
MOL 2019

The 16th Meeting on the Mathematics of Language

Proceedings of the Conference

18–19 July, 2019
University of Toronto

Toronto, Canada

c©2019 The Association for Computational Linguistics

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-950737-51-2

Introduction

These are the proceedings of the 16th Meeting on the Mathematics of Language (MOL 2019), held at the
University of Toronto, on July 18–19, 2019.

The volume contains ten regular papers, which have been selected from a total of eighteen submissions,
using the EasyChair conference management system.

The conference benefited from the financial support of the University of Toronto and of the Natural Sci-
ences and Engineering Research Council of Canada, which we gratefully acknowledge.

Last but not least, we would like to express our sincere gratitude to all the reviewers for MOL 2019 and
to all the people who helped with the local organization.

Philippe de Groote, Frank Drewes, and Gerald Penn (editors)

iii

Program Chairs:

Philippe de Groote, INRIA Nancy - Grand Est (France)
Frank Drewes, Umeå University (Sweden)

Organizing Chair:

Gerald Penn, University of Toronto (Canada)

Program Committee:

Henrik Björklund, Umeå University (Sweden)
David Chiang, University of Notre Dame (USA)
Alexander Clark, King’s College London (UK)
Valeria de Paiva, Nuance Communications (USA)
Carlos Gómez-Rodríguez, University of A Coruña (Spain)
Jeffrey Heinz, Stony Brook University (USA)
Makoto Kanazawa, Hosei University (Japan)
Greg Kobele, Leipzig University (Germany)
Marco Kuhlmann, Linköping University (Sweden)
Giorgio Magri, CNRS (France)
Andreas Maletti, Leipzig University (Germany)
Jens Michaelis, Bielefeld University (Germany)
Glyn Morrill, Universitat Politècnica de Catalunya (Spain)
Larry Moss, Indiana University, Bloomington (USA)
Reinhard Muskens, Tilburg University (The Netherlands)
Jim Rogers, Earlham College (USA)
Mehrnoosh Sadrzadeh, Queen Mary University of London (UK)
Anssi Yli-Jyrä, University of Helsinki (Finland)

Invited Speakers:

Matilde Marcolli, California Institute of Technology (USA)
Rohit Parikh, City University of New York (USA)

v

Table of Contents

Parsing Weighted Order-Preserving Hyperedge Replacement Grammars 1
Henrik Björklund, Frank Drewes and Petter Ericson

Sensing Tree Automata as a Model of Syntactic Dependencies 12
Thomas Graf and Aniello De Santo

Presupposition Projection and Repair Strategies in Trivalent Semantics 27
Yoad Winter

Dependently-Typed Montague Semantics in the Proof Assistant Agda-flat 40
Colin Zwanziger

Quantifier-free least fixed point functions for phonology . 50
Jane Chandlee and Adam Jardine

Some classes of sets of structures definable without quantifiers 63
James Rogers and Dakotah Lambert

Efficient learning of Output Tier-based Strictly 2-Local functions 78
Phillip Burness and Kevin McMullin

Learning with Partially Ordered Representations . 91
Jane Chandlee, Remi Eyraud, Jeffrey Heinz, Adam Jardine and Jonathan Rawski

Maximum Likelihood Estimation of Factored Regular Deterministic Stochastic Languages 102
Jeffrey Heinz and Chihiro Shibata

Sentence Length . 114
Gábor Borbély and András Kornai

vii

Parsing Weighted Order-Preserving Hyperedge Replacement Grammars

Henrik Björklund
Dept. of Computing Science
Umeå University (Sweden)
henrikb@cs.umu.se

Frank Drewes
Dept. of Computing Science
Umeå University (Sweden)
drewes@cs.umu.se

Petter Ericson
Dept. of Computing Science
Umeå University (Sweden)
pettter@cs.umu.se

Abstract

We introduce a weighted extension of the
recently proposed notion of order-preserving
hyperedge-replacement grammars and prove
that the weight of a graph according to such a
weighted graph grammar can be computed uni-
formly in quadratic time (under assumptions
made precise in the paper).

1 Introduction

The hyperedge-replacement grammar (HRG) is a
well-studied formalism for describing graph lan-
guages; see, e.g., (Bauderon and Courcelle, 1987;
Habel and Kreowski, 1987; Habel, 1992; Drewes
et al., 1997). As argued by Jones et al. (2012),
Koller (2015), and Groschwitz et al. (2015) it is
also a promising candidate for modelling seman-
tic representations of natural language such as
Abstract Meaning Representation (AMR, see Ba-
narescu et al. (2013)). However, HRGs overshoot
the mark in that parsing with respect to them is
computationally too expensive. Further, HRGs can
express intricate structural properties whose com-
plexity is far beyond what seems to be required to
describe practically relevant languages of seman-
tic graphs such as AMR. For example, as argued
by Chiang et al. (2018) it suffices if the path lan-
guages of such graph languages are regular lan-
guages. In contrast, HRGs easily give rise to even
non-context-free path languages. Thus, from both
perspectives less powerful special cases should be
sought if this helps to cut down on parsing complex-
ity. Recently, such a restriction, called order preser-
vation, was proposed and studied in (Björklund
et al., 2016; Björklund et al., 2017; Björklund et al.,
2018).

The present article builds upon the order-
preserving HRGs (OPHGs) of Björklund et al.
(2018), where it was shown that parsing for OPHGs
is efficient, requiring polynomial time even in the

uniform case i.e. when the grammar is consid-
ered to be part of the input. Here, we define a
weighted version of OPHGs, and extend the results
of Björklund et al. (2018) to show that when the
weights are taken from a commutative semiring, we
can efficiently compute the weight assigned by an
OPHG to any input graph. This is an important fea-
ture since applications such as semantic modelling
require ways to quantify the well-formedness of a
generated graph.

While providing a notion of grammars with
weights may appear to be a simple task as one
only has to assign weights to the rules, doing so in
a meaningful way for unrestricted HRGs is actually
not simple at all. The reason is that the weights of
different derivation trees generating the same graph
should be summed up to obtain the weight of the
graph. However, if a right-hand side of a rule has
nontrivial automorphisms that interchange two or
more nonterminal hyperedges, one gets spuriously
distinct derivation trees that should intuitively be
considered identical. At the very least, this compli-
cates uniform parsing as it requires to preprocess
the rules to detect the automorphisms of their right-
hand sides, a task for which no polynomial solution
is known.

In OPHGs, only the right-hand sides of so-called
duplication rules have nontrivial automorphisms,
and those do not require preprocessing. These rules
correspond to associative and commutative opera-
tions, which we propose to take special care of in
the computation of weights by using a type of re-
duced derivation trees introduced for the same pur-
pose by Courcelle (1991a); see also Courcelle and
Engelfriet (2012). In these derivation trees, some
nodes have a set of children, while others have
them ordered in a list. After this, we show how
weights can efficiently be computed, and prove the
correctness of the algorithm.

1

Related work. Another type of restricted HRGs
for semantic modelling was proposed by Chiang
et al. (2013), together with a parsing algorithm and
a detailed complexity analysis. The complexity
is, however, exponential even in the non-uniform
case. In particular, it is exponential in the maxi-
mum degree of nodes in the input graph. The same
holds for the parsing algorithm for regular graph
grammars presented by Gilroy et al. (2017). We
also mention that another technique for efficient
HRG parsing was resently developed by Drewes
et al. (2015, 2017).

2 Preliminaries

The set of non-negative integers is N, and [k] =
{1, . . . , k}. For a set S, S∗ is the set of strings over
S, while S~ is the set of strings in S∗ in which
no element of S occurs twice. The empty string
is ε, and we have S+ = S∗ \ ε and S⊕ = S~ \ ε.
The length of a string w is denoted |w|. We use the
terms ‘string’ and ‘sequence’ interchangably. For a
sequence w = a1 · · · an, every sequence ai1 · · · aik
with 1 ≤ i1 < · · · < ik ≤ n is a subsequence of
w, and [w] is the set {a1, . . . , an}.

2.1 Hypergraphs

We fix a disjoint, countably infinite supply LAB
of labels, such that each σ ∈ LAB has a rank
rank(σ) ∈ N. A hypergraph is a structure g =
(V,E, lab, att, ext) where V and E are the (finite)
sets of nodes and hyperedges, lab : E → LAB
is the edge labelling, att : E → V ⊕ is the edge
attachment with |att(e)| = rank(lab(e))+1 for all
e ∈ E, and ext ∈ V ⊕ is the sequence of external
nodes.

From now on, we simply call hypergraphs
graphs, and hyperedges edges. We use the graph
as a subscript to identify its components. E.g.,
Eg refers to the set of edges of g. For an edge
e ∈ Eg with attg(e) = v0 · · · vk, we say that
srcg(e) = v0, targ(e) = v1 · · · vk, and name these
the source and sequence of targets, respectively.
Similarly, for extg = v0 · · · vl, we say that v0 = g
is the source of the graph, and v1 · · · vl = g its
sequence of targets. In this paper, we require all tar-
gets of a graph to be leaves, i.e. srcg(e) /∈ [g] for
all e ∈ Eg. For a graph g, rank(g) = |g |, and for
an edge e, rank(e) = rank(labg(e)) = |targ(e)|.
Graphs g, h are isomorphic, denoted g ≡ h, if they
are equal up to a bijective renaming of nodes and
edges.

