu-

roNLP2 is a Conditional Random Fields (CRF)
based decoder, which considers dependencies be-
tween entity labels in their context and then jointly
decodes the best chain of labels for a given input
sentence. For example, in NER with standard IOB
annotation, an I-token can not follow an O, a con-
straint which is captured by the CFR layer. Con-
ditional Random Fields (Lafferty et al., 2001) of-
fer several advantages over hidden Markov models
and stochastic grammars for such tasks, including
the ability to relax strong independence assump-
tions made in those models. For a sequence CRF
model (only interactions between two successive
labels are considered), training and decoding can
be solved efficiently by adopting the Viterbi algo-
rithm.

We use exactly the same network parameters
described in (Ma and Hovy, 2016) and provided
as default by the available implementation. As in-
put embeddings we use Stanford’s publicly avail-
able GloVe 100-dimensional embeddings trained
on 6 billion words from Wikipedia and web texts
for English (in the same way as (Ma and Hovy,
2016)); for Italian we use Stanford’s GloVe 50-
dimensional embeddings trained on a Wikipedia’s
dump 2 with the default setup. For the out of vo-
cabulary words we use a unique randomly gener-
ated vector for every word.

3 Gazetteers as Features

In this section we present three methods that allow
us to exploit information contained in gazetteers
and to represent such information as features to
be used by the neural entity recognition system.
While the first two methods, single token pres-
ence and multi-token presence, have been often
used, the third method, i.e. gazetteer neural model,
is based on the assumption that a more complex
model can better exploit the properties of nominal
entities.

3.1 Single Token Presence

A simple and straight-forward approach to use a
gazetteer is to consider the presence of a single
token in the gazetteer as a feature. To do that, we
extract the vocabulary of the gazetteer and provide
a boolean value to every token in the sentence,

220/04/2018

which indicates the presence or absence of the to-
ken in the vocabulary. If the number of gazetteers
in the domain is n, corresponding to the number
of entity classes, a single token takes a vector of
n-dimensions: if the vocabularies of the different
gazetteers do not overlap this is a one-hot vector,
otherwise we can have multiple positive dimen-
sions.

3.2 Multi-token Presence

The second approach uses the same feature space
as the single token presence method, but instead
of checking for the presence of a single token
in the gazetteer, it looks for the longest entity
name in the gazetteer contained in the sentence.
Let us consider the example in Table 1, I would
like to order a salami pizza and two mozzarella
cheese sandwiches, and assume a gazetteer for the
class FOOD composed of two entries: mozzarella
pizza and salami sandwiches. With the multi-
token approach none of the tokens would have the
gazetteer feature equal to true, while with the sin-
gle token approach both salami, pizza, mozzarella
and sandwiches would have the presence set to
true. The multi-token technique enables a more
consistent usage of gazetteers, especially in case
of noisy entity names, although a possible draw-
back could be a lack of generalization.

3.3 Gazetteer Neural Model: NNg

The third method to extract features from a
gazetteer follows the intuition that the presence-
absence approaches presented in Sections 3.1 and
3.2 might not be adequate for nominal entities,
which show higher linguistic complexity than
named entities. The idea is to build a neural clas-
sifier trained solely on gazetteers, that classifies a
subsequence of tokens on the input sentence as be-
longing to a certain entity class with a certain con-
fidence. Then we use the output of such classifier
as a feature to be integrated within the NeuroNLP2
system.

The neural architecture of the entity classifier,
the features it uses, and the methodology to gen-
erate synthetic negative examples are briefly pre-
sented in the following.

Architecture of the NNg Classifier. We used
the neural gazetteer-based approach (called NNg)
proposed by (Guerini et al., 2018). The NNg clas-
sifier is implemented using a multilayer bidirec-
tional LSTM that classifies an input sequence of
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Figure 2: Structure of the neural gazetteer entity recog-
nition (NNg). The input layer concatenates the features
in a single vector.

tokens either as an entity of a certain gazetteer
or a non-entity, with a degree of confidence, i.e.
the system classifies the sequences in number-of-
gazetteers plus one (non-entity) different classes.
The NNg classifier is based on the system pro-
posed in (Lample et al., 2016). The core is still
a bidirectional LSTM, but it has a 3-layer BLSTM
with 128 units per layer and with a single dropout
layer (with a dropout probability of 0.5) between
the third BLSTM and the output layer (a softmax
layer). The topology of the network is depicted in
Figure 2.

NNg Classifier Features. The NNg classifier
combines several features: word embeddings,
char-based embedding, and nine handcrafted fea-
tures. Word embeddings are similar to those
used for NeuroNLP2. For English we used Stan-
fords publicly available 50-dimensions embed-
dings, while for Italian we use 50-dimensional
embeddings trained on a Wikipedia’s dump with
the default setup. The char-based embeddings,
with a dimension of 30, are based on (Lample
et al., 2016), and are trained on the entries in the
gazetteers. The expected role of the char-based
embeddings is to deal with out of vocabulary terms
and possible word misspellings.

The handcrafted features are meant to explicitly
represent the structure of a certain entity name, as
it can be induced from the gazetteer in which the
entity appears. NNg considers nine features for
each token in an entity name: (i) the actual po-
sition of the token within an entity name; (ii) the
length of the entity name under inspection; (iii) the
frequency of the token in the gazetteer; (iv) the av-
erage length of the entity names containing a cer-

tain token; (v) the average position of the token
in the entity names it appears in; (vi) the bigram
probability with reference to the previous token in
the entity name; (vii) whether the token can be an
entity or not; (viii) the ratio of the times the token
is the first token in an entity name; (ix) the ratio
of the times the token is the last token in an entity
name.

Generating Synthetic Training Data. The
NNg classifier for a certain entity class is trained
with both positive examples, i.e. entity names
present in a gazetteer of the entity class, and neg-
ative examples, which are obtained by synthetic
generation from the positive examples. In the fol-
lowing we explain how negative examples are gen-
erated.

For each entity name i in a gazetteer G (i.e. the
positive example), negative counterparts are sub-
sequences of i, or i with additional tokens at the
beginning or end of it (or both), e.g. t1 + i + t2.
Where t1 is the ending token of a random entity
in G and t2 is the starting token of a random en-
tity in G. Between these tokens and i there can be
separators, as a white space, a comma or the and
conjunction, so to mimic how multiple entities are
usually expressed in sentences. Alternatively, t1
and t2 can be tokens randomly extracted from a
generic corpus, so to mimic cases when the entity
is expressed in isolation.

For example, if the initial positive example is
Community of Madrid, the possible negative sub-
sequences that are generated are: | Community
| of | Community of | of Madrid |. The sub-
sequence | Madrid | is not considered because it
is already included in the gazetteer as positive ex-
ample. Adding tokens, using the pattern t1 + i +
t2, we obtain other potential negative examples:
| contemporary Community of Madrid | Commu-
nity of Madrid and Murcia | contemporary Com-
munity of Madrid and Murcia |, and so on. Ac-
cording to this procedure, we generate more neg-
ative examples than positive. In order to avoid a
too unbalanced datatset, we randomly selected two
negative examples for each positive example: a
sub-sequence and an example surrounded by other
words, resulting in a 1 : 2 proportion.

4 Integrating Gazetteer Features

In this section we present the two methods used in
our experiments to integrate the features extracted
from gazetteers (see Section 3) into NeuroNLP2,
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the neural entity recognition system. Each of the
integration methods adds one boolean feature for
each gazetteer.

4.1 Integration 1: Gazetteer Features as
Embedding Dimensions

Once we have extracted gazetteer features for each
token of the input sentence, the first approach that
we consider is to feed such features directly into
the neural network. In this method the gazetteer
information, represented by a n-dimensions vec-
tor, is simply concatenated with the embedding of
each token of the input sentence. By default, the
NeuroNLP2 system (see Section 2) uses both char-
acter and word embeddings, which are concate-
nated and passed on to the BLSTM layer to learn
from them. In this approach the gazetteer feature
is concatenated with the character and word em-
bedding, and then it is passed to the BLSTM. The
embedding representation for a given token x is as
follows:

Embeddingx = [xword;xchar;xgaz]

While the integration as embedding dimensions
for the single token and the multi-token features
is straightforward, in order to combine NNg with
NeuroNLP2 we need to substitute part of the
NNg’s network after training. In fact, we need a
NNg’s output for every token, while NNg classi-
fies a sequence of tokens. To do that we remove
the softmax layer of NNg and we feed the output
vectors of the third BLSTM to a fully connected
layer of 32 nodes followed by a rectified linear unit
(ReLU). With this modification we add to Neu-
roNLP2 32 features that represent a model of the
gazetteers.

4.2 Integration 2: Gazetteer Features as
Input for the CRF Classifier

As NER is a classification task, the system uses
features extracted by the BLSTM layer to classify
the tokens as one of the possible entity types. CRF
is the probabilistic model adopted by NeuroNLP2
to classify a token with an entity type based on the
features extracted. Providing the information of
the gazetteer to this layer should help the model
to better classify tokens. So this integration tech-
nique uses the gazetteer features as an additional
dimension by concatenating them with the fea-
tures extracted by the BLSTM.

CoNLL-2003
tokens types entities sentences

Train 204567 23624 23499 14987
Dev 51578 9967 5942 3466
Test 46666 9489 5648 3684

DPD
tokens types entities sentences

Train 4748 636 1757 450
Dev 296 138 122 49
Test 2315 379 583 200

Table 2: Statistics about data sets used for our experi-
ments.

dev ∩ train test ∩ train test ∩ gazetteers
CoNLL-2003 50% 35% 35%
DPD 48% 26% 33%

Table 3: Unique entities overlap between various sets.
The percentage refers to the count of unique entities in
the first dataset.

An example of this integration methodology ap-
plied to the features provided by the NNg classi-
fier is presented in Figure 3. It is important to no-
tice that, like in the previous integration approach,
NNg is pre-trained and it is not jointly trained with
NeuroNLP2.

5 Data Sets

In this section we describe the two datasets and
the various gazetteers used for our experiments.
The first dataset is CoNLL-2003 (Tjong Kim Sang
and De Meulder, 2003), for named entity recog-
nition, while the second one is a novel dataset
(DPD) (Magnini et al., 2018), specifically focused
on nominal entities. In Table 2 we report the main
characteristics of the two datasets and the parti-
tions used for the experiments, while in Table 3 we
report the intersection among entities in the vari-
ous sets (e.g. how many entities in the test set can
be also found in the training set or the gazetteers).
These percentages are a rough indicator of: (i)
how a perfect match baseline using gazetteers can
perform, and (ii) how much the NeuroNLP2 sys-
tem can take advantage of already seen entities
during training phase.

We describe the two datasets with more detail
in the following two paragraphs.

CoNLL-2003 is a dataset specifically devoted to
named entities: persons, locations, organizations
and names of miscellaneous entities that do not
belong to the previous three groups. While the
data set comes in two languages (English and Ger-
man) in this work we focus on English, whose
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black and white t-shirt black and white t-shirt

NeuroNLP NNg

CRF

Input layer

B-x I-x I-x I-xB-x I-x I-x I-xB-x I-x I-x I-xB-x I-x I-x I-x

Figure 3: NeuroNLP + NNg - the output layer of the two systems is combined into the CRF layer. For NNg , a fully
connected layer with 32 nodes and a ReLU has been substituted for the original SoftMax layer (in red).

data was taken from the Reuters news corpus. For
instance, the sentence “EU rejects German call
to boycott British lamb” is tagged as follows in
CoNLL-2003:
<EU>ORG rejects <German>MISC call to

boycott <British>MISC lamb.

DPD – Diabetic Patients Diary – is a data set
in Italian made of diary entries of diabetic pa-
tients. Each day the patient has to write down
what s/he ate in order to keep track of his/her di-
etary behavior. In this data set, which is much
smaller than CoNNL-2003, all entities of type
FOOD have been manually annotated by two an-
notators (inter-annotator agreement is 96.75 dice
coefficient). Sentences in the dataset have a tele-
graphic style, e.g. the main verb is often missing,
resulting in a list of foods like the following:

“<risotto ai multicereali e zucchine>FOOD

<insalata>FOOD e <pomodori>FOOD”
(“<risotto with multigrain and zucchini>
<salad> and <tomatoes>”).

Entity Gazetteers. In Table 4 we describe the
gazetteers that we have used in our experiments
for the two datasets, reporting, for each entity type,
sizes in terms of number of entity names, the av-
erage length of the names (in number of tokens),
plus the length variability of such names (standard
deviation). We also report additional metrics that
try to grasp the complexity of entities names in
the gazetteer: (i) the normalized type-token ratio
(TTR), as a rough measure of how much lexical
diversity is in the nominal entities in a gazetteer,
see (Richards, 1987); (ii) the ratio of type1 tokens,
i.e. tokens that can appear in the first position of an
entity name but also in other positions, and type2

tokens, i.e. tokens appearing at the end and else-
where; (iii) the ratio of entities that contain another
entity as sub-part of their name. With these mea-
sures we are able to partially quantify how diffi-
cult it is to recognize the length of an entity (SD),
how difficult it is to individuate the boundaries of
an entity (ratio of type1 and type2 tokens), how
much compositionality there is starting from basic
entities (i.e. how many new entities can be po-
tentially constructed by adding new tokens - sub-
entity ratio). Note that type1 and type2 ratios can
cover some cases in common with sub-entity ratio,
but they model different phenomena: given white
t-shirt, the entity name black and white skirt rep-
resents a case of type1 token for white but without
sub-entity matching, while white t-shirt with long
sleeves represents a sub-entity matching without
making white a type1 token.