For a ∈ LAB with rank(a) = k, a• de-
notes the graph ({v0, . . . , vk}, {e}, (e→ a), (e→
v0 · · · vk), (v0 · · · vk)), i.e. the graph of one a-
labelled edge of the proper rank, with all its at-
tached nodes external.

An alternating sequence v1e1 . . . vkek of nodes
and edges is a path in g from v1 to ek if srcg(ei) =
vi and vi+1 ∈ [targ(ei)], for each i ∈ [k]. We may
optionally terminate the path at vk+1 instead of ek.
In either case, the path passes all nodes and edges
vi and ei for i ∈ [k]. If v1 = g, it is a source path.
A node v or edge e is reachable from s (in g) if
there is a path in g from s to v (e). A node or edge
is reachable in g if there is a source path to it.

2.2 Hyperedge replacement
Consider graphs h, f , and an edge e ∈ Eh such
that rank(e) = rank(f), Vh ∩ Vf = [atth(e)],
and atth(e) = extf . Then we can use hyperedge
replacement to obtain the graph g = h[[e : f]], sub-
stituting f for e in h, where g = ((Vh∪Vf), (Eh∪
Ef) \ {e}, attg, labg, exth) with

attg(e
′) =

{
attf (e′) if e′ ∈ Ef
atth(e′) if e′ ∈ Eh \ {e}

and

labg(e
′) =

{
labf (e′) if e′ ∈ Ef
labh(e′) if e′ ∈ Eh \ {e}.

Clearly, if rank(e) = rank(f) then we can al-
ways choose isomorphic copies of h and f , renam-
ing nodes in such a way that h[[e : f]] is defined.
We will generally not make note of this, to avoid
irrelevant technicalities.

For the case where g = h[[e : f]] and i = g[[e′ :
j]] with e′ /∈ Ef , we write i = h[[e : f, e′ : j]], and
similarly for a larger number of replacements.

We divide LAB into two subsets TLAB and
NLAB of terminals and nonterminals, and accord-
ingly call edges terminal and nonterminal ones. We
sometimes shorten the expressions further to just
“terminals” and “nonterminals”.

2.3 Hyperedge replacement grammars
A hyperedge replacement grammar (HRG) G =
(Σ, N, S,R) consists of a terminal alphabet Σ ⊂
TLAB, a nonterminal alphabet N ⊂ NLAB, an
initial nonterminal S ∈ N , and a set R of (HR)
rules form A→ f , where A ∈ N and f is a graph
over Σ ∪ N with rank(A) = rank(f). If f has
` nonterminal edges, we name them {e1, . . . , e`}
and write arity (A→ f) for `.

2

Derivations in HRGs are context-free: Given a
graph h, an edge e ∈ Eh with labh(e) = A ∈ N ,
and a rule (A→ f) ∈ R, we can derive the graph
g = h[[e : f]] from h. We call this a derivation
step, and denote it h→A→f g. We also write more
generally h →G g for a derivation step using any
rule in R. The reflexive and transitive closure of
→G is→∗G. The language of G is the set L(G) of
all graphs g over TLAB such that S• →∗G g.

3 Order-Preserving Hyperedge
Replacement Grammars

We now turn to order-preserving HRGs. The first
ingredient is a condition called reentrancy preser-
vation. Reentrancies are deeply entwined with the
way we identify places in a graph that match the
right-hand side of a given rule.

3.1 Reentrancies

Suppose we consider a subgraph h of a graph g as a
candidate of a subgraph that may have been derived
from a nonterminal e. If so, then g = g′[[e : h]]
where, intuitively, g′ is obtained from g by replac-
ing h by e. To perform this backwards replacement,
we have to determine which nodes of h are its ex-
ternal nodes, i.e., which ones are to be attached to
e. By the very definition of hyperedge replacement,
a node of h that is external in g or has an attached
edge not belonging to h, must be in [attg′(e)] (but
not generally vice versa). In particular, all nodes
in h that can be reached from g without passing a
node in h must be in [attg′(e)]. The notion of reen-
trant nodes to be defined now serves to turn this
inclusion into an equality (once we add [extg]∩Vh
to this set) in the case where h is rooted at some
node or edge x of g.

Intuitively, the reentrant nodes of a node or edge
x in a graph g are the first descendants of x that
can also be reached on a path that avoids x. As
the external nodes of a right-hand side of an HR
rule are the ones that, after the replacement, are
reachable from “outside” the subgraph, we also
consider them as reentrant. The graph delineated
by x and its reentrant nodes is the subgraph rooted
at x.

Let us have a look at a simple example before
defining the notion of reentrant nodes formally.
The graph in Figure 1 is single-rooted, with r the
root node. The reentrant nodes of r is the set of
external targets (i.e. x1, x2 and x3), and these are
also the reentrant nodes of the edge e sourced at r.

For the edge marked f , x2 is a reentrant node, and
so is v1 and v2, as v2 is reachable through the path
rei1gv2 that avoids f , and v1 likewise is reachable
by the path rei1gi2hv1, also avoiding f . For f ′,
the set of reentrant nodes is {v1, v3}, as v3 is also
a direct target of f , making it reachable on the path
rei3fv3 that avoids f ′.

e

g f

r

i1 i3

x3i2 i4
x2

h f ′

v1 v2 v3

x1

Figure 1: An example graph for reentrancies.

Definition 3.1 (Reentrant node). Given a graph g
and E ⊂ Eg, let TARg(E) be the union of all sets
of targets of edges in E, i.e.

⋃
e∈E [targ(e)].

Further, for x ∈ Vg ∪ Eg, let x̂ be x if x ∈ Vg,
and srcg(x) if x ∈ Eg. Now, let Exg be the set of
all edges e ∈ Eg such that all source paths to e
pass x.1 Then the set of reentrant nodes of x in g is

reentg(x) = (TARg(E
x
g) \ {x̂}) ∩

(TARg(Eg \ Exg) ∪ [extg]).

Definition 3.2 (Rooted subgraph). Given a graph
g with x ∈ Vg ∪ Eg, the subgraph g↓x rooted
at x is a graph h such that Eh = Exg , Vh =
{x̂} ∪ TARg(Eh), atth and labh are the appro-
priate restrictions of attg and labg, respectively,
and exth is x̂ followed by reenth(x) in some order.

Rooted subgraphs are strictly nested, which is
proved by Björklund et al. (2018) in the form of the
following lemma (where ∼ is isomorphy modulo
the order of g):

1Note that if x is not reachable in g, Ex
g = ∅

3

Lemma 3.3 (Lemma 3.4 in (Björklund et al.,
2018)). Let g be a graph, h = g↓x for some
x ∈ Vg ∪ Eg. Then h↓y ∼ g↓y for all y ∈
(Vh ∪ Eh) \ [exth]

3.2 Reentrancy Preservation

Reentrancy preservation formalizes the property
that, given a graph h and some edge e ∈ Eh with
labh(e), we can replace e by some graph f accord-
ing to a rule A → f without affecting the sets
reentg(x) for x ∈ Vh ∪ Vf .

We achieve this by restricting our grammars to
two types of rules, namely duplication rules and
deep rules. Rules of these two kinds are called
reentrancy preserving. To define duplication rules,
consider a graph

f = ({v0, . . . , vn}, {e1, e2}, att, lab, ext),

where att(e1) = v0 · · · vn = att(e2), lab(e1) =
lab(e2) ∈ NLAB, and ext is a subsequence of
att(e1) starting with v0. If |ext| < n then f (and
every graph isomorphic to f) is a twin, and if
|ext| = n then it is a clone. A rule A → f is
a twin rule if f is a twin and a clone rule if f is a
clone with lab(e1) = lab(e2) = A. A duplication
rule is either a clone or a twin rule.

A rule A → f is a deep rule if f fulfills the
following conditions:

• Vf 6= [extf],

• all nodes in Vf are reachable from f and have
out-degree ≤ 1, and

• for every nonterminal edge e, reentf (e) =
[tarf (e)].

A HRG is reentrancy preserving if it has only
reentrancy-preserving rules. We note here that
Björklund et al. (2018) also permits chain rules,
i.e. rules that only change the label of an edge from
one nonterminal to another nonterminal, and thus
violate the first condition above. In the present
paper we exclude them because they can result in
an infinite number of derivations of a given graph,
thus making it in general unreasonable to associate
a weight with such a graph.2

Later on, we will also need the following gener-
alization of duplication rules to the case where `+1

2To allow for chain rules, one may require the semiring to
be complete, i.e., to have infinite sums. We do not pursue this
possibility here.

copies of a nonterminal edge are created: given any
duplication rule r = (A→ f) and some ` ≥ 1, we
denote by r` the rule A→ f ′, where f ′ is obtained
from f by replacing its two nonterminals by `+ 1
copies. Thus, r1 = r.
Lemma 3.4 (Björklund et al. (2018) adapted). Let
g ∈ L(G) for some reentrancy-preserving HRG G.
There is a quadratic algorithm that computes, for
every x ∈ Vg ∪Eg, the set reentg(x), and thus the
subgraph g↓x.