6 Experiments

The experimental results for the various ap-
proaches that use gazetteers as features in the con-
text of a neural entity recognition system, are dis-
cussed in this Section. For all experiments, the
hyper-parameters of the neural model for both
NNg and NeuroNLP2 are the same as in (Guerini
et al., 2018) and (Ma and Hovy, 2016) respec-
tively.

6.1 Overall Results
Tables 5 and 6 show the results of gazetteer in-
tegration as embedding and as CRF features, re-
spectively. The NeuroNLP2 model benefits signif-
icantly from the gazetteer representation of NNg,
especially for the DPD dataset (with an increment
of 2.54 in terms of F1). The combination of Neu-
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Data Set Gaz. #entities #tokens length ± SD TTR type1(%) type2(%) sub-entity(%)

CoNNL

PER 3613 6454 1.79 ±0.54 0.96 19.00 04.63 23.60
LOC 1331 1720 1.29 ±0.69 0.97 04.66 04.33 10.14
ORG 2401 4659 1.94 ±1.16 0.91 09.35 15.06 19.44
MISC 869 1422 1.64 ±0.94 0.89 08.61 08.73 19.85

DPD FOOD 23472 83264 3.55 ±1.87 0.75 17.22 22.97 11.27

Table 4: Gazetteers used in the experiments. Description is provided in terms of number of entity names, total
number of tokens, average length and standard deviation (SD) of entities, type-token ratio (norm obtained by
repeated sampling of 200 tokens), type1 and type2 unique tokens ratio and sub-entity ratio.

CoNLL DPD
Accuracy Precision Recall F1 Accuracy Precision Recall F1

NeuroNLP2 98.06 91.42 90.95 91.19 88.47 77.17 74.79 75.96
NeuroNLP2 + single token 98.06 91.53 90.51 91.02 88.29 75.63 77.19 76.40
NeuroNLP2 + multi token 98.08 91.41 90.76 91.08 88.98 78.90 76.33 77.59
NeuroNLP2 + NNg 98.05 91.41 91.02 91.22 89.89 79.68 77.36 78.50

Table 5: Experimental results using gazetteers as features together with embeddings.

roNLP2 and NNg reaches state-of-art performance
on ConNLL-2003 when it is added as embedding
feature, while both the single token and the multi-
token approaches do not improve the overall re-
sults. It can also be clearly seen that providing the
gazetteer feature to CRF is a deteriorating choice,
as the model probably tends to over-fit to the
gazetteer information resulting in a drop of perfor-
mance. On the other hand, using gazetteer features
as part of embedding dimensions helps the model
to adapt better when the training data are very few,
like in the DPD dataset. Furthermore, the results
on the DPD dataset of NeuroNLP2 + NNg, com-
pared to the others, show that NNg correctly gen-
eralizes nominal entities from the gazetteer, im-
proving both Recall and Precision with respect to
the multi-token approach.

6.2 Impact of Training Size

Neural network architectures are data-hungry
models, requiring large amounts of training data
in order to generalize. In those scenarios where
the amount of available training is not an issue the
effect of the gazetteer on the model performance
is negligible, as the model learns to generalize on
the large number of annotated sentences. How-
ever, for domains where there is scarcity of train-
ing data, the gazetteer feature is much appreci-
ated for a better performance. To understand this
effect, we simulated a low data scenario for the
CONLL-2003 dataset by training the model on a
small amount of data. The test and dev datasets
are kept the same, while varying only the training

data size. Tables 7 and 8 show the performance
of the models with varying training data sizes on
CONLL and DPD datasets, respectively. We can
infer that for Named Entity Recognition using to-
ken presence is not the right approach especially
when the gazetteer is well formed and with little
noise. The multi-token feature approach is more
consistent, and it improves the performance of the
NeuroNLP2 model by at least 3 points over all
data sizes used. However, these approaches tend
to be inconsistent when learning nominal entities.
Results show that NNg proves to be more robust
for nominal entities and provides a more consis-
tent performance indicating its impact in recog-
nizing compositional entities. We can see that, for
nominal entities, the single token approach is not
recommended, as both the learning curve and the
gazetteer size effect show (see Table 9).

Results are variable particularly for food names,
which are nominal entities that can considerably
change in length, contain stop-words, numbers or
nouns that usually can appear in other contexts
(i.e. Miami beach cocktail, chinese chicken, white
wine, pad thai, energy balls...).

6.3 Impact of Gazetteer Size

In this section we investigate the impact of reduc-
ing the number of entities in the gazetteer, based
on a “less common” principle, i.e. removing rare,
but numerous, entries. As we can see in Table 9,
the single token approach does not work well on
food nominal entities, giving variable and unre-
liable results. In addition, removing entries that
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CoNLL DPD
Accuracy Precision Recall F1 Accuracy Precision Recall F1

NeuroNLP2 98.06 91.42 90.95 91.19 88.47 77.17 74.79 75.96
NeuroNLP2 + single token 94.82 86.90 71.03 78.17 85.75 69.79 68.95 69.37
NeuroNLP2 + multi token 92.20 85.44 59.24 69.97 87.52 74.23 74.61 74.42
NeuroNLP2 + NNg 97.96 90.95 90.53 90.74 89.37 78.56 74.79 76.63

Table 6: Experimental results using gazetteers as features for CRF.

Data Size
100 200 300 450

NeuroNLP2 47.31 56.78 56.96 69.55
NeuroNLP2 + single token 47.70 59.25 61.32 71.66
NeuroNLP2 + multi token 51.24 62.77 63.19 74.63
NeuroNLP2 + NNg 42.30 57.99 58.65 69.20

Table 7: Learning Curve on the CONLL 2003 dataset.
Columns report the number of sentences in the training
dataset.

Data Size
100 200 300 450

NeuroNLP2 55.99 74.93 73.88 75.96
NeuroNLP2 + single token 48.93 72.29 78.53 76.40
NeuroNLP2 + multi token 63.82 72.80 77.30 77.59
NeuroNLP2 + NNg 52.85 72.24 77.02 78.50

Table 8: Learning Curve on the DPD dataset. Columns
report the number of sentences in the training dataset.

contain tokens that appear less than 10 times helps
NNg to better generalize food names, without fo-
cusing on rare and uncommon entities. With this
approach the size of the gazetteer is nearly halved,
and it is noticeable that 5019 out of 8420 unique
tokens in the gazetteer appear only once. Remov-
ing common tokens, i.e. those that appear be-
tween 10 and 49 times, no model seems to give de-
cent results, with performance lower than the Neu-
roNLP2 model alone. A last reduction experiment,
i.e. removing entities that contain very common
tokens, occurring more than 150 times, bringing
the gazetteer to a size of only 779 entries, leave
NNg with too few compositions to learn how to

Data Size
776

Tc > 150
4366

Tc > 50
12477

Tc > 10
23472

all
NeuroNLP2 + single token 75.90 75.19 70.99 76.40
NeuroNLP2 + multi token 76.11 75.05 76.96 77.59
NeuroNLP2 + NNg 74.63 75.62 79.69 78.50

Table 9: Results of reducing gazetteer size on a less
common principle; in the columns, the first number is
the gazetteer size, while the second element represents
the minimum number of occurrences for the tokens in
the FOOD gazetteer.

generalize, but permits the multi-token approach
to give core information to NeuroNLP2, increas-
ing its baseline performance.

7 Related Work

Although, at least to the best of our knowledge,
there is no much work specifically addressing the
use of gazetteers in nthe context of neural archi-
tectures, still there is a number of related contribu-
tions which we discuss in this section.

The use of gazetteers with neural networks has
been proposed by (Park et al., 2017), who present
a neural network model augmented with sylla-
ble embedding vectors, parts-of-speech probabil-
ity vectors, and gazetteer vectors as input features.
Although the proposed model showed good per-
formance, there is no attempt to isolate the impact
of gazetteers, which is the goal of our work.

A related approach is presented in (Zhao et al.,
2017), which ranked first in English NERC eval-
uation at KBP 2017. Basically this is an exten-
sion of (Lample et al., 2016) that includes entity
embedding from gazetteers, where embeddings
are derived from a noisy gazetteer created using
Wikipedia’s articles. The gazetteer is derived from
the word-entity statistics from (Park et al., 2017).

A good example of work that builds on the
idea of creating a statistical model of named en-
tity starting from gazetteers, is presented in (Al-
Olimat et al., 2017). The paper focuses on extract-
ing location names from informal and unstruc-
tured texts by identifying referent boundaries. The
core of the approach is a statistical language model
consisting of a probability distribution over se-
quences of words (collocations) that represent lo-
cation names in gazetteers. The algorithm uses the
relative likelihood of an observed word sequence
to decide the boundaries of a location name in
tweets. This is similar in spirit to the NNg used
in our approach, although we make use of a neural
model rather than a statistical model.

A second work that it is worth to mention is
(Yang et al., 2016), which addresses the problem
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of using gazetteers when training a neural network
with few data. In fact, particularly for massive
data scenarios like NER on Twitter, collecting a
large amount of high quality gazetteers can allevi-
ate the problem of training data scarcity. The pa-
per shows that large gazetteers may cause a side-
effect called ‘feature under-training’, i.e. gazetteer
features overwhelm the training data and may de-
grade performance. To solve this problem, the au-
thors propose a dropout conditional random fields,
which decreases the influence of gazetteer features
with a high weight.

8 Conclusions and Future Work

In this paper we were interested to investigate sev-
eral options about the use of gazetteers in neu-
ral architectures for entity recognition. We con-
ducted several experiments on both named enti-
ties (CONLL 2003 - English) and nominal entities
(food names in DPD - Italian) and showed that:
(i) gazetteer features that are extracted by a sepa-
rately trained the NNg classifier are more signifi-
cant than conventional features based on presence-
absence of tokens; (ii) integrating such features as
extension of the input embedding outperforms in-
tegration at the CRF level; (iii) these findings are
particularly significant when either the size of the
training data or of the gazetteers are reduced.

As a general comment on the use of gazetteers
for neural NER, our experiments highlight that
gazetteers are much more useful for nominal enti-
ties (e.g. food names) than for named entities (e.g.
person names). In this respect, the paper shows
that the NNg approach significantly helps to iden-
tifying compositional variants of nominal entities.

In the paper we have based our experiments
on the neural model described in (Ma and Hovy,
2016). However, very recently, new models (e.g.
BERT (Devlin et al., 2018) and ELMO (Peters
et al., 2018)) have been proposed, which have
further improved performance on Named Entity
Recognition. Based on such expectations, we run
a preliminary experiment using the multilingual
BERT model on the DPD dataset: results, prob-
ably due to the poor performance of the model on
Italian food, are still significantly lower than Neu-
roNLP2, and additional work seems to be neces-
sary to properly take advantage of the full capacity
of the BERT model.

Finally, as for future work, we intend to apply
the current models to a larger number of scenar-

ios, including utterance understanding for conver-
sational agents.
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Abstract

Commonsense procedural knowledge is im-
portant for AI agents and robots that operate
in a human environment. While previous at-
tempts at constructing procedural knowledge
are mostly rule- and template-based, recent ad-
vances in deep learning provide the possibil-
ity of acquiring such knowledge directly from
natural language sources. As a first step in this
direction, we propose a model to learn em-
beddings for tasks, as well as the individual
steps that need to be taken to solve them, based
on WikiHow1 articles. We learn these embed-
dings such that they are predictive of both step
relevance and step ordering. We also experi-
ment with the use of integer programming for
inferring consistent global step orderings from
noisy pairwise predictions.

1 Introduction

For AI agents to serve as competent (digital
or physical) assistants in everyday environments,
they need an understanding of the common tasks
that people perform. In contrast to factual knowl-
edge, which is encoded to some extent in knowl-
edge graphs such as Freebase (Bollacker et al.,
2008), there are currently no resources that cap-
ture such knowledge in a comprehensive way.

As a natural solution, in this paper, we con-
sider the problem of learning procedural knowl-
edge from text descriptions, focusing on house-
hold tasks as a case study. There are two reasons
for this particular focus. First, household tasks re-
quire a rich amount of commonsense knowledge,
which makes them challenging to deal with for AI
agents. Second, learning such knowledge has im-
portant applications in the context of household
robots and smart home technologies, among oth-
ers.

1https://www.wikihow.com

The biggest challenge associated with house-
hold tasks is the lack of explicit structured infor-
mation. While specialized datasets for some as-
pects of household tasks are available (e.g. cook-
ing recipes (Yagcioglu et al., 2018), in-home nav-
igation commands (Matuszek et al., 2013), hu-
man action trajectories for chores (Koppula and
Saxena, 2013)), general information only exists in
natural language format as descriptions intended
for human consumption. With recent advances in
deep learning and text mining, it is natural to won-
der whether, and to what extent, we can acquire
knowledge about household tasks from existing
textual sources. To start answering this question,
in this paper we tap into WikiHow, one of the
largest online databases of procedural knowledge.
Our aim is to jointly learn two types of knowl-
edge: (i) whether a certain step pertains to a cer-
tain task and (ii) how to order two (potentially non-
sequential) steps for a given task. We evaluate our
learned model both in terms of the performance
achieved on these two tasks and by analyzing the
resulting embeddings.