3.3 Ordering nodes
Reentrancy preservation allows us to pinpoint the
subgraphs that may have been generated by a spe-
cific nonterminal, but as shown by Björklund et al.
(2016), this is not sufficient to achieve efficient
parsing, as needing to guess the order of targets in
subgraphs g↓x may still cause NP-hardness. Thus,
we require a way to determine the order of nodes,
in particular reentrant nodes. This requires an or-
dering relation that can be efficiently computed,
and fulfils some basic requirements, and a set of
reentrancy-preserving rules that additionally pre-
serves that order. Formally:
Definition 3.5 (Suitable order). For a set G of
graphs, a suitable family of orders is a family
(�g)g∈G of binary relations �g ⊆ Vg × Vg such
that

• for allA ∈ LABN ,A• is ordered by�A• and

• if i : g → h is an isomorphism and u, v ∈ Vg,
then u �g v iff iV (u) �h iV (v).

Definition 3.6 (Order preservation). A reentrancy-
preserving set R of HR rules preserves a suitable
family of orders � = (�g)g∈G if, for all g = h[e :
f] with g, h, f ∈ G, e ∈ Eh, and labh(e) → f ∈
R, we have �g|Vh = �h and �f |Vf = �f .

An order-preserving HRG (OPHG) is a reen-
trancy preserving HRG (Σ, N, S,R) together with
a suitable family � of orders preserved by R.

4 Weighted Order-Preserving HR
Grammars

We now add weights – taken from some semir-
ing – to order-preserving HR grammars. For this,
and throughout the rest of this paper, let S =
(S,+, ·, 0, 1) be a commutative semiring, meaning
that (S,+, 0) and (S, ·, 1) are two monoids over
the domain S such that · distributes over +. Thus,
spelled out in detail, + and · are binary operations
on S such that

4

• 1 is the identity element for ·

• 0 is the identity element for + and the absorb-
ing one for ·,

• + and · are commutative, and

• · distributes over +.

As usual, for every a ∈ S we let a0 = 1 and
an+1 = a · an for all n ∈ N.

Examples of well-known semirings are the
Boolean semiring, the real numbers with addition
and multiplication, the tropical semiring consisting
of the positive real numbers extended by∞ with
minimum and addition, and the Viterbi semiring
over [0, 1] in which multiplication is as usual and
addition is maximum. The latter is used in natu-
ral language processing to compute the likelihood
of the most probable derivation. See (Goodman,
1999) for more information on the use of semirings
in natural language parsing.

A weighted OPHG computes a graph series, i.e.
a mapping of graphs to S. As usual, this is achieved
by assigning weights to rules.

Definition 4.1 (weighted OPHG). A weighted
OPHG G = (Σ, N, S,R, ω) (over S) consists of
an OPHG (Σ, N, S,R) and a weight assignment
ω : R→ S.

Informally speaking, if several distinct deriva-
tions can produce the same graph, we sum up the
weights of the individual derivations to obtain the
weight of the graph. The weight for a single deriva-
tion is the product of the weights of all the rules
applied.

It is inconvenient to formalise this based on
the derivations themselves because, just as in the
case of ordinary context-free grammars, derivations
may differ only in the order in which nonterminals
are replaced, which yields distinct derivations that
should be considered equivalent. A standard tech-
nique to solve this problem is to consider derivation
trees instead of derivations. We can mostly use this
standard technique, but we propose to take into
account the fact, mentioned in the introduction,
that each duplication rules has a nontrivial auto-
morphism that interchanges the nonterminals in
its right-hand side. Hence, these nonterminals are
indistinguishable. Moreover, if the rule is a clone
rule, then applying it to any of the nonterminals
in its right-hand side yields three indistinguishable
nonterminals in two different ways.

In general, suppose that a nonterminal is cloned
` times, yielding ` + 1 copies which are then
further derived into graphs g0, . . . , g` of weights
w0, . . . , w`. Then the clones can be derived by
C` different derivation trees, where C` is the `-th
Catalan number (i.e., the number of binary trees
with ` + 1 leaves). The resulting nonterminals
e0, . . . , e` can be derived into the graphs g0, . . . , g`
in any order, all leading to the same result. This
yields `!C` distinct derivations, all generating the
same graph g which consists of g0, . . . , g` fused at
their external nodes. The weight of g would thus
be w`

∑`!C`
j=1

∏`
i=0wi, where w is the weight of the

cloning rule. While there is nothing wrong with
this in principle, the fact that we only allow for this
particular type of cloning rule implies that there
would be no way to avoid the sum by writing the
rules of the grammar in a different way. Further,
since the number of terms summed up depends on
`, it cannot in general be compensated for by re-
ducing the weights of rules. We expect this to be
a limiting factor in applications, and thus propose
to represent a `-fold cloning as an unordered node
of rank `+ 1 in the derivation tree, leading to the
weight w`

∏`
i=0wi.

Let us begin the process of making these notions
more precise by recalling the notions of shallow
graphs and siblinghoods from (Björklund et al.,
2018).

Definition 4.2. A graph g is shallow if g = srcg(e)
for all e ∈ Eg. A siblinghood in g is a set
Sib ⊆ Eg such that |Sib| ≥ 2 and targ(e) =
targ(e

′) for all e, e′ ∈ Sib. We denote targ(e),
e ∈ Sib, by targ(Sib), and let g(Sib) = ({g} ∪
[targ(Sib)], Sib, attg|Sib, labg|Sib, tar), where tar
is the subsequence of targ(Sib) of nodes that are
external in g or targets of edges outside of Sib,
i.e. that belong to the set

TARg(Sib) ∩ (TARg(Eg \ Sib) ∪ [g]).

For siblinghoods Sib,Sib′, we let Sib ≤ Sib′ if
targ(Sib) is a subsequence of targ(Sib′). A sib-
linghood of g is prime if it is maximal with respect
to both ≤ and set inclusion.

From now on, we shall for technical simplicity
assume that the considered OPHG G contains ex-
actly one clone rule for every A ∈ N . This is not
a restriction because the definition of the weight
of derived graphs to be given below ensures that
any number of clone rules for the same nontermi-
nal can be replaced by a single clone rule whose

5

weight is the sum of the weights of the individ-
ual rules. In particular, if there is no clone rule
for A, this has the same effect as a single clone
rule of weight 0. The weight of the unique clone
rule for A ∈ N is denoted by ω(A), and we write
→cl for the derivation relation that exclusively uses
clone rules, i.e. g →∗cl g

′ if g′ is obtained from g by
cloning nonterminal edges.

The following is essentially Lemma 5.3
of (Björklund et al., 2018):
Lemma 4.3. Let A ∈ N and let g be a shallow
graph over N with |Eg| ≥ 2.

• If A• →+ g, then for every prime sibling-
hood Sib of g we either have g = g(Sib) and
A• →+

cl g, or A• →∗ h→ h[[e : f]]→∗cl h[[e :
f ′]] = g where labh(e) → f is a twin rule
and g(Sib) = f ′.

• Up to reordering of derivation steps, the
derivations of these forms are the only ones
deriving g from A•.

Hence, a derivation of a shallow graph can be
broken down into an initial series of clonings fol-
lowed by iterated sub-derivations each consisting
of an application of a twin rule A → f and any
number of clonings of the two nonterminal edges
e1, e2 of f . Note that the result of each such sub-
derivation depends only on A → f and the num-
ber of clonings since attf (e1) = attf (e2). There-
fore, the following definition of derivation trees
uses trees in which the nodes that correspond to
derivations of siblinghoods are unordered and un-
ranked. For a tree consisting of a root labelled a
and subtrees t1, . . . , t`, we write a[t1, . . . , t`] or
a〈t1, . . . , t`〉 depending on whether t1, . . . , t` is to
be interpreted as an ordered or unordered list (or
a multiset), respectively. We write a(t1, . . . , t`) to
denote a tree in which the first level of children can
be either ordered or unordered.
Definition 4.4 (derivation tree). For a weighted
OPHG G = (Σ, N, S,R, ω) and A ∈ N , the set
of all A-derivation trees is the smallest set of trees
t belonging to one of the following three types:

(1) t = r[t1, . . . , t`] for a deep rule r = (A →
f) ∈ R such that arity (A → f) = `, and ti
is a labf (ei)-derivation tree for every i ∈ [k].

(2) t = r`〈t1, . . . , t`+1〉 for a clone rule A → f ,
where ` ≥ 1 and, for every i ∈ [` + 1], the
subtree ti is an A-derivation tree that is not
of type (2).

(3) t = r`〈t1, . . . , t`+1〉 for a twin rule A → f ,
where ` ≥ 1 and, for every i ∈ [` + 1], the
subtree ti is a labf (e1)-derivation tree that is
not of type (2).