2 Related Work

Knowledge Representation A large number of
knowledge graphs have already been constructed,
capturing a wide variety of human knowledge.
These graphs, such as Freebase (Bollacker et al.,
2008) and ConceptNet (Liu and Singh, 2004), all
share the common structure of using nodes to rep-
resent concepts and using edges to represent rela-
tions. Among many applications, Williams et al.
(2017) showed that ConceptNet can enable better
story understanding by capturing some aspects of
commonsense knowledge.

However, there is little procedural knowledge
in ConceptNet. Instead, planning approaches
have traditionally been used to model such knowl-
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edge. In classical planning languages, such as
PDDL (McDermott et al., 1998), the environment
is described with a set of predicates and actions
are defined in terms of pre-conditions and post-
conditions. This turns planning into a search prob-
lem. While efficient and provably optimal in small
domains, it is hard to model the full spectrum of
real world environments with such exact defini-
tions. By contrast, in our work we take a comple-
mentary approach, acquiring implicit knowledge
from large amounts of data.

Embedding learning Vector space embeddings
are commonly used to represent the semantics
of linguistic constructs such as words and sen-
tences as vectors in a high-dimensional space. At
word level, embedding models such as word2vec
(Mikolov et al., 2013) and GloVe (Pennington
et al., 2014) are trained based on linguistic con-
text, i.e. the representation of a word depends on
the words surrounding mentions of that word in
some text corpus. At sentence level, embeddings
can be trained from context or learned for one or
several downstream applications (Radford et al.,
2018; Devlin et al., 2018).

Embeddings for various other kinds of data
have also been studied. For example, Chung and
Glass (2018) learn vector representations from au-
dio data. Moreover, a large number of methods
for embedding graph and network structures have
been proposed (Goyal and Ferrara, 2018).

Script knowledge In our work, we learn em-
beddings for natural language instructions targeted
to facilitate commonsense knowledge acquisition.
One of the ways in which such embeddings can
be used is to rank step instructions for a spe-
cific task. Specifically, given the name of the
task and two steps, all expressed in natural lan-
guage, we want our model to predict which step
should be done first, using only the embeddings of
the task name and steps as input. This problem
falls into the general category of learning script
knowledge, for which several models have already
been proposed. For example, Chambers and Ju-
rafsky (2009) proposed one of the first models to
learn script knowledge based on estimated mu-
tual information between events. Modi and Titov
(2014) learned embeddings for events such that a
linear ranking function operating on embedding
space can be used to infer event orders. Pichotta
and Mooney (2016a) learned orders from parsed

event representation with a LSTM model. Pichotta
and Mooney (2016b) used a sentence-level LSTM
model that does not require explicit event parsing
and extraction.

Knowledge Acquisition from WikiHow There
have been many works on collecting knowledge
from the web. With specific focus on WikiHow,
Chu et al. (2017) used information retrieval and
embedding-based clustering to distill a knowledge
base of task execution. By using the OpenIE sys-
tem (Angeli et al., 2015), they inferred relations
between tasks and steps so that the distilled knowl-
edge base recognizes that the task in a WikiHow
article A is equivalent to a step B in another Wik-
iHow article C, and the user, when reading article
C can look up detailed instructions for step B by
reading the automatically linked article A. In this
way, a hierarchical structure among articles can be
extracted.

Park and Motahari Nezhad (2018) used a neu-
ral network model to learn specific relations be-
tween the steps of each task. Specifically, three re-
lations is method of, is subtask of, and
is alternative of are learned using a hier-
archical attention neural network that achieved su-
perior performance than standard approaches us-
ing an information extraction pipeline.

3 Method

3.1 Dataset Description

We collected a corpus consisting of all WikiHow
articles under the category of “Home and Gar-
den2”, which we believe is most relevant for our
purpose of understanding household procedural
knowledge. Each WikiHow article describes a par-
ticular task, which is composed of a number of
steps. Some example tasks are shown in Table
1. Each step is represented by a gist and an ex-
planation. The gist is a brief and concise sum-
mary of the step, such as “purchase packing sup-
plies”. The corresponding explanation gives ad-
ditional contexts and details to the gist. For the
previous example, the explanation is as follows:

“Furniture should generally not be
placed in a truck without wrapping it in
some sort of protective material. After
you’ve completed your inventory, con-

2https://www.wikihow.com/Category:
Home-and-Garden
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Remove Staples with Your Bare Hands
Buy a Shipping Container
Pick Up Broken Glass Splinters
Clean Fireplace Glass
Clean an Espresso Machine

Table 1: A random sample of task titles

Shake your clothes
Move the bowl
Dig a hole about 2 ft deep
Take out the trash
Steam clean older carpets

Table 2: A random sample of task steps

sider what you’ll need to move each
piece of furniture...”

Some additional examples of step gists as shown
in Table 2.

An additional particularity with WikiHow is
that there are two types of article structures. About
30% of all articles have flat structures, which
means that an article has a list of individual
steps. The remaining ones have 2-level hierarchi-
cal structures, which means that an article has sev-
eral titled subsections, and each subsection has a
list of individual steps. For example, an article on
“clean kitchen” may include subsections on “or-
ganize kitchen shelves”, “clean countertop”, and
“remove oil stain on floor”. We found that subsec-
tion titles are semantically and syntactically very
similar to article titles, so we simply consider each
subsection as a separate task. With this prepro-
cessing, the dataset contains 12,431 articles with a
total of 162,771 individual steps.3

3.2 Model Architecture

A task title t is a list of l natural language words
(w1, ..., wl). For each word, we use the pre-trained
GloVe embedding (Pennington et al., 2014) to
look up its vector representation. This embedding
is fixed during training. Words which are not in the
GloVe vocabulary are represented using a special
<unk> token, the embedding for which is learned.
We use ~vi to denote the embedding corresponding
to the word wi. Hence the task title t is repre-

3The dataset and the model implementation can be
downloaded at https://github.com/YilunZhou/
wikihow-embedding/
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Figure 1: Model architecture

sented as t = (~v1, ..., ~vl). The representations for
step gists and step explanations are analogous.

Figure 1 shows the general workflow of our
model. First, three LSTM networks are used to
encode the task titles, step gists and step expla-
nations. The input to each of these LSTMs is a
list of word vectors, as explained above, and the
outputs are the corresponding embeddings, which
are taken as the last hidden state of the LSTM en-
coder. The initial hidden units and memory units
of the LSTMs are initialized to 0 (and not updated
during training).

3.3 Step Relevance Prediction

Predicting the relevance of a step to a task is a bi-
nary classification problem. We first concatenate
the embeddings for the task title, step gist, and
step explanation together to form the input vector.
Then this vector is passed through a hidden layer
and an output layer to get the probability that the
step is relevant to the task. Negative log-likelihood
(NLL) loss is used during training.
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3.4 Step Ranking Prediction

Given the task name and two steps from the Wik-
iHow description of that task, we use a similar
fully connected network to predict whether a step
should happen before another step from the con-
catenation of embeddings of the task and the two
steps, also with NLL loss.

3.5 Joint Prediction of Step Ordering

Given an unordered set of steps, for a given task,
the aforementioned neural network can be applied
to make a prediction for pairwise step orderings.
However, since these predictions are made inde-
pendently, they may be conflicting with each other
(e.g. A is predicted before B, B is predicted before
C, and C is predicted before A). Furthermore, we
recognize that sometimes two steps can be done in
parallel, and a penalty should not be incurred for
incorrectly predicting the ordering in which these
two steps happen to be ordered in WikiHow. Thus,
to be fully flexible with the possibility of “ambigu-
ous” ordering, we employ an integer programming
(IP) formulation.

For each pair of steps (i, j), with i 6= j, we
introduce two binary variables xij and xji. The
meaning of xij = 1 is that step i has to occur
(strictly) before step j, while xij = 0 means that
either step i has to occur (strictly) after step j (if
xji = 1), or that the ordering does not matter (if
xji = 0). Then we set up the following IP prob-
lem:

maximize
∑

i,j

wijxij ,

subject to xij ∈ {0, 1} ∀i, j,
xij + xji ≤ 1 ∀i, j,
xij + xjk − xik ≤ 1 ∀i, j, k,
∑

i,j

xij ≥ D.

In the objective function, we choose wij = log
Pr(i before j), where this log probability is pre-
dicted by the neural network. The first constraint
enforces the binary nature of xij . The second con-
straint requires that xij and xji cannot be both 1,
as that would mean that step i is both strictly be-
fore and after step j, which is not possible. The
third constraint enforces transitivity: if step i is
strictly before step j, and step j is also strictly be-
fore step k, then we must have that step i is strictly
before step k. At this stage, it is easy to see that

since wij ≤ 0 due to wij being a log probabil-
ity, the optimal solution is achieved by choosing
xij = 0 for each i and j. Indeed, no penalty is in-
curred if all pairwise relations are predicted to be
ambiguous. For this reason, we have the final con-
straint which imposes that at least D pairs should
be ordered. Note that for a task with T steps, D
can be at most T (T − 1)/2 (i.e. half of all total
pairs). Otherwise the second constraint would be
unsatisfiable.

3.6 Learning and Inference

We used PyTorch (Paszke et al., 2017) to imple-
ment the feed-forward and back-propagation of
training, with Adam (Kingma and Ba, 2014) as
the optimizer. To solve the integer programming
problem, we used CVXPY (Diamond and Boyd,
2016).

4 Experiments

4.1 Data Preparation

We used a 80%/10%/10% split of training, valida-
tion, and test data. All reported statistics are from
the test set, which is held out during training. Ta-
ble 3 summarizes the results.

For step relevance prediction tasks, we collected
each positive example by sampling a task title and
a random step associated with the task. For nega-
tive examples, we sampled task titles and steps in-
dependently and made sure that the step does not
belong to the task. The number of positive and
negative examples are balanced.

For step ordering, for each example we sample
a task and two steps. Then we randomly denote
one of them as step 1 and the other as step 2, and
set up the label accordingly.

4.2 Training Details

We used 500-dimensional embeddings through-
out, but we found that the learning performance is
not sensitive to the embedding dimension, as long
as it is over 100. We zero-initialized the hidden
and memory cells of the LSTM encoders. The
learning rate for the Adam optimizer was set to
0.001.

4.3 Learning Performance

Our model performance is summarized in the first
row. In addition, we also tried directly using a
bag of word representation as the representation
for step explanation, while still keeping the LSTM
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Step relevance Step ranking

LSTM step
explanation

0.911 0.752

bag step
explanation

0.902 0.664

no step
explanation

0.844 0.657

Table 3: Model performance on two prediction prob-
lems

Figure 2: Training/validation loss and accuracy for two
tasks

encoder for step gist (second row). Specifically,
the embedding of the step explanation is calcu-
lated as the average of all embedding vectors for
words in the explanation. We also tried not using
step explanation information at all, whose perfor-
mance is shown in the third row.

We see that for both relevance and ranking
predictions, the full model with step explanation
encoded by an LSTM model performs the best.
However, using a bag of words vector representa-
tion of step explanations still performs better than
not using the step explanation at all, although the
improvement is small in the case of step ranking
prediction.

The learning curve in Figure 2 shows that while
the model is able to get very high accuracy on the
training set, the validation accuracy stabilizes af-
ter a few thousand iterations, indicating that the
model is overfitting to the training set afterwards.
The test performance in Table 3 was calculated on
the test set using the model iteration that achieves
the highest validation accuracy.

Figure 3: Rank order inference using integer program-
ming

4.4 Integer Programming Inference

In this section, we study if using integer program-
ming inference can provide better ordering perfor-
mance if we allow the ordering among some pairs
to be undecided (i.e. if we set D to be strictly
less than half the total number of pairs). Figure
3 presents the result.

The horizontal axis shows the proportion of am-
biguous pairs allowed, and the vertical axis shows
the proportion of ordering errors. For comparison,
we would achieve the red dashed line if we ran-
domly mark pairs as ambiguous, and thus not pe-
nalized. We can see that the integer programming
inference method is indeed better at identifying
ambiguous pairs that, when marked as such, would
lead to better performance. However, the improve-
ment is not very substantial, maybe because at
training time, the neural network tries to satisfy
ambiguous pairs in a way that is more or less
arbitrarily defined by the training data, bringing
the overall performance down. Thus, one specific
idea for future work would be to allow the neural
network to intentionally make ambiguous predic-
tions, for which it would not be penalized. Clearly,
however, some form of regularization would need
to be in place to prevent the network from making
the ambiguous prediction too frequently.

4.5 Embedding Visualization

Figure 4 visualizes the embedding of 50 randomly
selected tasks, using t-SNE (Maaten and Hinton,
2008) to reduce the dimension to 2. We can see
that several clusters of semantically related tasks
can be identified, which are indicated by ellipses.
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Figure 4: Embedding visualization.