A more rigorous and complete treatment of var-
ious issues surrounding derivation trees of graph
algebras with associative and commutative opera-
tions can be found in (Courcelle, 1991b).

We can evaluate a derivation tree to yield a
graph g in the following way: Given a deriva-
tion tree t = r(t1, . . . , t`), eval (t) is defined
as the right-hand side f of r, with each succes-
sive nonterminal ei replaced with the evaluation
of the corresponding subtree of the derivation
tree, i.e. eval ((A → f)(t1, . . . , t`)) = f [[e1 :
eval (t1), . . . , e` : eval (t`)]]. Given a graph g, we
let DTG(g) denote the set of all S-derivation trees
such that eval (t) ≡ g.

We make the following observation, whose cor-
rectness follows from the context-freeness of hy-
peredge replacement.

Observation 4.5. Let G = (Σ, N, S,R, ω), be an
OPHG. Then it holds that

L(G) = {eval (t) | t is an S-derivation tree of G}.

Now, as mentioned, the weight of a graph is de-
fined to be the sum of the weights of all its deriva-
tion trees:

Definition 4.6 (generated graph series). Let G =
(Σ, N, S,R, ω) be a weighted OPHG and A ∈ N .

1. For every duplication rule r = (A → f) ∈
R and every ` ≥ 1, let ω(r`) = ω(r) ·
ω(labf (e1))`−1. (Note that r` corresponds to
the application of r followed by `−1 clonings
of any of the two resulting nonterminal edges.)

2. The weight of an A-derivation tree t =
r(t1, . . . , t`) (` ∈ N) is defined inductively,
as

ω(t) = ω(r) ·
∏

i∈[k]

ω(ti).

3. The graph series ωG : GΣ → S generated by
G is given by

ωG(g) =
∑

t∈DTG(g)

ω(t).

(The sum is finite, and thus well defined due
to the commutativity of +.)

6

Note that given G, the language L(G) of G seen
as an unweighted grammar, is a superset of the
support of G, i.e. the set of all graphs g such that
ωG(g) 6= 0.

5 Computing Weights

Our algorithm builds upon the unweighted parsing
algorithm by Björklund et al. (2018). We store
in each node and edge nothing more than an |N |-
vector of weights, which is computed in very much
the same way as the sets of nonterminals computed
in (Björklund et al., 2018). We use the distributivity
of multiplication over addition to keep our compu-
tations efficient (assuming efficient multiplication
and addition).

The algorithm exploits Lemma 3.3, i.e. the prop-
erty that the subgraphs g↓x are strictly nested in
all graphs derivable by an OPHL. Using this, it is
possible to process the subgraphs of g in a tree-like
“bottom-up” manner, marking each node and edge
x with the set of all nonterminals that can generate
g↓x, after all g↓y properly contained in g↓x have
already been processed. Eventually, S belongs to
the set which the node g is marked with if and only
if g ∈ L(G).

Order preservation enters the picture as follows:
every subgraph h of g which was derived from
some nonterminal edge, is of the form h = g↓x for
some node or edge x of g. As shown by Björklund
et al. (2018), order preservation guarantees that
h is ordered by �g. Thus, in the algorithm only
those subgraphs g↓x are of interest for which the
ordering of targets is uniquely determined by �g.
From now on, we will thus assume that, whenever
a subgraph h = g↓x is constructed, the order of
nodes in h is chosen according to �g.

To show how ωG(g) can be computed, we de-
scribe two algorithms in one: the first computes
the derivation trees of g whereas the second com-
putes its weight by summing up over all the deriva-
tion trees. In the current paper, we mainly use the
first algorithm as a tool to facilitate the correctness
proof of the second. As a consequence, we do not
present that first algorithm in a way which immedi-
ately yields an efficient algorithm, i.e., we only care
for the efficiency of the second algorithm. The set
of derivation trees computed by the first algorithm
can, however, be represented in a compact fash-
ion as a “packed forest”, which is of independent
usefulness and makes the algorithm efficient.

The main procedure of the algorithm computes,

in the same bottom-up manner as in (Björklund
et al., 2018), a set Dx(A) of A-derivation trees for
each x ∈ Vg ∪ Eg and every A ∈ N . More pre-
cisely, Dx(A) is the set of all A-derivation trees of
the input HRGG such thatA• →∗G g↓x. As the cor-
rectness of this procedure was proved by Björklund
et al. (2018) (though not explicitly in terms of
derivation trees), all that remains to be shown is
that the second version of the algorithm computes∑

t∈D
g
(S) ω(t) under the assumption that the first

one is correct.
That second algorithm computes weightsWx(A)

instead of the sets Dx(A), where Wx(A) =∑
t∈Dx(A)) ω(t). In the pseudocode, we always in-

dicate the changes that must be made to obtain the
second version by lines marked by “alt:”. The line
marked in this manner replaces its immediate pre-
decessor. For sets of (derivation) trees D1, . . . , D`

(` ∈ N) and a rule r of arity `, we furthermore
write r(D1, . . . , D`) to denote the set

{r(t1, . . . , t`) | (t1, . . . , t`) ∈ D1 × · · · ×D`}

(i.e. we use that notation in both the ordered and
unordered case).

A subroutine used by the algorithm is Algo-
rithm 1, a modified version of the corresponding
procedure in (Björklund et al., 2018). It takes as
input a shallow graph h whose edges e are already
assumed to be annotated with the respective sets
De(A). The algorithm uses Lemma 4.3 in order to
assemble – in a bottom-up manner over the prime
siblinghoods of h – the set D

h
(A). In the algo-

rithm we say that a duplication rule A → f of
G fits a siblinghood Sib = {s1, . . . , s`} of h if
f ≡ h({s1, s2}) when disregarding edge labels,
and we denote f by B•• to indicate that the two
edges in f carry the label B.

The reader should note that the result of Al-
gorithm 1 does not depend on the choice of Sib
because the prime siblinghoods Sib1, . . . ,Sibk of
h are pairwise disjoint and the replacement of
Sib = Sibi by e does not affect the siblinghoods
Sibj , j ∈ [k] \ {i} (though it may of course create
an additional prime siblinghood).

The main procedure of the parsing algorithm is
shown in Algorithm 2. In its while loop, it repeat-
edly chooses an x ∈ Vg ∪ Eg for which the sets
Dx(A) shall be computed, and calls PARSEV (Al-
gorithm 3) or PARSEE (Algorithm 4) depending on
whether x ∈ Vg or x ∈ Eg.

The function MATCHING used in line 4 of Al-

7

Algorithm 1 Computing Derivation Trees with Duplication Rules

1: function SHALLOWPARSE(set R of duplication rules, shallow annotated graph h with irrelevant edge
labels)

2: while |Eg| > 1 do
3: if h does not contain a prime siblinghood then
4: return (A 7→ ∅)A∈N

alt: return (A 7→ 0)A∈N

5: choose a prime siblinghood Sib = {s1, . . . , s`+1} (` ≥ 1)
6: replace Sib in h by a new edge e with tarh(e) = h(Sib)
7: for each A ∈ N do
8: De(A)← ⋃

r = (A→ B••) fits Sib r
`〈Ds1(B), . . . ,Ds`+1

(B)〉
alt: We(A)←∑

r = (A→ B••) fits Sib ω(r`) ·∏i∈[`+1]Wsi(B)

9: return (A 7→ De(A))A∈N where {e} = Eh
alt: return (A 7→ We(A))A∈N where {e} = Eh

Algorithm 2 Computing Derivation Trees for Order-Preserving HR Grammars

1: function PARSE(order-preserving HR grammar G = (Σ, N, S,R), graph g ∈ GR)
2: preProcess(g) . Compute ≺g as well as all g↓x for all x ∈ Vg ∪ Eg
3: for x ∈ Vg ∪ Eg do
4: if g↓x is defined then Dx ← ⊥
5: else
6: Dx ← (A 7→ ∅)A∈N

alt: Wv ← (A 7→ 0)A∈N

7: while Dg = ⊥ do
8: let x ∈ Vg ∪ Eg with Dx = ⊥ and Dy 6= ⊥ for all y ∈ (Vg↓x ∪ Eg↓x) \ ([extg↓x] ∪ {x})
9: if x ∈ Vg then PARSEV(x)

10: else PARSEE(x)

11: return Dg(S)

alt: returnWg(S)

Algorithm 3 Computing Derivations Trees of g↓v for nodes v ∈ Vg
1: function PARSEV(node v such that De(A) 6= ⊥ for all e ∈ Eg with srcg(e) = v)
2: if v has out-degree 0 then
3: Dv ← (A 7→ ∅)A∈N

alt: Wv ← (A 7→ 0)A∈N
4: else
5: initialize h = (V,E, att, lab, ext) as the following shallow graph:
6: E = {e ∈ Eg | srcg(e) = v}
7: V = {v} ∪⋃e∈E reentg(e)
8: ext = extg↓v
9: att(e) = vw, where w is reentg(e) ordered by �g, for each e ∈ E

10: Dv ← SHALLOWPARSE({r ∈ R | r a duplication rule}, h)
alt: Wv ← SHALLOWPARSE({r ∈ R | r a duplication rule}, h)

8

Algorithm 4 Computing Derivations Trees of g↓e for edges e ∈ Eg
1: function PARSEE(edge e s.t. Dy 6= ⊥ for all y ∈ (Vg(x) ∪ Eg(x)) \ ([extg(x)] ∪ {x}))
2: De(A)← ∅ for all A ∈ N

alt: We(A)← 0 for all A ∈ N
3: for each deep rule r = (A→ f) of arity ` do
4: φ← MATCHING(f, e)
5: if φ 6= null then
6: De(A)← De(A) ∪ r[Dφ(srcf (e1))(labf (e1)), . . . ,Dφ(srcf (e`))(labf (e`))]

alt: We(A)←We(A) + ω(r) ·∏i∈[`]Wφ(srcf (ei))(labf (ei))}

gorithm 4 is described by Björklund et al. (2018)
(using slightly different notation). It is based on
the fact that, if g↓e can be derived from a deep
right-hand side f , then the mapping φ of the nodes
in f to their images in g↓e is uniquely determined
by f and the reentrancies in g↓e, due to reentrancy
and order preservation. As proved by Björklund
et al. (2018), this makes it furthermore possible to
compute φ = MATCHING(f, e) in linear time.

As mentioned above, the correctness of the com-
putation of the sets Dx(A) was essentially shown
by Björklund et al. (2018), and so we take it for
granted here and use that fact to show inductively
that the second version of the algorithm correctly
computes the weights. Below, we assume for
the sake of technical simplicity that the opera-
tions of the semiring S are computable in constant
time. Clearly, the efficiency of the algorithm de-
creases accordingly if the operations a more com-
plex. However, by the closedness of the class of
polynomials under composition, the computation
of weights stays polynomial whenever the opera-
tions of S are computable in polynomial time with
respect to the input graph and the HRG.

Theorem 5.1. Let ≺ be a suitable family of or-
ders, and let η be a function mapping graphs to
N such that both η(g) and ≺g can be computed
in time η(g).3 Then there is an algorithm which
takes as input a graph g and an OPHG grammar
G = (Σ, N, S,R, ω), and computes ωG(g) in time
O(η(g) + |g|2 + |G|2).

Proof. With straightforward reformulations, the
proof of the main theorem in (Björklund et al.,
2018) shows that Algorithm 2 computes DTG(g)
and runs in time O(η(g) + |g|2 + |G|2) if the time
required for the explicit construction of deriva-

3The function η describes the complexity of computing
≺g , and the condition that it can be executed in time η(g)
corresponds to the usual requirement of time constructibility.

tion trees is neglected.4 Together with the as-
sumption that the operations of S can be com-
puted in constant time, the latter means that the
weight-computing version of Algorithm 2 runs in
time O(η(g) + |g|2 + |G|2) as well. To complete
the proof, it thus suffices to prove by induction
that Algorithms 1–4 maintain the invariant that
Wx(A) =

∑
t∈Dx(A) ω(t) for those edges and

nodes x and those A ∈ N such that Dx(A) 6= ⊥.
In the proof, for a set D of derivation trees,

we abbreviate
∑

t∈D ω(t) by ω(D). We check
the algorithms one by one. Note that the induc-
tion hypothesis states that the equationWx(A) =
ω(Dx(A)) holds when the respective procedure is
entered, and we have to show that it still holds af-
terwards. We use the fact that, by distributivity,
for every rule r = (A→ f) of arity ` and all sets
D1, . . . , D` of derivation trees, it holds that

ω(r(D1, . . . , D`)) = ω(r) ·
∏

i∈[`]

ω(Di). (1)

Procedure SHALLOWPARSE: We have to show
that the two lines in the body of the loop starting
in line 7 maintain the invariant. These lines change
only De(A) andWe(A), and after those two lines
we have, for a rule r = (A→ B••) that fits Sib

We(A) =
∑

ω(r`) ·
∏

i∈[`+1]

Wsi(B)

=
∑

ω(r`) ·
∏

i∈[`+1]

ω(Dsi(B))

=
∑

ω(r`〈Ds1(B), . . . ,Ds`+1
(B)〉)

= ω(De(A)).

Procedure PARSE: Only line 6 affects some
Dx(A) and Wx(A). These lines obviously pre-
serve the invariant.

4Instead of computing the sets Dx(A), the algorithm
in (Björklund et al., 2018) only computes, for every x ∈
Vg ∪ Eg , the set of all A ∈ N such that Dx(A) 6= ∅.

9

Procedure PARSEV: As before, line 3 respects
the invariant. Concerning line 10, note that the
two versions of SHALLOWPARSE return (A 7→
De(A))A∈N and (A 7→ We(A))A∈N , respec-
tively, for some edge e. By induction hypothesis,
We(A) = ω(De(A)) for all A ∈ N , which com-
pletes the argument.

Procedure PARSEE: Once more, line 2 respects
the invariant. Furthermore, if D = De(A) and
W =We(A) = ω(De(A)) before an execution of
line 6 then, after this line,

We(A) = W + ω(r) ·
∏

i∈[`]

Wφ(srcf (ei))(labf (ei))}

= ω(D) + ω(r) ·
∏

i∈[`]

ω(Dφ(srcf (ei))(labf (ei)))

= ω(D) + ω(r[Dφ(srcf (e1))(labf (e1)),
...

Dφ(srcf (e`))(labf (e`))]

= ω(De(A)).

This completes the correctness proof of the theo-
rem.

As indicated before, it is worthwhile noticing
that the first version of the parsing algorithm com-
putes the set DTG(g) in timeO(η(g)+|g|2 +|G|2)
if the sets Dx(A) are represented in a compact way
as packed forests. This may be useful for further
applications.

6 Conclusions

Semantic parsing is a necessary tool for the im-
provement of any number of natural language pro-
cessing tools and the use of graphs as semantic
models is becoming a standard approach. Abstract
Meaning Representation is one example. There is,
however no formal standard, and the algorithmic is-
sues involved are largely unexplored. In particular,
there are hardly any models for the formal descrip-
tion of weighted semantic graphs, despite the im-
portance of probabilities and other kinds of weights
in natural language processing for, e.g., resolving
ambituities. In this contribution, we have taken
a step towards resolving this situation by show-
ing that order-preserving hyperedge replacement
grammars can be extended with weights, without
signficantly affecting the complexity of analysing a
graph with respect to the grammar. We thus hope to
have provided a useful building block for making
semantic parsing practical.

To allow for efficient parsing, order-preserving
hyperedge replacement grammars allow only for
restricted forms of rules. In particular, the only way
to create nodes of unlimited out-degree is to use
so-called clone rules. Since clone rules are asso-
ciative and commutative, we have opted to view
the corresponding sections of the resulting deriva-
tion trees as unordered nodes of the appropriate de-
gree and define the weight of these substructures as
w`
∏`
i=0wi, where w is the weight of the cloning

rule (which is applied ` times) and w0, . . . , w` are
the weights of the subderivations. It may be worth-
while noting that, in cases where this is too restric-
tive, one may use a commutative product valuation
monoid (Droste and Meinecke, 2010) as a weight
structure. Such a valuation monoid comes with an
additional valuation function val which takes an ar-
bitrary multiset of weights to a generalized product.
Then the expression above may be generalized to
w` · val(w0, . . . , w`) without making parsing more
difficult.

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proc. 7th Linguistic Annotation
Workshop, ACL 2013 Workshop.

Michel Bauderon and Bruno Courcelle. 1987. Graph
expressions and graph rewriting. Mathematical Sys-
tems Theory, 20:83–127.

Henrik Björklund, Frank Drewes, and Petter Ericson.
2016. Between a rock and a hard place – uniform
parsing for hyperedge replacement DAG grammars.
In Proc. 10th Intl. Conf. on Language and Automata
Theory and Applications, volume 9618 of Lecture
Notes in Computer Science, pages 521–532.

Henrik Björklund, Frank Drewes, Petter Ericson,
and Florian Starke. 2018. Uniform parsing
for hyperedge replacement grammars. Tech-
nical Report UMINF 18.13, Umeå University,
http://www8.cs.umu.se/research/uminf/index.cgi.
Submitted for publication.

Henrik Björklund, Johanna Björklund, and Petter Eric-
son. 2017. On the regularity and learnability of or-
dered DAG languages. In Proc. 22nd International
Conference on the Implementation and Application
of Automata (CIAA’17), volume 10329 of Lecture
Notes in Computer Science, pages 27–39. Springer.

David Chiang, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, Bevan Jones, and Kevin
Knight. 2013. Parsing graphs with hyperedge

10

replacement grammars. In Proc. 51st Annual
Meeting of the Association for Computational
Linguistics (ACL 2013), Volume 1: Long Papers,
pages 924–932. The Association for Computer
Linguistics.

David Chiang, Frank Drewes, Daniel Gildea, Adam
Lopez, and Giorgio Satta. 2018. Weighted DAG au-
tomata for semantic graphs. Computational Linguis-
tics, 44:119–186.