5 Conclusion and Future Work

In this paper, we collected a dataset of natural lan-
guage instructions for a diverse set of household
tasks. We learned a joint embedding of task ti-
tle and step text for two problems, predicting if a
step belongs to a task title and ordering two steps
given the task title. We showed that the step rele-
vance can be predicted with a high accuracy if we
include the step explanation as part of our model.
However, step ordering turned out to be a more
challenging problem. We believe that this is at
least partly due to noise in the dataset, especially
the fact that the ordering of some steps tends to be
exchangeable. We also noticed some issues that
are specific to WikiHow. For example, the steps
which are mentioned for some tasks are more like
tips and suggestions.

In terms of future work, one direction is to
ground the learned knowledge into some physi-
cal systems, such as an in-home robotic platform.
Another direction is to try to recognize steps that
do not have well-defined orders (Section 4.4), al-
though this is likely to require some additional su-
pervision signal.

6 Acknowledgments

Steven Schockaert has been supported by ERC
Starting Grant 637277.

References
Gabor Angeli, Melvin Jose Johnson Premkumar, and

Christopher D Manning. 2015. Leveraging linguis-
tic structure for open domain information extraction.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), vol-
ume 1, pages 344–354.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management
of data, pages 1247–1250. AcM.

Nathanael Chambers and Dan Jurafsky. 2009. Un-
supervised learning of narrative schemas and their
participants. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP: Volume 2-Volume
2, pages 602–610. Association for Computational
Linguistics.

Cuong Xuan Chu, Niket Tandon, and Gerhard Weikum.
2017. Distilling task knowledge from how-to com-
munities. In Proceedings of the 26th International
Conference on World Wide Web, pages 805–814. In-
ternational World Wide Web Conferences Steering
Committee.

Yu-An Chung and James Glass. 2018. Speech2vec:
A sequence-to-sequence framework for learning
word embeddings from speech. arXiv preprint
arXiv:1803.08976.

39



Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Steven Diamond and Stephen Boyd. 2016. Cvxpy:
A python-embedded modeling language for convex
optimization. The Journal of Machine Learning Re-
search, 17(1):2909–2913.

Palash Goyal and Emilio Ferrara. 2018. Graph embed-
ding techniques, applications, and performance: A
survey. Knowledge-Based Systems, 151:78–94.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Hema Koppula and Ashutosh Saxena. 2013. Learning
spatio-temporal structure from rgb-d videos for hu-
man activity detection and anticipation. In Interna-
tional conference on machine learning, pages 792–
800.

Hugo Liu and Push Singh. 2004. Conceptneta practi-
cal commonsense reasoning tool-kit. BT technology
journal, 22(4):211–226.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605.

Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer,
and Dieter Fox. 2013. Learning to parse natural lan-
guage commands to a robot control system. In Ex-
perimental Robotics, pages 403–415. Springer.

Drew McDermott, Malik Ghallab, Adele Howe, Craig
Knoblock, Ashwin Ram, Manuela Veloso, Daniel
Weld, and David Wilkins. 1998. Pddl-the planning
domain definition language.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems (NIPS), pages 3111–3119.

Ashutosh Modi and Ivan Titov. 2014. Inducing neu-
ral models of script knowledge. In Proceedings of
the Eighteenth Conference on Computational Natu-
ral Language Learning, pages 49–57.

Hogun Park and Hamid Reza Motahari Nezhad. 2018.
Learning procedures from text: Codifying how-to
procedures in deep neural networks. In Companion
of the The Web Conference 2018 on The Web Con-
ference 2018, pages 351–358. International World
Wide Web Conferences Steering Committee.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543.

Karl Pichotta and Raymond J Mooney. 2016a. Learn-
ing statistical scripts with lstm recurrent neural net-
works. In Thirtieth AAAI Conference on Artificial
Intelligence.

Karl Pichotta and Raymond J Mooney. 2016b. Using
sentence-level lstm language models for script infer-
ence. arXiv preprint arXiv:1604.02993.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Bryan Williams, Henry Lieberman, and Patrick H Win-
ston. 2017. Understanding stories with large-scale
common sense. In COMMONSENSE.

Semih Yagcioglu, Aykut Erdem, Erkut Erdem, and Na-
zli Ikizler-Cinbis. 2018. Recipeqa: A challenge
dataset for multimodal comprehension of cooking
recipes. arXiv preprint arXiv:1809.00812.

40



A Sequence Modeling Approach for Structured Data Extraction
from Unstructured Text

Jayati Deshmukh∗

IIIT-Bangalore
jayati.deshmukh

@iiitb.org

Annervaz KM
Accenture Technology Labs

annervaz.k.m
@accenture.com

Shubhashis Sengupta
Accenture Technology Labs
shubhashis.sengupta

@accenture.com

Abstract
Extraction of structured information from un-
structured text has always been a problem of
interest for NLP community. Structured data
is concise to store, search and retrieve; and it
facilitates easier human & machine consump-
tion. Traditionally, structured data extraction
from text has been done by using various pars-
ing methodologies, applying domain specific
rules and heuristics. In this work, we lever-
age the developments in the space of sequence
modeling for the problem of structured data
extraction. Initially, we posed the problem
as a machine translation problem and used
the state-of-the-art machine translation model.
Based on these initial results, we changed the
approach to a sequence tagging one. We pro-
pose an extension of one of the attractive mod-
els for sequence tagging tailored and effective
to our problem. This gave 4.4% improvement
over the vanilla sequence tagging model. We
also propose another variant of the sequence
tagging model which can handle multiple la-
bels of words. Experiments have been per-
formed on Wikipedia Infobox Dataset of bi-
ographies and results are presented for both
single and multi-label models. These mod-
els indicate an effective alternate deep learning
technique based methods to extract structured
data from raw text.

1 Introduction

A humongous volume of data in the form of text,
images, audio and video is being generated daily.
It has been reported that 90% of all the data avail-
able today has been generated in the last two
years (DoMo, 2017). The pace of data genera-
tion is growing exponentially. The generation of
data is not only restricted to open domains and
social media; even in closed groups like private
organizations and corporations, textual data is be-
ing produced in abundance. Unstructured data is

∗Work done at Accenture Technology Labs

present in a variety of forms like documents, re-
ports and surveys, logs etc. Restricting this data to
be captured directly in structured form prohibits
the natural capturing of the data, leaving out es-
sential pieces. But structured data presents the
data in a concise and well-defined manner which
is easier to understand than a corresponding docu-
ment. Structured data can be transformed into ta-
bles which can be easily stored in databases. It can
be indexed, queried for and searched to retrieve
relevant results of a query. Thus structured rep-
resentation is quintessential to facilitate machine
consumption of data. Moreover in the world of
data abundance, such structured representation is
essential for human consumption as well.

In many business processes, like Finance and
Healthcare, the transformation of the unstructured
data into structured form is done manually or
semi-automatically through domain specific rules
and heuristics. Let’s take the example of Pharma-
covigilance (Maitra et al., 2014), where adverse
effects of prescribed drugs are reported by pa-
tients or medical practitioners. This information
is used to detect signals of adverse effects. Col-
lection, analysis and reporting of these adverse ef-
fects by the drug companies is mandated by law.
In most cases, it is easy for patients or medical
practitioners to describe the side-effects of their
drugs in a common, day to day language, in free
form text. Then it has to be transformed into a
structured format which is analyzed with clinical
knowledge for signals of adverse effects. Cur-
rently this is done by human analysts or through
very rigid text processing heuristics for certain
kinds of text. Another domain is extraction and
management of legal contracts in domains such
as real estate. Specifically Lease Abstraction in-
volves manual inspection and validation of com-
mercial rental lease documents. It is done by
offshore experts who extract relevant information
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Figure 1: From Unstructured to Structured Data

from the documents into a structured form. This
structured information is further used for aggre-
gate analytics and decision making by large real
estate firms (Annervaz et al., 2015).

Figure 1 shows a sample unstructured text and
its corresponding structured output. In case the
structured data is to be stored in a database, the
labels like name, birth date etc can be the column
names of the database and the corresponding val-
ues like charles and 12 march 1970 can be the ac-
tual values stored.

As mentioned earlier, previous work in this
space involved parsing the natural language sen-
tences, and writing rules and heuristics on the
parse tree or structure to extract the information re-
quired (Culotta and Sorensen, 2004; Fundel et al.,
2006; Reichartz et al., 2009). In this work, we ap-
proach the problem from sequence modeling per-
spective and weave together state of the art mod-
els in the space to extract structured information
from raw unstructured data. The task of informa-
tion extraction to build structured data can be de-
scribed as generating or matching appropriate tags
or labels to corresponding parts of raw data. For
each token in the raw data, a corresponding tag

is attached marking what kind of data it stands for.
OTHER tag gets attached if the data in the raw text
is not relevant.

We have approached the problem both from
machine translation and sequence tagging per-
spectives. In machine translation, typically there
are two sequences, one in source language (say
English) and the other in target language (say
French). Machine learning models try to convert
the sequence of tokens in source language to se-
quence of tokens in target language. In case of
translation problem, the core idea being expressed
in the input and the output is the same, however
it is in a different language. Similarly, for our
problem both the input and output have same con-
tent although it is represented in an unstructured
or structured format. So to start with, we ap-
proach the problem from translation perspective
and treat the source text as word sequence of un-
structured text and the corresponding tag sequence
as target sequence. State of the art machine trans-
lation models (sequence to sequence model (Cho
et al., 2014; Sutskever et al., 2014)) can then be
attempted for the same. We have experimented
with this approach and treat it as our baseline. We
didn’t find any previous work on this dataset for
structured data extraction task. However we real-
ized that this problem cannot be directly mapped
to a translation problem. There is significantly
more word or phrase level information in the in-
put which cannot be appropriately represented by
translation models. We realized that sequence tag-
ging models (like for POS tagging (Huang et al.,
2015)) are more suitable for this problem. We
have experimented with state of the art sequence
tagging model for the problem and propose some
problem specific variants to improve the perfor-
mance.

Main contributions of this work are as follows:

1. We approach the problem from sequence
modeling perspective, which is perhaps the
first attempt in literature to the best of our
knowledge. Modeled this way, we can elim-
inate usage of traditional ways for parsing or
writing domain specific rules. A parallel cor-
pus of unstructured and structured data is suf-
ficient to train the models.

2. We have designed a modified version of the
state of the art sequence tagging model along
with PoS tags and attention which further im-
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Figure 2: Seq2seq Example

proves the results compared to the vanilla se-
quence tagging model.

3. We have also designed a multi-label sequence
tagging model which can generate multiple
labels of words using a customized learning
loss based on Set similarity.

The paper is organized as follows: We present
the details of seq2seq and sequence tagging mod-
els in Section 2 along with some interesting work
which has been done previously using these mod-
els. In Section 3 we give details of our approach
along with details of vanilla model and modified
models for single and multi-label problems. The
details of our experiments are in Section 4. We
present some related work in Section 5. We con-
clude in Section 6 by giving some future work di-
rections.

2 Preliminaries

A variety of NLP problems have been solved using
both seq2seq models and sequence tagging mod-
els. These models and their variants have pro-
duced state-of-the-art results and we discuss these
models and some of their applications in the fol-
lowing subsection.

2.1 Seq2Seq Models

Seq2seq models are end to end models which
transform an input sequence into an output se-
quence. These models basically consist of an en-
coder which takes the input and encodes it into an
intermediate representation and a decoder which
takes the intermediate representation as input and
generates the output sequence, one token at a time.
Encoders and Decoders structurally may be Re-
current Neural Networks like RNN, LSTM, GRU
(Cho et al., 2014; Sutskever et al., 2014)) or even
Convolutional Neural Networks (Gehring et al.,
2017), depending on the problem it is designed to
solve. It might also have different variations and
additional features like attention, multiple layers
etc (Bahdanau et al., 2014). These were the first

citizens of Encode, Attend, Decode paradigm deep
learning models.

Seq2seq models generate output in two steps as
shown in Figure 2. Firstly x, the sequence of em-
beddings which is created by combining the em-
beddings (vectors) of words, is given as input to
the encoder. The encoder transforms x into an
intermediate representation z (which for example
for RNN encoder may be the hidden state at the
end of processing input) as follows

z = enc(x)

Next, this representation is given as input to the
decoder. It generates the output Y token by token
as w0, w1, w2, ..., wl from z as per the following
equations:

ht = dec(ht−1, wt)

st = g(ht)

pt = softmax(st)

where, at t = 1
h0 = z

w0 = wsos

Here, at t = 1, h0 is the output of encoder z
and w0 is the embedding of start of sentence tag.
The decoder takes the previous hidden state and
current word embedding as input to generate the
next hidden state. Next, function g transforms the
hidden representation from hidden dimension h
to the dimension of vocabulary v. Next its out-
put is passed through a softmax function which
transforms the input into probability values for
each word in the vocabulary. Finally, it is passed
through argmax function to fetch the index of the
word of maximum probability and returns the cor-
responding word. This process is repeated till end
of sentence tag is generated by the decoder.