Bruno Courcelle. 1991a. The monadic second-order
logic of graphs V: on closing the gap between de-
finability and recognizability. Theoretical Computer
Science, 80:153–202.

Bruno Courcelle. 1991b. The monadic second-order
logic of graphs V: On closing the gap between de-
finability and recognizability. Theoretical Computer
Science, 80(2):153–202.

Bruno Courcelle and Joost Engelfriet. 2012. Graph
Structure and Monadic Second-Order Logic – A
Language-Theoretic Approach. Cambridge Univer-
sity Press.

Frank Drewes, Annegret Habel, and Hans-Jörg Kre-
owski. 1997. Hyperedge replacement graph gram-
mars. In G. Rozenberg, editor, Handbook of Graph
Grammars and Computing by Graph Transforma-
tion. Vol. 1: Foundations, chapter 2, pages 95–162.
World Scientific.

Frank Drewes, Berthold Hoffmann, and Mark Minas.
2015. Predictive top-down parsing for hyperedge
replacement grammars. In Proc. 8th Intl. Conf. on
Graph Transformation (ICGT’15), Lecture Notes in
Computer Science.

Frank Drewes, Berthold Hoffmann, and Mark Minas.
2017. Predictive shift-reduce parsing for hyperedge
replacement grammars. In Proc. 10th Intl. Conf. on
Graph Transformation (ICGT’17), volume 10373 of
Lecture Notes in Computer Science, pages 106–122.

Manfred Droste and Ingmar Meinecke. 2010. Describ-
ing average- and longtime-behavior by weighted
mso logics. In Proc. 35th Intl. Symp. on Mathemati-
cal Foundations of Computer Science (MFCS 2010),
volume 6281 of Lecture Notes in Computer Science,
pages 537–548.

Sorcha Gilroy, Adam Lopez, and Sebastian Maneth.
2017. Parsing graphs with regular graph grammars.
In Proc. 6th Joint Conf. on Lexical and Computa-
tional Semantics (*SEM 2017), pages 199–208.

Joshua Goodman. 1999. Semiring parsing. Computa-
tional Linguistics, 25:573–605.

Jonas Groschwitz, Alexander Koller, and Christoph Te-
ichmann. 2015. Graph parsing with s-graph gram-
mars. In Proc. 53rd Ann. Meeting of the Association
for Computational Linguistics and the 7th Intl. Joint
Conf. on Natural Language Processing (Volume 1:
Long Papers), pages 1481–1490.

Annegret Habel. 1992. Hyperedge Replacement:
Grammars and Languages, volume 643 of Lecture
Notes in Computer Science. Springer.

Annegret Habel and Hans-Jörg Kreowski. 1987. May
we introduce to you: Hyperedge replacement. In
Proceedings of the Third Intl. Workshop on Graph
Grammars and Their Application to Computer Sci-
ence, volume 291 of Lecture Notes in Computer Sci-
ence, pages 15–26. Springer.

Bevan Jones, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, and Kevin Knight. 2012.
Semantics-based machine translation with hy-
peredge replacement grammars. In Proc. 24th
Intl. Conf. on Computational Linguistics (COL-
ING 2012): Technical Papers, pages 1359–1376.

Alexander Koller. 2015. Semantic construction with
graph grammars. In Proc. 11th Intl. Conf. on Com-
putational Semantics, pages 228–238.

11

Sensing Tree Automata as a Model of Syntactic Dependencies

Thomas Graf
Department of Linguistics
Stony Brook University
Stony Brook, NY, USA

mail@thomasgraf.net

Aniello De Santo
Department of Linguistics
Stony Brook University
Stony Brook, NY, USA

aniello.desanto@stonybrook.edu

Abstract
Various aspects of syntax have recently been
characterized in subregular terms. However,
these characterizations operate over very dif-
ferent representations, including string encod-
ings of c-command relations as well as tiers
projected from derivation trees. We present
a way to unify these approaches via sensing
tree automata over Minimalist grammar de-
pendency trees. Sensing tree automata are de-
terministic top-down tree automata that may
inspect the labels of all daughter nodes be-
fore assigning them specific states. It is al-
ready known that these automata cannot cor-
rectly enforce all movement dependencies in
Minimalist grammars, but we show that this
result no longer holds if one takes into account
several well-established empirical restrictions
on movement. Sensing tree automata thus fur-
nish a strong yet uniform upper bound on the
complexity of syntactic dependencies.

1 Introduction

This paper proposes a novel, unified upper bound
on the subregular complexity of syntactic depen-
dencies. Since the merit of this result might be
opaque to a reader who is not intimately familiar
with the most recent developments in subregular
complexity, we start out with a very detailed back-
ground discussion.

The subregular program seeks to identify for-
mal machinery that provides a tighter characteri-
zation of natural language than the familiar classes
of the Chomsky hierarchy. Subregular phonology
took as its vantage point the well-known result that
phonology is regular (Johnson, 1972; Kaplan and
Kay, 1994) and then identified proper subclasses
that are still powerful enough for specific types
of phonological dependencies. Among these sub-
classes are SL, SP (Rogers et al., 2010), IBSP
(Graf, 2017, 2018a), TSL (Heinz et al., 2011; Mc-
Mullin, 2016), and several extensions of the latter

(Baek, 2018; Graf and Mayer, 2018). The highly
restrictive nature of these classes has allowed for
new learning algorithms (Heinz et al., 2012; Jar-
dine and McMullin, 2017) and also furnishes com-
putational explanations for typological gaps.

Syntax cannot be subregular in this strict sense
by virtue of being at least mildly context-sensitive
(Huybregts, 1984; Shieber, 1985; Michaelis and
Kracht, 1997; Kobele, 2006, a.o.). However, lin-
guists formulate syntactic dependencies over trees,
not strings. This shift in perspective has also taken
place within formal grammar, first with model-
theoretic syntax (Blackburn et al. 1993; Back-
ofen et al. 1995; Cornell and Rogers 1998; Rogers
1998, 2003, a.o.) and then the two-step approach
(see Morawietz 2003, Mönnich 2006, and ref-
erences therein). The two-step approach high-
lighted how the mildly context-sensitive nature of
syntax arises from the interaction of two finite-
state components: a regular tree language that en-
codes a kind of “deep structure” and a finite-state
tree transduction to the intended “surface struc-
ture”. This perspective has proven particularly
fruitful in Minimalist grammars (MGs; Stabler,
1997, 2011a), where derivation trees provide the
regular tree language and the transduction is a for-
mal analogue to Chomsky’s notion of movement
(Kobele et al., 2007; Graf, 2012b). With the regu-
lar nature of syntax properly identified, a subregu-
lar characterization of syntax is suddenly feasible.

Graf (2012a) provided the first subregular
(un)definability results for MG derivation tree lan-
guages, but these results were expanded on only
recently. Notably, all follow-up work strived to re-
main closer to the classes that enjoy prominence in
subregular phonology. This, however, also led to
a marked divergence in approaches. Graf (2018b)
operates directly over MG derivation trees. Fol-
lowing the tradition of model-theoretic syntax,
Graf equates the MG operations Merge and Move

12

with constraints on MG derivation tree languages
and shows that they belong to the tree analogue
of the subregular string class TSL. This view is
also adopted by Vu (2018) and Vu et al. (2019) in
the analysis of negative-polarity items and case li-
censing, respectively. Graf and Shafiei (2019) and
Shafiei and Graf (2019), on the other hand, pursue
a purely string-based perspective of syntactic de-
pendencies. For each node they identify its string
of c-commanders, the shape of which must fol-
low the constraints imposed by, say, Principle A
or NPI-licensing. When construed as such string
constraints, syntactic licensing conditions not only
turn out to be subregular, they also fit into classes
that have been proposed for subregular phonology.
The work so far thus has unearthed two distinct
subregularity results: MG operations are subreg-
ular over MG derivation trees, and licensing con-
ditions are subregular over a specific string repre-
sentation grounded in c-command (cf. Frank and
Vijay-Shanker, 2001).

Even though each perspective is worthwhile and
has proven very fruitful, their apparent incom-
mensurability raises the question how these two
notions of subregularity can be brought to bear
on each other. The central contribution of our
paper is a uniform upper bound on syntax that
encompasses both MG operations and licensing
conditions. This upper bound takes the form of
sensing tree automata (STAs) operating over de-
pendency tree representations of MG derivations
(these dependency trees are distinct from the MG
dependency trees of Boston et al. 2010). STAs
provide a minimal amount of look-ahead to de-
terministic top-down tree automata: the automa-
ton may inspect the labels of all daughter nodes
before assigning them specific states. Far more
than just a mathematical curiosity, limiting syntax
to STA-recognizable constraints over MG depen-
dency trees is very natural in several respects:

1. MG dependency trees are a natural encoding
of head-argument relations.

2. STAs explain why licensing conditions are
mediated by c-command instead of the many
alternative command relations one could
imagine (Barker and Pullum, 1990).

3. In order for movement to be regulated by
STAs, it must obey additional restrictions be-
yond those of the standard MG formalism.
These restrictions coincide with well-known

empirical phenomena such as the Specifier
Island Constraint and the Coordinate Struc-
ture Constraint.