Originally, seq2seq models were conceived
for language translation task(Cho et al., 2014;
Sutskever et al., 2014)), where the input text is in
one language like English and the output which is
its translation, is in another language like French.
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Figure 3: Sequence Tagging Example

These simple models generated encouraging re-
sults leading to production grade models which
parallelize training on multiple GPUs and are
used in applications such as Google Translate (Wu
et al., 2016). Seq2seq models have also been used
for Text Summarization. In this case, the input is
a large document and output is its summary which
can be used for generating news headlines or ab-
stracts. For this purpose, an attention based en-
coder and a beam search decoder which generated
words from the vocabulary gave the best results
(Rush et al., 2015; Wu et al., 2016).

Seq2seq models are not just restricted to textual
input/outputs. There have been applications with
image inputs to automatically generate captions
of images using CNN encoder and RNN decoder
with attention (Vinyals et al., 2015). These mod-
els have also been used on speech data to trans-
form speech to text (Chorowski et al., 2015). They
have also been used with videos for video trans-
lation, subtext generation and video generation
etc (Venugopalan et al., 2014; Srivastava et al.,
2015; Yao et al., 2015). Some multi-modal mod-
els which take more that one forms of inputs have
also been successful (Kiros et al., 2014).

2.2 Sequence Tagging Models

Sequence tagging or labeling models tag all the
tokens in the input sequence. Fundamentally,
this model consists of recurrent neural network
like RNN, LSTM, GRU and Convolutional Neu-
ral Network which reads input at token level and
a conditional random field (CRF) (Lafferty et al.,
2001) which takes as input the encoded represen-
tation and generates corresponding tags for each
token. These models may also include other ad-
ditional features like word and sentence features,
regularization, attention etc. Originally this model
was conceived for tasks like Part of Speech (PoS)

tagging, chunking and Named Entity Recognition
(NER) (Huang et al., 2015). A joint model for
multiple tasks also seems to work well (Hashimoto
et al., 2016).

A high level representation of sequence tagging
model as shown is Figure 3. Here the input is
passed into an bi-LSTM and the hidden vector
h(t) and output vector y(t) are generated as fol-
lows:

hf (t) = f(Ufx(t) +Wfhf (t− 1))

hb(t) = f(Ubx(t) +Wbhb(t− 1))

h(t) = [hf (t) : hb(t)]

y(t) = g(V h(t))

where hf (t) and hb(t) are the hidden repre-
sentations of the forward and backward LSTMs
respectively. These two are concatenated to
generate the final hidden representation h(t).
Uf ,Wf , Ub,Wb, V are weights computed during
training. These bi-LSTM representations are com-
bined with CRF using Viterbi Decoder (Sutton
et al., 2012). It takes the hidden state and the pre-
viously generated tags in the form of sequence to
generate the next tag. If the string of output tags
is taken as a sequence, then we can say that the
CRF generates the most likely sequence out of all
possible output sequences (Huang et al., 2015; Ma
and Hovy, 2016; Lample et al., 2016)

3 Approach and Models

For our problem, we started with seq2seq models.
We then moved to vanilla sequence tagging mod-
els which we realized are more suitable for the task
as compared to seq2seq models. We also built a
variant of sequence tagging model suitable for our
problem which further improves the performance.
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Figure 4: Sequence Tagging with Attention

Figure 5: Computing Attention

Finally, a sequence tagging model which can gen-
erate multiple labels for each token has also been
designed. Further details of the models are pre-
sented in the following subsections.

3.1 Baseline Approach : Seq2seq model
For seq2seq model, the input is the sentence or
set of sentences and the structured output is trans-
formed to a string which is a series of key-value
pairs corresponding to the word-label pairs of the
sentence. Here we assume that the tags are at a
word level. This model can learn multiple labels
of the same word for example chris is name as
well as article title in Figure 2. This model by
its design also learns the sequence of label-word
pairs. Experiments as detailed in Section 4 have
been performed on different combinations of RNN
and CNN encoders and decoders.

3.2 Vanilla Sequence Tagging model
Sequence tagging model reads the input word
by word and simultaneously generates the corre-
sponding label for the word as shown in Figure
3. Here, blue cells represent the forward LSTM
and the violet cells represent the backward LSTM.
The line between the output labels represents the
CRF. For this model, the data is transformed such
that the sentence is split in words by spaces and

then each word is tagged to a corresponding label.
Only the first label of a word is considered. If a
word does not have any label then it is manually la-
beled as ’OTHER’. Structurally this biLSTM-CRF
model can comparatively work better even in case
of longer inputs. However, this model cannot learn
multiple labels of a word. The model generates la-
bels at a word level and thus it does not have an
ordering as in case of seq2seq models.

3.3 Modified Sequence Tagging model
We have modified the vanilla sequence tagging
model to incorporate following variations which
models our problem better and was found to gen-
erate improved results. Part of Speech (PoS) tags
of words carry rich information and are connected
to the corresponding labels of each word. To uti-
lize this, we used the word itself and the PoS
tag of each word as input. We randomly ini-
tialized the PoS tag embeddings. Word embed-
dings and PoS tag embeddings were concatenated
and passed as input to the bi-LSTM. We believe
that while generating label for the current word,
not all the words of the input are equally impor-
tant. Words nearby to the current word are con-
textually more important compared to words far-
ther away. Thus, every word has different impor-
tance or weight while generating the label of cur-
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Table 1: Sample Results

Table 2: Single Label Results

Sentence 1 Label 1 Sentence 2 Label 2

w. name renan name
lamont name luce name
was OTHER born OTHER
a OTHER 5 birth date
scottish OTHER march birth date
footballer OTHER 1980 birth date
who OTHER , birth place
played OTHER paris birth place
as OTHER is OTHER
a OTHER a OTHER
right position french OTHER
winger position singer occupation
. OTHER and OTHER

songwriter occupation
. OTHER

Table 3: Multi-Label Results

Word Labels

begziin article title name
yavuukhulan article title image name
, OTHER
1929-1982 OTHER
was OTHER
a OTHER
mongolian nationality language
poet occupation
of OTHER
the OTHER
communist OTHER
era OTHER
that OTHER
wrote OTHER
in caption
mongolian nationality language
and OTHER
russian language
. OTHER

rent word. To incorporate this in the model, we
used self-attention (Vaswani et al., 2017; Tan et al.,
2018) as depicted in Figure 4 and 5.

3.4 Multi-label Sequence Tagging model

As shown in Figure 1 a word can have multiple
associated tags / labels. Vanilla sequence tagging
models are designed to predict only a single tag
for each word. Thus a lot of information might be
lost by using these models. The following mod-
ified model can give multiple possible labels of
words. At the output layer, instead of using soft-
max which was used in single label prediction
case, we use sigmoid which normalizes each of
the label prediction scores between 0 and 1 inde-
pendently. We used hamming loss, which is the
most common metric used in case of multi-label
classification problems (Tsoumakas and Vlahavas,
2007; Elisseeff and Weston, 2002). Hamming loss
is defined as the fraction of wrong labels to total
number of labels. It takes into account both correct
and incorrect labels. Let yt be the vector of true
labels and yp be the vector of independent proba-
bilities of predicted labels. Then Hamming Loss
(HL) is computed as follows:

HL = yt XOR yp

Here, XOR is non-differentiable and cannot
be used to train the multi-label sequence tagging
model. To overcome this problem, the HL equa-
tion is transformed as below:

HLdiff = average(yt ∗ (1− yp) + (1− yt) ∗ yp)

For example, let a word have true labels
as [1, 0, 0, 1] and the model predicts the la-
bels [0.9, 0.1, 0.2, 0.9], then hamming loss in
this case is computed as avg([1, 0, 0, 1] ∗
[0.1, 0.9, 0.8, 0.1]+[0, 1, 1, 0]∗ [0.9, 0.1, 0.2, 0.9])
or avg(0.1 + 0.1 + 0.1 + 0.2) or 0.125.

4 Experiments & Results

We have used the Wikipedia Infobox dataset cre-
ated by (Lebret et al., 2016) which is available in
the public domain1. It consists of total 728, 321
biographies, each having the first Wikipedia para-
graph and the corresponding infobox, both of
which have been tokenized. Originally this dataset

1https://github.com/DavidGrangier/
wikipedia-biography-dataset
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Table 4: Baseline Results - Seq2Seq Model

Model Accuracy % Perplexity

CNN Encoder Decoder 63.34 5.78
LSTM Encoder Decoder 68.42 3.95
LSTM Encoder Decoder with PoS 69.60 3.45

Table 5: Sequence Tagging Results

Model Accuracy % F1 Score %

biLSTM-CRF 79.34 65.00
biLSTM-CRF with PoS & Attention 82.82 62.32

was created to build models to generate text based
on the the infobox. In our case, the problem is
reversed. Given a paragraph of unstructured data,
we try to generate the corresponding infobox or
structured data. In the dataset, some information
might be present in the paragraph but not in in-
fobox and vice versa. We have pruned the in-
foboxes so that it contains only that information
which is present in the paragraph. The informa-
tion which is not present in the paragraph cannot
be generated by any model by itself without exter-
nal knowledge.

We have split the dataset into three parts in the
ratio 8:1:1 for train, validation and test. We have
done basic pre-processing on both paragraphs and
infoboxes. Extra information and labels tagged
as none have been removed from infoboxes. The
words have been initialized to GloVe (Penning-
ton et al., 2014) embeddings and character em-
beddings (Santos and Zadrozny, 2014) have been
randomly initialized. Words are 300 dimensional
and characters are 100 dimensional. The models
have been trained for 15 epochs or until it showed
no improvement. Single label model has been
trained using Adam Optimizer (Kingma and Ba,
2014) and multi-label model using Adagrad Op-
timizer (Zou and Shen, 2018). Adaptive learning
rate has been used. Dropouts (Guo et al., 2016)
have been used as regularizer. Table 1 shows some
sample results of single and multi-label sequence
tagging models.

Table 4 shows the Accuracy and Perplexity
scores of the baseline approach using seq2seq
model. Here, accuracy is calculated as total num-
ber of correctly predicted words by total number of
words. Perplexity metric is from NLP models and
it represents probability distribution of a language

model over the text2. Lower perplexity represents
better generalization and thus better performance.
We observed that LSTM Encoder-Decoder per-
forms better than CNN Encoder-Decoder as it is
able to take the temporal order or words into ac-
count and also because it handles short / medium
length text well. We also gave sequence of words
and corresponding PoS tags as input and the re-
sults of this were the best among all the seq2seq
models. Despite these enhancements, this model
does not perform well and has a low accuracy.

Table 5 shows the Sequence Tagging results on
the same data using vanilla model and other model
variants described earlier. In this case, accuracy
metric is computed as number of labels correctly
predicted by total number of words and F1 score is
calculated as usual as the harmonic mean of pre-
cision and recall. We present the results of vanilla
model and sequence tagging model with improve-
ments like PoS tags and attention. We notice that
the results of sequence tagging models are signif-
icantly better than the seq2seq models. In multi-
label sequence tagging model, the hamming loss
on the test dataset was 0.1927.

5 Related Work

Traditionally relationships have been extracted
from raw text using dependency parse tree based
methods (Culotta and Sorensen, 2004; Reichartz
et al., 2009). Dependency parse tree shows
the grammatical dependency among the words or
phrases of the input sentence. To extract relation
among words from a dependency parse tree, clas-
sifiers are trained to classify the relation. Some-
times rules are applied on on dependency parse

2http://www.cs.virginia.edu/˜kc2wc/
teaching/NLP16/slides/04-LMeval.pdf
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trees to further improve the results (Fundel et al.,
2006; Atzmueller et al., 2008). These rule based
models have shown improved results and have
been used in medical domain. It might also fare
well in closed domain areas where there is less
variation in text. Even at a Web scale, there have
been efforts to extract information specifically in
the form of named entities and relationships us-
ing DBpedia spotlight (Mendes et al., 2011) and
OpenIE (Pasca et al., 2006). A joint entity and re-
lation extraction model (Miwa and Bansal, 2016)
is primarily built using LSTMs. It comprises two
LSTM models - word sequence LSTM predicts the
entities and dependency tree LSTM predicts the
relationships among the entities. They also use ad-
ditional features like PoS tags, dependency types
etc as input. However in our models, we label
the words of raw text, these labels are not catego-
rized into entities and relationships. The datasets
on which they have performed the experiments
contain very few (< 10) entities and relations as
compared to our labels ( 1000). Attention based
encoder-decoder model (Dong and Lapata, 2016)
has been used to convert raw text to logical format.
The output is not entity or relationship but a log-
ical string corresponding to the input. They show
that this model gives consistent results across dif-
ferent domains and logical formats. The seq2seq
model which we used as a baseline is similar to
this model.

6 Conclusion & Future Work

We proposed a deep learning based approach for
the age old NLP problem of information extrac-
tion. We have used multiple variants of deep
learning based sequence tagging models to extract
structured data from unstructured data. Large pub-
licly available dataset of Wikipedia Biographies
has been used in experiments to prove the effi-
cacy. Sequence tagging models further improved
with additional features like PoS tags and atten-
tion mechanism. Multi-label sequence tagging
model gave more complete results from practical
perspective. Unlike the traditional methods, our
models are generic and not dependent on the struc-
ture of Wikipedia Infobox dataset. Similarly, it is
also not dependent on English language specifi-
cally. Ideally, it should work well for other sim-
ilar languages or datasets. A parallel corpus of
unstructured data and its corresponding structured
data is all that is required to train these models.

The actual performance might be affected by lan-
guage specific issues like word order, double nega-
tion or other grammatical issues. And there might
be minor modifications needed specific for differ-
ent datasets or languages.

To the best of our knowledge, this is the first
attempt in using sequence models for structured
data extraction. Being an initial work, there are
plethora of possible future work extensions. In the
practical setting, the information to be extracted
tends to be hierarchical. So the tags have a hier-
archical structure to it. Current model proposed,
handles only flat tag structure. Alterations to in-
corporate and handle hierarchical tag structure is
one direction of work we are considering. In the
Wikipedia Infobox dataset the text from where the
structured information is extracted is already iden-
tified or don’t have large span. In practice, this is
not the case. The text usually have larger span,
this makes the problem tougher. We have to de-
vise models first to prioritize the text snippets from
where the information has to be extracted, such an
end-to-end trainable model is another direction of
work. Similarly there are lot of options for future
work, we hope our initial work and results will in-
spire the community to work in these directions.

References
K. M. Annervaz, Jovin George, and Shubhashis Sen-

gupta. 2015. A generic platform to automate le-
gal knowledge work process using machine learn-
ing. In 14th IEEE International Conference on
Machine Learning and Applications, ICMLA 2015,
pages 396–401.

Martin Atzmueller, Peter Kluegl, and Frank Puppe.
2008. Rule-based information extraction for struc-
tured data acquisition using textmarker. In LWA,
pages 1–7.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
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Abstract

This paper describes the LIAAD system
that was ranked second place in the Word-
in-Context challenge (WiC) featured in
SemDeep-5. Our solution is based on a
novel system for Word Sense Disambiguation
(WSD) using contextual embeddings and
full-inventory sense embeddings. We adapt
this WSD system, in a straightforward man-
ner, for the present task of detecting whether
the same sense occurs in a pair of sentences.
Additionally, we show that our solution is
able to achieve competitive performance
even without using the provided training
or development sets, mitigating potential
concerns related to task overfitting.

1 Task Overview

The Word-in-Context (WiC) (Pilehvar and
Camacho-Collados, 2019) task aims to evaluate
the ability of word embedding models to ac-
curately represent context-sensitive words. In
particular, it focuses on polysemous words which
have been hard to represent as embeddings due
to the meaning conflation deficiency (Camacho-
Collados and Pilehvar, 2018). The task’s objective
is to detect if target words occurring in a pair of
sentences carry the same meaning.

Recently, contextual word embeddings from
ELMo (Peters et al., 2018) or BERT (Devlin et al.,
2019) have emerged as the successors to tradi-
tional embeddings. With this development, word
embeddings have become context-sensitive by de-
sign and thus more suitable for representing poly-
semous words. However, as shown by the experi-
ments of (Pilehvar and Camacho-Collados, 2019),
they are still insufficient by themselves to reliably
detect meaning shifts.

In this work, we propose a system designed
for the larger task of Word Sense Disambigua-
tion (WSD), where words are matched with spe-

cific senses, that can detect meaning shifts without
being trained explicitly to do so. Our WSD sys-
tem uses contextual word embeddings to produce
sense embeddings, and has full-coverage of all
senses present in WordNet 3.0 (Fellbaum, 1998).
In Loureiro and Jorge (2019) we provide more
details about this WSD system, called LMMS
(Language Modelling Makes Sense), and demon-
strate that it’s currently state-of-the-art for WSD.
For this challenge, we employ LMMS in two
straightforward approaches: checking if the dis-
ambiguated senses are equal, and training a clas-
sifier based on the embedding similarities. Both
approaches perform competitively, with the lat-
ter taking the second position in the challenge
ranking, and the former trailing close behind even
though it’s tested directly on the challenge, forgo-
ing the training and development sets.

2 System Description

LMMS has two useful properties: 1) uses con-
textual word embeddings to produce sense em-
beddings, and 2) covers a large set of over 117K
senses from WordNet 3.0. The first property al-
lows for comparing precomputed sense embed-
dings against contextual word embeddings gener-
ated at test-time (using the same language model).
The second property makes the comparisons more
meaningful by having a large selection of senses
at disposal for comparison.

2.1 Sense Embeddings
Given the meaning conflation deficiency issue
with traditional word embeddings, several works
have focused on adapting Neural Language Mod-
els (NLMs) to produce word embeddings that are
more sense-specific. In this work, we start produc-
ing sense embeddings from the approach used by
recent works in contextual word embeddings, par-
ticularly context2vec (Melamud et al., 2016) and
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ELMo (Peters et al., 2018), and introduce some
improvements towards full-coverage and more ac-
curate representations.

2.1.1 Using Supervision

Our set of full-coverage WordNet sense embed-
dings is bootstrapped from the SemCor corpus
(Miller et al., 1994). Sentences containing sense-
annotated tokens (or spans) are processed by a
NLM in order to obtain contextual embeddings for
those tokens. After collecting all sense-labeled
contextual embeddings, each sense embedding
(~vs) is determined by averaging its corresponding
contextual embeddings. Formally, given n contex-
tual embeddings ~c for some sense s:

~vs =
1

n

n∑

i=1

~ci

In this work, we used BERT as our NLM. For
replicability, these are the relevant details: 1024
embedding dimensions, 340M parameters, cased.
Embeddings result from the sum of top 4 layers ([-
1, -4]). Moreover, since BERT uses WordPiece to-
kenization that doesn’t always map to token-level
annotations, we use the average of subtoken em-
beddings as the token-level embedding.

2.1.2 Extending Supervision

Despite its age, SemCor is still the largest sense-
annotated corpus. The lack of larger sets of sense
annotations is a major limitation of supervised ap-
proaches for WSD (Le et al., 2018). We address
this issue by taking advantage of the semantic re-
lations in WordNet to extend the annotated sig-
nal to other senses. Missing sense embeddings
are inferred (i.e. imputed) from the aggregation
of sense embeddings at different levels of abstrac-
tion from WordNet’s ontology. Thus, a synset em-
bedding corresponds to the average of all of its
sense embeddings, a hypernym embedding corre-
sponds to the average of all of its synset embed-
dings, and a lexname embedding corresponds to
the average of a larger set of synset embeddings.
All lower abstraction representations are created
before next-level abstractions to ensure that higher
abstractions make use of lower-level generaliza-
tions. More formally, given all missing senses
in WordNet ŝ ∈ W , their synset-specific sense
embeddings Sŝ, hypernym-specific synset embed-
dings Hŝ, and lexname-specific synset embed-

dings Lŝ, the procedure has the following stages:

(1) if |Sŝ| > 0, ~vŝ =
1

|Sŝ|
∑

~vs, ∀~vs ∈ Sŝ

(2) if |Hŝ| > 0, ~vŝ =
1

|Hŝ|
∑

~vsyn,∀~vsyn ∈ Hŝ

(3) if |Lŝ| > 0, ~vŝ =
1

|Lŝ|
∑

~vsyn, ∀~vsyn ∈ Lŝ

2.1.3 Leveraging Glosses

There’s a long tradition of using glosses for WSD,
perhaps starting with the popular work of Lesk
(1986). As a sequence of words, the informa-
tion contained in glosses can be easily represented
in semantic spaces through approaches used for
generating sentence embeddings. While there are
many methods for generating sentence embed-
dings, it’s been shown that a simple weighted av-
erage of word embeddings performs well (Arora
et al., 2017).

Our contextual embeddings are produced from
NLMs that employ attention mechanisms, assign-
ing more importance to some tokens over oth-
ers. As such, these embeddings already come
‘pre-weighted’ and we embed glosses simply as
the average of all of their contextual embeddings
(without preprocessing). We’ve found that intro-
ducing synset lemmas alongside the words in the
gloss helps induce better contextualized embed-
dings (specially when glosses are short). Finally,
we make our dictionary embeddings (~vd) sense-
specific, rather than synset-specific, by repeating
the lemma that’s specific to the sense alongside all
of the synset’s lemmas and gloss words. The re-
sult is a sense-level embedding that is represented
in the same space as the embeddings we described
in the previous section, and can be trivially com-
bined through concatenation (previously L2 nor-
malized).

Given that both representations are based on
the same NLM, we can make predictions for con-
textual embeddings of target words w (again, us-
ing the same NLM) at test-time by simply dupli-
cating those embeddings, aligning contextual fea-
tures against sense and dictionary features when
computing cosine similarity. Thus, we have sense
embeddings ~vs, to be matched against duplicated
contextual embeddings~cw, represented as follows:

~vs =

[
||~vs||2
||~vd||2

]
,~cw =

[
||~cw||2
||~cw||2

]
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2.2 Sense Disambiguation
Having produced our set of full-coverage sense
embeddings, we perform WSD using a simple
Nearest-Neighbors (k-NN) approach, similarly to
Melamud et al. (2016) and Peters et al. (2018). We
match the contextual word embedding of a target
word against the sense embeddings that share the
word’s lemma (see Figure 1). Matching is per-
formed using cosine similarity (with duplicated
features on the contextual embedding for align-
ment, as explained in 2.1.3), and the top match is
used as the disambiguated sense.

Figure 1: Illustration of our k-NN approach for WSD,
which relies on full-coverage sense embeddings repre-
sented in the same space as contextualized embeddings.

2.3 Binary Classification
The WiC task calls for a binary judgement on
whether the meaning of a target word occurring in
a pair of sentences is the same or not. As such, our
most immediate solution is to perform WSD and
base our decision on the resulting senses. This
approach performs competitively, but we’ve still
found it worthwhile to use WiC’s data to train a
classifier based on the strengths of similarities be-
tween contextual and sense embeddings. In this
section we explore the details of both approaches.

2.3.1 Sense Comparison

Our first approach is a straightforward comparison
of the disambiguated senses assigned to the target
word in each sentence. Considering the example
in Figure 2, this approach simply requires check-
ing if the sense cook2v assigned to ‘makes’ in the
first sentence equals the sense produce2v assigned
to the same word in the second sentence.

2.3.2 Classifying Similarities

The WSD procedure we describe in this paper
represents sense embeddings in the same space
as contextual word embeddings. Our second ap-
proach exploits this property by considering the
similarities (including between different embed-
ding types) that can be seen in Figure 2. In this
approach, we take advantage of WiC’s training
set to learn a Logistic Regression Binary Classi-
fier based on different sets of similarities. The
choice of Logistic Regression is due to its explain-
ability and lightweight training, besides competi-
tive performance. We use sklearn’s implementa-
tion (v0.20.1), with default parameters.

3 Results

The best system we submitted during the evalua-
tion period of the challenge was a Logistic Regres-
sion classifier trained on two similarity features
(sim1 and sim2, or contextual and sense-level).
We obtained slightly better results with a classi-
fier trained on all four similarities shown in Figure
2, but were unable to submit that system due to
the limit of a maximum of three submissions dur-
ing evaluation. Interestingly, the simple approach
described in 2.3.1 achieved a competitive perfor-
mance of 66.3 accuracy, without being trained or
fine-tuned on WiC’s data. Performance of best en-
tries and baselines can be seen on Table 1.

Sentence Tokens: Marco makes ravioli Apple makes iPhones

Contextual Embeddings:

Sense Embeddings: (cook.v.02) (produce.v.02)

sim1

sim2

sim3 sim4

Figure 2: Components and interactions involved in our approaches. The simn labels correspond to cosine similar-
ities between the related embeddings. Sense embeddings obtained from 1-NN matches of contextual embeddings.
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Submission Acc.
SuperGlue

(Wang et al., 2019)
68.36

LMMS
(Ours)

67.71

Ensemble
(Soler et al., 2019)

66.71

ELMo-weighted
(Ansell et al., 2019)

61.21

BERT-large 65.5
Context2vec 59.3

ELMo-3 56.5
Random 50.0

Table 1: Challenge results at the end of the evaluation
period. Bottom results correspond to baselines.

4 Analysis

In this section we provide additional insights re-
garding our best approach. In Table 2, we show
how task performance varies with the similarities
considered.

Model simn Dev Test
M0 N/A 68.18 66.29
M1 1 67.08 64.64
M2 2 66.93 66.21
M3 1, 2 68.50 67.71
M4 1, 2, 3, 4 69.12 68.07

Table 2: Accuracy of our different models. M0 wasn’t
trained on WiC data, the other models were trained
on different sets of similarites. We submitted M3, but
achieved slightly improved results with M4.

We determined that our best system (M4, using
four features) obtains a precision of 0.65, recall of
0.82, and F1 of 0.73 on the development set, show-
ing a relatively high proportion of false positives
(21.6% vs. 9.25% of false negatives). This skew-
ness can also be seen in the probability distribution
chart at Figure 3. Additionally, we also present a
ROC curve for this system at Figure 4 for a more
detailed analysis of the system’s performance.