4. As a single STA can handle movement and li-
censing conditions at the same time, it is un-
surprising that the two occasionally interact,
e.g. when movement induces a licensing con-
figuration or violates one.

5. Since STAs are deterministic top-down au-
tomata with a minimal amount of look-ahead,
they are a natural match for top-down pars-
ing, which has been argued to play a central
role in human sentence processing (Stabler,
2013; Kobele et al., 2013; Graf et al., 2017).

Hence our contribution does not merely unify
the two existing approaches to subregular syntax,
it also accounts for empirical aspects of syntax that
the latter leave unexplained. At the same time, we
do not intend for our perspective to supplant the
existing ones. Each one provides useful insights
and can now be safely pursued in the knowledge
that there is a principled formal connection to the
other approaches.

The paper is laid out as follows: Section 2 in-
troduces our mathematical notation for trees and
tree languages (§2.1), which form the basis for our
definition of STAs (§2.2). We then define MGs and
their dependency trees in §3. In order to simplify
some of the subsequent proofs, we do not follow
the standard definitions and instead adopt a for-
mat that is partly inspired by Kobele et al. (2007).
Sections 4 and 5 cover the two core results of this
paper: dependency trees of MGs with the Spec-
ifier Island Constraint are STA-recognizable, and
so are licensing conditions based on c-command.
The last section briefly sketches some extensions
of these results, including interactions of move-
ment and c-command (§6.1), subcommand (§6.2),
recognizability of MG derivation trees (§6.3), ad-
junct islands and the coordinate structure con-
straint (§6.4, §6.5), and connections to top-down
parsing (§6.6).

2 Preliminaries

2.1 Trees and Tree Languages

A ranked alphabet Σ is a finite set of symbols,
each one of which has a rank or arity assigned by
the function r : Σ → N. We write Σ(n) to de-
note {σ ∈ Σ | r(σ) = n}, and σ(n) indicates that

13

σ has rank n. Given a ranked alphabet Σ, the set
T (Σ) of Σ-trees contains all σ(0) and all terms
σ(n)(t1, . . . , tn) (n ≥ 0) such that t1, . . . , tn ∈
T (Σ).

Example 1. Given Σ :=
{
a(0), b(0), c(2), d(2)

}
,

T (Σ) is an infinite sets that contains, among oth-
ers, the term d(c(b, b), d(b, a)). This term corre-
sponds to the tree below:

d

c

b b

d

b a

If Σ consisted only of c(2) and d(2), then T (Σ)
would be empty. y

Given a term m(n)(s1, . . . , sn) where each si is
a subtree with root di, we call m the mother of
the daughters d1, . . . , dn (1 ≤ i ≤ n). If two
distinct nodes have the same mother, they are sib-
lings. We use the term proper dominance for the
transitive closure of the mother-of relation, and re-
flexive dominance for the reflexive, transitive clo-
sure. A node a is an ancestor of node n iff a prop-
erly dominates n.

Every node u in a Σ-tree has a unique address
g(u) as defined in Gorn (1967). The subtree of Σ-
tree t rooted in Gorn address g(u) is denoted by
t/g(u). Given two Σ-trees s and t and node u in
t, t[g(u)← s] is the result of replacing t/g(u) in t
by s. Throughout the paper, we write u instead of
g(u) so that t/u and t[u ← s] are shorthands for
t/g(u) and t[g(u)← s], respectively.

2.2 Sensing Tree Automata
A sensing tree automaton (STA; Martens et al.,
2008) is a deterministic top-down tree automaton
that may also take the labels of a node’s daugh-
ters into account before assigning states to them.
In other words, these automata have a finite look-
ahead of 1. This intuition is reflected in our defini-
tion of sensing rules below. Following the format
of Comon et al. (2008, p. 38) for top-down tree
automata, we deliberately define sensing rules in
a tree transducer format. This is a marked devia-
tion from Martens et al. (2008), but it should make
it easier for future work to extend our perspective
from constraints to transformations.

Let Σ be some ranked alphabet and Q a set of
symbols of rank 1 disjoint from Σ. Members of
Q are called states. In addition, X is a countably
infinite set of variable symbols (X ∩ Σ = X ∩

Q = ∅). For the rest of this section, we use ~σi as
a shorthand for σi(xi1 , . . . , xin), with σi ∈ Σ(n)

and xi1 , . . . , xin ∈ X .

Definition 1 (Sensing rule). A sensing rule
over alphabet Σ and state set Q is an ex-
pression of the form q(σ(n)(~σ1, . . . , ~σn)) →
σ(n)(q1(~σ1), . . . , qn(~σn)) such that
σ, σ1, . . . , σn ∈ Σ and q, q1, . . . , qn ∈ Q. y

Note that for σ(0), sensing rules are of the form
q(σ(0))→ σ(0). Such sensing rules effectively re-
move states from leaf nodes, whereas sensing rules
for σ(≥1) remove the state of σ and instead add a
state on top of each daughter of σ.

Definition 2 (Sensing relation). Let t and t′ be in
T (Σ∪Q), and suppose δ is some sensing rule over
Σ and Q that has the form q(σ(n)(~σ1, . . . , ~σn))→
σ(n)(q1(~σ1), . . . , qn(~σn)). Then the relation →δ

holds between t and t′ (t →δ t′) iff t con-
tains a subtree s := q(σ(n)(s1, . . . , sn)) such
that each si (1 ≤ i ≤ n) is a Σ-tree with root
σi, and t′ is the result of replacing s in t with
σ(n)(q1(s1), . . . , qn(sn)).

Given a set ∆ of sensing rules, we write t →∆

t′ iff t →δ t′ for some δ ∈ ∆. The reflexive,
transitive closure of→∆ is denoted by→∗∆. y

Intuitively, t →∗∆ t′ iff t′ can be obtained from t
by a sequence of sensing rules.

Definition 3 (Sensing tree automaton). A sens-
ing tree automaton (STA) over Σ is a 4-tuple
A := 〈Q,Σ, qI ,∆〉 such that Q is a finite set of
states disjoint from alphabet Σ, qI ∈ Q is the ini-
tial state, and ∆ is a finite set of sensing rules over
Σ and Q. The tree language recognized by A is
L(A) := {t ∈ T (Σ) | qI(t)→∗∆ t}. The class of
all tree languages that are recognized by at least
one STA is called STA. y

An STA thus recognizes a tree t iff there is a se-
quence of sensing rules that starts from the initial
state qI and passes states through t until they are
all removed again at the leaves of t. If the STA
ever gets stuck because there is no suitable sens-
ing rule, t is rejected.

Example 2. Suppose Σ :=
{
a(0), b(0), c(2), d(2)

}
,

and consider the STA with Q := {0, 1}, where 0
is the initial state. The automaton uses all sensing
rules of the following form:

• 1(σ(~σ1, ~σ2))→ σ(1(~σ1), 1(~σ2)),
for σ ∈ {c, d} and σ1, σ2 ∈ {a, b, c, d},

14

• 0(σ(~σ1, ~σ2))→ σ(0(~σ1), 0(~σ2)),
for σ ∈ {c, d} and σ1, σ2 ∈ {a, b, d},

• 0(σ(~σ1, ~σ2))→ σ(q0(~σ1), q1(~σ2)),
for σ ∈ {c, d}, σ1, σ2 ∈ {a, b, c, d}, and
qi := 1 iff σ2−i := c (where i ∈ {0, 1}),

• q(b)→ b,
for q ∈ {0, 1},

• 1(a)→ a.

The STA only accepts those Σ-trees where each a
is c-commanded by some c (that is to say, c must
be the sibling of an ancestor of a). It thus emulates
a simplified version of Principle A. y

It will also be convenient in some proofs to em-
ploy a substitution-based characterization of the
tree languages that are recognized by STAs. The
characterization capitalizes on the fact that every
STA only has a look-ahead of 1. Consequently, the
state it assigns to a node n depends only on three
components: I) the label of n and its siblings, II)
the states assigned to n’s ancestors, and III) the
states assigned to the siblings of each ancestor. If
all of those are kept constant, nwill always receive
the same state no matter what the rest of the tree
looks like.

Definition 4 (Spine closure). Given a node u of
some Σ-tree t, lsibt(u) is the string consisting of
the label of u’s left siblings (if they exist) followed
by the label of u. Analogously, rsibt(u) is the
string consisting of the label of u and the label
of its right siblings (if they exist). Also, 5 and
⇓ are two distinguished symbols not in Σ.1 Let
u1, . . . , un be the shortest path of nodes extending
from the root of t to u. That is to say, each ui is
the mother of ui+1 (1 ≤ i < n), u1 is the root, and
un = u. By spinet(u) we denote the string re-
cursively defined by spinet(u1) = u1 5 u1 and
spinet(u1, . . . , un) = spinet(u1, . . . , un−1) ⇓
lsibt(un) 5 rsibt(un) A regular tree language L
is spine-closed iff it holds for all trees s, t ∈ L and
nodes u and v belonging to s and t, respectively,
that spines(u) = spinet(v) implies s[u ← t/
v] ∈ L. y
Theorem 1 (Martens 2006). A regular tree lan-
guage L belongs to the class STA iff L is spine-
closed.