5 Conclusion and Future Work

We’ve found that the WiC task can be ade-
quately solved by systems trained for the larger
task of WSD, specially if they’re based on con-
textual embeddings, and when compared to the
reported baselines. Still, we’ve found that the

WiC dataset can be useful to learn a classifier
that builds on top of the WSD system for im-
proved performance on WiC’s task of detecting
shifts in meaning. In future work, we believe this
improved ability to detect shifts in meaning can
also assist WSD, particularly in generating semi-
supervised datasets. We share our code and data at
github.com/danlou/lmms.
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Figure 3: Distribution of Prediction Probabilities
across labels, as evaluated by our best model on the
development set.
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Figure 4: ROC curve for results of our best model on
the development set.
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Abstract

We present the LIMSI-MULTISEM system
submitted to the IJCAI-19 SemDeep-5 WiC
challenge. The system measures word usage
similarity in sentence pairs. We experiment
with cosine similarities of word and sentence
embeddings of different types, and with fea-
tures based on in-context substitute annota-
tions automatically assigned to WiC sentence
pairs. The model with the highest performance
on the WiC development set uses a combina-
tion of cosine similarities from different em-
bedding types. It obtains an accuracy of 66.7
on the shared task test set and is ranked third
among the participating systems.

1 Introduction

The SemDeep-5 WiC shared task proposes to
identify the intended meaning of words in con-
text. It is framed as a binary classification task that
addresses whether two instances of a target word
have the same meaning (Pilehvar and Camacho-
Collados, 2019). The WiC dataset contains 7,466
sentence pairs and is proposed as a new evaluation
benchmark for context-sensitive word representa-
tions.

We apply to this task the method from
Garı́ Soler et al. (2019) which addresses the usage
similarity of contextualized instances of words.
The method integrates cosine similarities from dif-
ferent types of context-sensitive embeddings and
in-context automatic substitutes. Our best system
combines cosine similarities from three embed-
ding types. It obtains an accuracy of 66.7 on the
WiC test set, and is ranked third among all systems
that participated in the task.

2 The WiC Dataset

The WiC dataset contains 7,466 sentence pairs of
target words automatically labelled as having the

same (T) or different (F) meaning. It was automat-
ically compiled by extracting usage examples and
sense information from lexical resources (Word-
Net (Fellbaum, 1998) VerbNet (Schuler, 2006)
and Wiktionary1). To exclude instance pairs de-
scribing fine-grained sense distinctions, the re-
source was automatically pruned based on synset
proximity in the WordNet network. Human ac-
curacy upper bound on the dataset was defined as
80%, which corresponds to the average human ac-
curacy on a sample of sentence pairs (Pilehvar and
Camacho-Collados, 2019). Inter-annotator agree-
ment was at the same level. The WiC dataset pro-
vides a benchmark for evaluating context-sensitive
word representations, and their capacity to capture
the dynamic aspects of word meaning and usage.

3 Contextualized Representations

Our proposed model computes a contextualized
representation for each target word instance in a
WiC sentence pair using different types of embed-
dings. The cosine similarity of the obtained vector
representations is used as a feature for our classi-
fier. We use the following types of embeddings:

SIF (Smooth Inverse Frequency): Simple method
for deriving sentence representations from uncon-
textualized embeddings (Arora et al., 2017). Di-
mensionality reduction is applied to a weighted
average of the vectors of words in a sentence.
Weighting is based on word frequency in Com-
mon Crawl. We use SIF in combination with 300-
d GloVe vectors trained on Common Crawl (Pen-
nington et al., 2014).2

Context2vec: Neural model that learns embed-
dings for words and their contexts simultaneously
(Melamud et al., 2016). It is based on word2vec’s

1http://www.wiktionary.org/
2https://nlp.stanford.edu/projects/

glove/
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CBOW (Mikolov et al., 2013), but replaces the av-
eraging of context word embeddings with a biL-
STM that learns a representation of a sentence ex-
cluding the target word. We use a 600-d model
pre-trained on the UkWac corpus (Baroni et al.,
2009).3

ELMo (Embeddings from Language Models):
Contextualized word representations obtained
from the internal states of a deep bidirectional
LSTM trained with a language model objective
(Peters et al., 2018). Instead of learning the best
linear combination of layer representations for a
task – a common way of using ELMo – we use
out-of-the-box 512-d embeddings.4 We experi-
ment with the top layer, and the average of the
three hidden layers. We represent each WiC sen-
tence in two ways: a) with the ELMo embedding
corresponding to the target word, and b) with the
average of ELMo embeddings of all words in the
sentence. We also average the embeddings at a
context window of size two, as this was shown to
work better for word usage similarity with ELMo
(Garı́ Soler et al., 2019).

BERT (Bidirectional Encoder Representations
from Transformers): Representations obtained
from a 12-layer bidirectional Transformer encoder
trained with a language model objective where
words on both sides of the target word in a sen-
tence are masked and need to be predicted (Devlin
et al., 2018). The pre-trained BERT architecture
can be fine-tuned for specific tasks, but its inter-
nal contextualized word representations can also
be used directly, similar to ELMo. We use 768-d
uncased BERT representations of the target word,
and the average of all words in a sentence.

USE (Universal Sentence Encoder): General-
purpose sentence encoder trained with multi-task
learning (Cer et al., 2018). Using transfer learn-
ing, USE improves performance on different NLP
tasks at the sentence and phrase level (e.g. senti-
ment analysis). We use the Deep Averaging Net-
work (DAN) encoder,5 where input word and bi-
gram embeddings are averaged and fed through a
feedforward neural network, to create embeddings
for WiC sentences.

3http://u.cs.biu.ac.il/˜nlp/resources/
downloads/context2vec/

4The medium-sized model at https://allennlp.
org/elmo.

5https://tfhub.dev/google/
universal-sentence-encoder/2

4 Automatic Substitution

Manual substitute annotations have been useful for
in-context usage similarity estimation (Erk et al.,
2009; McCarthy et al., 2016). The idea is that a
high proportion of shared substitutes between two
word instances reflects their semantic similarity.6

Extending previous work where manual substi-
tute annotations were used to estimate usage sim-
ilarity (Erk et al., 2009), we automatically anno-
tate WiC instances with substitutes, and use fea-
tures based on their overlap for our classifier. We
use the context2vec method for automatic lexi-
cal substitution (Melamud et al., 2016). Given
a sentence with a new instance of a target word
t, and a set of candidate substitutes for the word
(S = s1,s2, ...,sn), context2vec ranks all candidates
taking into account the target-to-substitute similar-
ity and the substitute-to-context similarity.

c2v score =
cos(s, t)+1

2
× cos(s,C)+1

2
(1)

In Formula 1, s and t are the context2vec word
embeddings of a candidate substitute and the tar-
get, and C is the context vector of the sentence.
The pool of candidate substitutes for a target word
is formed from its set of paraphrases in the Para-
phrase Database (PPDB) XXL package (Ganitke-
vitch et al., 2013; Pavlick et al., 2015).7

For every instance, context2vec ranks all candi-
dates available for the target. Therefore, the gener-
ated ranking (R) always contains the same substi-
tutes, in the same or different order. To make sub-
stitute overlap measures (McCarthy et al., 2016)
operational in this setting, we use a filtering strat-
egy from Garı́ Soler et al. (2019). The method de-
tects a cut-off point in the ranking R that reflects a
shift from good quality substitutes (high-ranked),
to substitutes that are not a good fit in the context
(low-ranked). It checks whether adjacent substi-
tutes are paraphrases in PPDB; if not, it discards
everything found after that point in R.

After filtering the ranking R for each sentence
pair, we obtain three different features based on
the retained substitutes.

• Common substitutes: The proportion of
shared substitutes between the two instances
of a target word.

6Previous work explores graded usage similarity, whereas
in WiC it is binary.

7http://paraphrase.org/
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Target Sentences Substitutes

way
Do you know the way to the airport?

ways, route, path, road {connection, means, journey,

move, direction, gateway, passage, place, ...}

He said he was looking for the way out.
ways, path, road, route, walk {day, right, passage,
move, means, time, doorway, ...}

drink
Can I buy you a drink?

beer {bottle, beverage, pint, vodka, booze, whisky,

wine, liquor, drunk, cocktail, restaurant, ...}
He took a drink of his beer and
smacked his lips.

swig {bottle, pint, sip, drinking, beverage, drank,
beer, drunk, cup, booze, liquor, ...}

Table 1: Sentence pairs from the WiC training set for the noun way (gold label: T) and the verb drink (gold label: F)
with automatic substitute annotations assigned by context2vec. Substitutes in italics were discarded after filtering.

• GAP score: GAP (Generalized Average Pre-
cision) considers the order of ranked ele-
ments and their weights (Kishida, 2005).
GAP score ranges from 0 to 1 (for perfect dis-
agreement/agreement). We take the average
score between the rankings produced for a
sentence pair in both directions (GAP(R1,R2)
and GAP(R2,R1)). Weights are the scores as-
signed to the substitutes by context2vec. We
use the GAP implementation shared by Mela-
mud et al. (2015).

• Substitute cosine similarity. We form pairs
of substitutes from R1 and R2, and calculate
the average of their GloVe cosine similarities.
This feature accounts for the semantic simi-
larity of substitutes, which can also, to some
extent, reflect usage similarity.

A few WiC sentence pairs (5%) contain tar-
get words that are not present in the PPDB XXL
package.8 We apply automatic substitution to in-
stances of target words that have paraphrases in
PPDB, and back off to a classifier that uses only
embedding-based features for the rest.9 Table 1
shows examples of WiC sentences with automatic
substitutes, before and after filtering.

5 Training Data Augmentation

We extend the WiC training data with 4,018 sen-
tence pairs automatically extracted from the Con-
cepts in Context (CoInCo) corpus (Kremer et al.,
2014). CoInCo is a subset of the MASC corpus

8For full coverage, an option would be to use the whole
vocabulary as a pool, as in the original context2vec imple-
mentation.

9PPDB paraphrases were available for target words in
97% of training, 89% of development and 90% of test sen-
tence pairs in WiC.

(Ide et al., 2008) which contains manual substi-
tute annotations for all content words in a sen-
tence. We use a balanced collection of similar (T )
and dissimilar (F) sentence pairs from CoInCo,
with labels automatically assigned based on sub-
stitute overlap (Garı́ Soler et al., 2019).10 We ap-
ply the automatic substitution method described in
Section 4, and extract substitute- and embedding-
based features to be used by our models.

6 Model Development

We train a logistic regression classifier on the WiC
training set, and experiment with different feature
combinations on the development set. We use
cosine similarities of different embedding repre-
sentations. For ELMo and BERT, we try several
layer combinations,11 the target word vector and
the sentence vector (see Section 3). For ELMo, we
also apply a context window of size 2. The best
configuration for BERT is the average of the last
four layers, and for ELMo, the context window
approach. We then combine the best embedding
features for prediction. We also train models with
the substitute-based features only, backing off to
the best embedding-based model for instances of
words not present in PPDB. We combine the best
embedding- and substitute-based features in the
Combined setting.

We apply the BERT and ELMO configurations
that gave best results on the WiC development
set to the setting with additional CoInCo data
(WiC+CnC), and repeat the experiments. Results
on the WiC development set are given in Table 2.
Substitute-based features do not help the model,

10https://github.com/ainagari/coinco_
usim_data/

11The average of the three layers or the top layer for ELMo.
The top layer, the second-to-last layer, the average and the
concatenation of the last four layers for BERT.
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Features WiC WiC+CnC
BERT avg 4 tw 66.46 65.99
USE 63.64 63.48
ELMo top cw=2 62.38 61.76
SIF 60.66 59.56
c2v 60.34 61.13
BERT, USE 67.87 68.03
BERT, USE, ELMo 68.65 68.18
BERT, USE, ELMo, SIF 68.03 -
BERT, USE, ELMo, c2v - 68.34
Substitute-based 60.34 57.84
Combined 66.77 68.34

Table 2: Accuracy of the models with embedding-
based and substitute features on the WiC development
set. We report results of the models trained only on
WiC, and on the extended (WiC+CnC) dataset. The
best configurations (marked in boldface) were applied
to the WiC test set.

probably because of the noise in automatic anno-
tations. The best result is obtained by the model
trained only on WiC that uses cosine similarities
from BERT, USE and ELMo. In the WiC+CnC
setting, the Combined model gets the same per-
formance as the model that uses four embedding
types (BERT, USE, ELMo and c2v). We apply the
simpler embedding-based model to the WiC test
set.

7 Results and Analysis

Results of the two best-performing models (in
boldface in Table 2) on the WiC test set are given
in Table 3. Our best model is the one trained only
on WiC, which uses BERT, USE and ELMo cosine
similarities. It was ranked third at the competition
with an accuracy of 66.71, which is higher than
all results reported in the WiC description paper
(Pilehvar and Camacho-Collados, 2019).

The additional training data extracted from Co-
InCo does not help the models. We believe this
to be due to the different kind of sense distinc-
tions present in the dataset extracted from CoInCo
and in WiC. To explore this hypothesis, we take
a closer look at the model predictions and carry
out a qualitative analysis of the sense distinctions
in the two datasets. The confusion matrices of the
two best models on the development set show that
wrong predictions most often concern dissimilar
(F) sentence pairs. This type of error occurs more
with the model trained on WiC+CnC (67% of to-
tal errors compared to 59% when training only on

Approach Accuracy
WiC BERT, USE, ELMo 66.71
WiC+CnC BERT, USE, ELMo, c2v 65.64
BERTlarge Threshold (Pilehvar and
Camacho-Collados, 2019)

63.8

Table 3: Accuracy of our two best models on the WiC
test set, compared to the best result from previous work.

WiC). A quick observation of WiC data reveals
that dissimilar (F) pairs sometimes describe re-
lated senses, in spite of the pruning that aimed
at excluding these from the dataset (Pilehvar and
Camacho-Collados, 2019).

We extract a random sample of 60 sentence
pairs from the CoInCo training data and the WiC
development set to explore whether they differ in
this respect. We manually annotate all pairs for
graded usage similarity, using a scale of 1 (com-
pletely different) to 5 (the same), as in Erk et al.
(2009). Our assumption is that F pairs that de-
scribe related senses will be assigned higher sim-
ilarity scores. A comparison of the graded us-
age similarity values of gold F instances reveals
that these values differ significantly in CoInCo
and WiC (p = 0.048), as determined by a Mann-
Whitney test, with WiC F pairs having a higher
average similarity score (3.19 ± 1.52) than Co-
InCo F pairs (2.53 ± 0.19). The following F
sentence pair from WiC is an example where the
target word (construction) expresses different but
closely related meanings (as a process and a re-
sult): Construction is underway on the new bridge
– The engineer marvelled at his construction. The
CoInCo sentence pairs extracted by Garı́ Soler
et al. (2019) that we use for training describe more
clear-cut sense distinctions, due to the process
used for their extraction, based on the overlap of
manually annotated substitutes (see Section 5).

8 Conclusion and Future Work

We propose a new model for word usage simi-
larity estimation. The LIMSI-MULTISEM sys-
tem combines different types of context-sensitive
word and sentence representations with features
derived from automatic substitution for usage sim-
ilarity prediction. The best configuration com-
bines cosine similarities from three embedding
types: BERT, USE and ELMo.

In future work, we plan to use our model to in-
vestigate usage similarity on a per lemma basis, in
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order to identify lemmas with clear-cut and fuzzy
sense distinctions, as in McCarthy et al. (2016).
This will help identify lemmas for which classifi-
cation is trickier.
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Abstract

This paper describes a submission to the
Word-in-Context competition for the IJ-
CAI 2019 SemDeep-5 workshop. The task
is to determine whether a given focus word
is used in the same or different senses in
two contexts. We took an ELMo-inspired
approach similar to the baseline model in
the task description paper, where contex-
tualized representations are obtained for
the focus words and a classification is
made according to the degree of similar-
ity between these representations. Our
model had a few simple differences, notably
joint training of the forward and back-
ward LSTMs, a different choice of states
for the contextualized representations and
a new similarity measure for them. These
changes yielded a 3.5% improvement on
the ELMo baseline.

1 Introduction

Traditional word embedding systems such as
word2vec (Mikolov et al., 2013) assign each
word a single fixed embedding. One weakness
of these systems is that they are not well suited
for representing words which have multiple
meanings, as their embeddings are forced to
occupy a point in the vector space which cor-
responds to some combination of these mean-
ings. Much attention has been given to de-
veloping systems which can assign a word an
embedding specific to the sense in which it is
used in a given context (Huang et al., 2012;
Neelakantan et al., 2014; Chen et al., 2014;
Iacobacci et al., 2015; Li and Jurafsky, 2015;
Peters et al., 2018, among others). Such a sys-
tem could be thought of as yielding “sense
embeddings” rather than word embeddings.
Some sense embedding systems have shown
advantages over traditional word embeddings,

performing better on contextual word simi-
larity tasks (Neelakantan et al., 2014; Chen
et al., 2014, etc.) and relational similarity
tasks (Iacobacci et al., 2015). One of the great-
est successes has been the ELMo system (Pe-
ters et al., 2018) whose contextual embeddings
were used to obtain state-of-the-art results on
six NLP tasks.

The Word-in-Context (WiC) dataset (Pile-
hvar and Camacho-Collados, 2019) provides
an opportunity to evaluate sense embedding
systems by testing their ability to discriminate
between finely-grained meanings of a word.
Each instance in the dataset consists of two
sentences which both contain a certain “focus”
word. The instances must be classified accord-
ing to whether the focus word is used in the
same sense in the two sentences or not.

There are two main approaches to produc-
ing sense-specific embeddings. The first is to
learn a number of embeddings for each word
which correspond to its discrete senses, known
as multi-prototype embeddings (Huang et al.,
2012; Neelakantan et al., 2014; Chen et al.,
2014; Iacobacci et al., 2015; Li and Jurafsky,
2015). The second is to dynamically create a
unique embedding for a word for every context
it appears in, which attempts to capture the
particular shade of meaning the word has in
that context. Notable examples of these “con-
textualized word embedding” systems include
context2vec (Melamud et al., 2016) and ELMo
(Peters et al., 2018).

The ELMo1 baseline system in the task
description paper (Pilehvar and Camacho-
Collados, 2019) and our system can both be
thought of as having three components: the
LSTM-based (Hochreiter and Schmidhuber,
1997) language model; the “contextualization”
component, in which contextualized embed-
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dings for the focus words are obtained using
the language model; and the “classification”
component, where some similarity measure be-
tween the two contextualized embeddings is
calculated and a positive classification is made
if it is above a threshold learned on the train-
ing set.

In ELMo1, the language model is as de-
scribed in (Peters et al., 2018), the contextu-
alized embeddings are the hidden states of the
first LSTM layer at the focus word’s position,
and the similarity measure is cosine similar-
ity. In sections 2.1, 2.2 and 2.3, we will de-
scribe how these three components operate in
our system.

2 System Description

2.1 Language Model

The system uses a bidirectional LSTM-based
language model. Instead of predicting the next
or previous word given a left or right side con-
text, the model predicts a missing word given
both a left and right context - in this sense
it is similar to context2vec. During training,
two LSTM layers are run over a complete in-
put sentence in both directions. The forward
and backward directions are independent until
the output layer, when they are used jointly
as inputs to the softmax layer. Specifically
the outputs of the second of two LSTM layers
over a sentence of n words give a sequence of
forward representations −→u 1,

−→u 2, ...,
−→u n ∈ Rd

and a sequence of backward representations
←−u 1,
←−u 2, ...,

←−u n ∈ Rd. For each non-edge posi-
tion 2 ≤ i ≤ n − 1 in the sentence, we define
a vector xi as [−→u i−1

←−u i+1], the concatenation
of the forward representation in the preceding
position and the backward representation in
the following position. xi is fed into a softmax
layer over the vocabulary:

p(i) = softmax(Wxi)

The objective is to maximise the predicted
probability of the observed sentences, or equiv-
alently minimise the cross entropy loss J :

J = −
n−1∑

i=2

log p(i)si ,

where si is the index in the vocabulary of the
word which appears in position i in the sen-
tence.

2.2 Contextualization

Let f1 and f2 be the position of the focus word
in sentences 1 and 2 of an example in the WiC
dataset. Rather than using −→u f or ←−u f as con-
textualized word representations for the focus
word f , we instead use xf , the vector which
would be used to predict the focus word. xf

is a representation of the expectations we have
about the focus word given the context, and so

we would expect x
(1)
f1

and x
(2)
f2

to differ signifi-
cantly when the focus word is being used in a
different sense.

2.3 Classification

We tried several similarity measures between

x
(1)
f1

and x
(2)
f2

, including dot product and cosine
distance. The best-performing measure in our
experiments was a weighted dot product

d(x
(1)
f1

,x
(2)
f2

) = w>(x
(1)
f1
◦ x(2)

f2
)

where ◦ denotes element-wise product and w
is a trainable weight vector. Learning w was
treated as a logistic regression problem on the

training set with feature vector x
(1)
f1
◦ x(2)

f2
.

2.4 Corpus, Preprocessing and
Hyperparameters

The model was trained on a 2018 Wikipedia
dump. All tokens were lowercased. Those
which appeared at least 300 times were in-
cluded in the vocabulary, and others were re-
placed with <UNK>, resulting in a vocabu-
lary size of ∼100,000. The corpus was split
into training examples at sentence boundaries,
each example containing as many sentences as
possible followed by padding to reach a 50 to-
ken limit. Each example was capped with a
<START> and <END> token. The exam-
ples were randomly shuffled so that each batch
would contain a diverse range of texts.

Each token in the vocabulary and
<START>, <END> and <UNK> were as-
signed a randomly initialized 256-dimensional
embedding. The LSTM cells had 2048
hidden units which were projected to a 256-
dimensional output. There was no sharing
of weights for the LSTM cells between layers
or the two directions. There was an addi-
tional residual connection which fed the raw
embeddings directly into the second LSTM
layer.
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The weight vector w had dimension 512
(as x is the concatenation of two LSTM out-
put vectors), and the training set contained
∼5,500 examples. w was fitted using Scikit-
Learn’s LogisticRegression with L2 regulariza-
tion with parameter C (“inverse of regulariza-
tion strength”) set to 0.2. This value was ob-
tained through tuning on the development set.

3 Results and Analysis

3.1 Results

A single submission was made to the competi-
tion during the evaluation period with param-
eters as described above, scoring 61.2% on the
test set. This result and the results of a num-
ber of other system configurations are shown
in Table 1.

Another submission made in the post-
evaluation period attempted to improve on the
original submission by using a model trained
on a corpus consisting of the Wikipedia dump
combined with a corpus of books, “BookCor-
pus” (Zhu et al., 2015). It also used stronger
regularization when learning w, setting C =
0.02. This submission scored 62.4%.

3.2 Analysis

Our system demonstrated significant improve-
ment on the baseline models using relatively
simple techniques. There are only a few signif-
icant differences between our system and the
baseline model ELMo1:

• Input is whole-token based rather than
character based.

• Different training corpora - the ELMo
version used was trained on the 1 Billion
Word Benchmark.

• Forward and backward LSTMs are
trained jointly.

• Contextualized embedding for a word is
the vector used to predict the word rather
than the output vector for the word’s po-
sition in the sentence.

• Different similarity measure for contextu-
alized embeddings.

We note that when ELMo1’s contextualiza-
tion and classification methods (i.e. first layer

hidden states, cosine similarity) are used with
our trained language model, the test set accu-
racy is 54.9% compared with the 57.7% quoted
in (Pilehvar and Camacho-Collados, 2019) for
ELMo1. This suggests that our system may
have performed better with better language
model implementation or training.

Comparing the “predictor” to the “hidden”
states with cosine similarity, we see that this
different choice of contextualized embedding is
worth 4.2% on the test set.

While the use of weighted dot product was
worth 7.2% compared to unweighted dot prod-
uct on the dev set, this translated to only a
2.1% improvement on the test set, suggesting
that some overfitting occurred when learning
the dot product weights w despite the use of
a regularization parameter fitted on the dev
set. This may be because there is a greater
degree of similarity between the train and dev
sets than the train and test sets, as suggested
in (Pilehvar and Camacho-Collados, 2019).

3.3 Limitations

There are a number of potential areas for im-
provements in our system:

• Since xf is determined only by the con-
text of the focus word, the focus word
itself has no impact on the model’s pre-
dictions. It seems as though it should be
possible to improve performance by utilis-
ing knowledge about the focus word, but
we did not manage to find a convincing
method.

• The dataset contains many examples
where the focus words in the two sen-
tences share the same root but have differ-
ent inflectional morphology, e.g. “break”
and “breaks”. This may cause some false
negative classifications because the focus
words having different tense or plurality
is likely to result in differences in their x
vectors in the dimensions relating to these
features. Using the weighted dot prod-
uct may alleviate this problem somewhat
because it allows reduced weight to be
assigned to dimensions which correspond
to tense and plurality. A better solution
however might be to preprocess the train-
ing corpus and all examples in the dataset
to remove inflection entirely.
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States Similarity measure Dev. Test Notes

Predictor Weighted dot product 67.4 61.2 Submitted to competition
Predictor Unweighted dot product 60.2 59.1
Predictor Cosine similarity 60.5 59.1
Hidden Cosine similarity 55.2 54.9 cf. ELMo1 “threshold” version.
Hidden Weighted dot product 54.1 53.1

Table 1: Results with different system configurations. All results listed were obtained with the same
training run of the language model trained on Wikipedia 2018. “Predictor” refers to the use of the x
vectors used for predicting missing words, while “hidden” refers to the outputs of the first LSTM layer
for both directions concatenated.

4 Conclusions and Future Work

We discovered several improved ways of us-
ing ELMo-type contextualized word embed-
dings to perform word sense disambiguation in
the Word-in-Context task. When the forward
and backward LSTMs were trained jointly, we
found that it is better to use the concatenation
of output states from the forward LSTM at
the position before the focus and the backward
LSTM at the position after the focus than it is
to use hidden states from the focus position.
We also found that a weighted dot product
performs better than unweighted dot product
or cosine similarity as a metric for determining
whether two contextualized word embeddings
refer to the same sense of the word or not.
This suggests that some dimensions of such
embeddings carry more information related to
the human notion of word sense than others.
Together these improvements yielded a 3.5%
gain over the ELMo1 baseline of (Pilehvar and
Camacho-Collados, 2019), and there is reason
to think that a better implemented language
model could do even better.

A surprising aspect of our system is that it
never looks at the focus word itself, only the
context. Future work on this system might
center on exploiting what we know about the
focus word to improve performance.
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