1Martens et al. (2008) use # instead of ⇓. We prefer the
latter as it emphasizes visually that this symbol marks the
start of a string at the next lower level in the tree.

Example 3. Consider the left tree l and right tree
r in Fig. 1. Let l0 and r0 be the left daugh-
ter of the root in l and r, respectively. Then
spinel(l0) = spiner(r0) = merge 5 merge ⇓
merge 5 merge merge. Hence a tree language
that contains both l and r is an STA language iff it
also contains r[r0← r/l0]. y

In linguistic terms, spine-closure tells us that
two subtrees s/u and t/v with identical root la-
bels can be freely exchanged whenever they have
the same ancestors and the same c-commanders.
This will be of great importance throughout this
paper.

3 Minimalist Grammars

Minimalist grammars (MGs; Stabler, 1997) are
a formalization of Minimalist syntax (Chomsky,
1995). Readers who are unfamiliar with the for-
malism should consult Stabler (2011a) for a more
accessible introduction.

Every MG consists of a finite set of feature an-
notated lexical items. Each lexical item is a pair
of a phonetic exponent and a finite, non-empty
string of features. There are four types of features,
whose job it is to trigger the structure-building
operations Merge and Move. Merge establishes
head-argument relations and is triggered when a
selector feature F+ on a head finds a matching
category feature F− on an argument. For exam-
ple, the noun guest carries a feature N−, for which
we also write guest :: N−. It can be merged with
the :: N+D− to yield a DP, thanks to the match-
ing category and selector features. Move displaces
a subtree from its current position to a higher po-
sition in the syntactic structure. Move takes place
when a licensor features f+ on a head that pro-
vides a landing site can be checked by a corre-
sponding licensee feature f− on a mover. The or-
der of features on a lexical item determines the or-
der in which the corresponding operations are trig-
gered. Hence the determiner which :: N+D−wh−

would first select a noun phrase, get merged with
a head looking for a DP, and then undergo wh-
movement.

The sequence of Merge and Move steps is com-
monly represented as a derivation tree, e.g. in
Fig. 2. However, we will use a dependency tree
representation instead. Our dependency trees are
merely a more compact encoding of MG deriva-
tion trees and have no connection to the MG de-
pendency trees of Boston et al. (2010). We will

15

merge

merge

a :: A− a :: A+A−

merge

a :: A− a :: A+A+A−

merge

merge

b :: B− b :: B+B−

merge

b :: B− b :: B+B+B−

Figure 1: MG derivation tree languages are not recognizable by STAs because they are not spine-closed.

directly define MGs as sets of well-formed depen-
dency trees, mirroring earlier definitions in terms
of derivation trees (primarily Kobele et al. 2007).

We pick a ranked alphabet Σ such that Σ(n) con-
tains all lexical items of MG G, and only those,
that carry exactly n selector features. For simplic-
ity, we use G to also refer to this alphabet. Not
every G-tree is a well-formed dependency tree,
though, due to the constraints of the MG feature
calculus. The calculus is illustrated in Fig. 2,
where each node in the dependency tree is anno-
tated with the feature configuration corresponding
to its subtree. We formalize this calculus via a re-
cursive function feat that computes these values
based on more primitive functions for the feature
checking steps that trigger Merge and Move.

Definition 5 (Dependency tree language). If G
is an MG with n distinct licensee features, then the
set dep(G) of well-formed dependency trees of G
is {t ∈ T (G) | feat(t) = 〈C−, ε1, . . . , εn〉}. y

The remainder of this section defines feat in
terms of feature checking operators M and ⊗ for
Move and Merge, respectively. All operations ma-
nipulate one or more sequences of feature strings.
The Shortest Move Constraint (SMC) will be used
to filter out illicit sequences.

Definition 6 (SMC). Let G be an MG and Lce its
set of n licensee features. Given a sequence s :=
s1, . . . , sm (m ≥ 0) of strings in Lce∗, SMC :
(Lce∗)∗ → (Lce∗)∗ is undefined for s if there are
si and sj (1 ≤ i 6= j ≤ m) that start with the
same licensee feature. Otherwise, SMC maps s to
s itself. y

The SMC ensures that Move is unambiguous in
the sense that there can never be more than one
active mover of a specific type (wh, topicalization,
and so on). It is an integral part of MGs, and
removing it would greatly alter their expressivity
(Salvati, 2011).

Next we add a helper function sort that orders
SMC-approved sequences based on the first li-
censee feature of each feature string.

Definition 7 (sort). Let G and Lce be as be-
fore. Now fix some bijection b between Lce and
{1, . . . , n}. Then sort maps s := s1, . . . , sm ∈
Lce∗ to the sequence s′1, . . . , s

′
n such that s′i := sj

if sj starts with f and b(f) = i; otherwise, s′i := ε
(1 ≤ i ≤ n, 1 ≤ j ≤ m). y

Now we can finally define M for Move, which
is also a crucial part of the Merge operator ⊗.
Throughout we use γ as a shorthand for any string
of features, and δ for a (possibly empty) string of
licensee features.

Definition 8 (Move). Suppose that expression e is
〈fγ, δ1, . . . , f

−δi, . . . , δn〉 for some licensee fea-
ture f− and 1 ≤ i ≤ n. Then

M(e) := M(〈γ, sort(SMC(δ1, . . . , δi, . . . , δn))〉)

if f is the licensor feature f+, and e otherwise. y
Definition 9 (Merge). Given two ex-
pressions e := 〈fγ, δ1, . . . , δm〉 and
e′ := 〈f ′δ, δm+1, . . . , δz〉, e⊗ e′ is

M(〈γ, sort(SMC(δ, δ1, . . . , δm, δm+1, . . . , δz))〉)

if f is some selector feature F+ and f ′ the match-
ing category feature F−. In all other cases, ⊗ is
undefined. y
Note how Merge is always followed by an applica-
tion of the Move operator, but this does not trigger
any feature checking unless γ starts with a licen-
sor feature. Merge steps are thus interleaved with
movement checks, not all of which may actually
result in movement.

The operatorsM and⊗ on their own do not nar-
row down the set of G-trees. They are invoked as
part of a recursive function feat over G-trees that
computes the feature values of subtrees, as already
expressed in Def. 5.

Definition 10 (feat). The partial function feat re-
cursively maps MG dependency trees to fea-
ture expressions. For lexical items, feat(σ ::
φ) := 〈φ, ε1, . . . , εn〉. If t := σ(σ1, . . . , σz),
then feat(t) := ((feat(σ) ⊗ feat(σz)) ⊗ · · ·) ⊗
feat(σ1). y

16

CP

C TP

Johni T′

T VP

ti V′

wonders CP

DPj

which guest

C′

C TP

tj T′

T VP

tj left

merge

ε :: T+C− move

merge

ε :: V+nom+T− merge

John :: D−nom− merge

wonders :: C+D+V− move

merge

ε :: T+wh+C− move

merge

ε :: V+nom+T− merge

merge

which :: N+D−nom−wh− guest :: N−

left :: D+V−

ε :: T+C−

ε :: V+nom+T−

wonders :: C+D+V−

John :: D−nom− ε :: T+wh+C−

ε :: V+nom+T−

left :: D+V−

which :: N+D−nom−wh−

guest :: N−

〈C−, ε, ε〉

〈T−, ε, ε〉

〈V−,nom−, ε〉

〈C−, ε, ε〉

〈T−, ε,wh−〉

〈V−,nom−wh−, ε〉

〈D−nom−wh−, ε, ε〉

〈N−, ε, ε〉

〈D−nom−, ε, ε〉

Figure 2: X′-bar tree, corresponding MG derivation tree, and (feat-annotated) MG dependency tree

Two important lemmata follow immediately
from the preceding definitions.

Lemma 1. Let G be an MG and s a G-tree. Then
it holds for every t ∈ dep(G) with node u that
t[u← s] ∈ dep(G) iff feat(s) = feat(t/u).

Lemma 2. Let G be an MG with n distinct li-
censee features and s a subtree of some t ∈
dep(G). Then feat(s) must be of the form
〈F−δ, δ1, . . . , δn〉 for some category feature F−.

Lemma 2 is apparent from the derivation tree ex-
ample in Fig. 2. It is a minor extension of the
well-known fact that a lexical item may occur in
a well-formed MG derivation iff its feature string
is of the form φFδ, where φ is either ε or a se-
lector feature followed by 0 or more selector and
licensor features, F is a category feature, and δ is
a (possibly empty) string of licensee features.

4 Merge and Move via STAs

With all the preliminaries in place, we can fi-
nally turn to the core results regarding the STA-
recognizability of MGs with respect to Merge and
Move. The next sections then extend this to licens-
ing conditions and some other special cases.

Graf (2012a) uses the argument from exam-
ple 3 in §2.2 to prove that MG derivation tree
languages are not STA languages. However, this
proof does not carry over to MG dependency trees.
Adopting the terminology of Graf (2012a), we use
MDEP[merge,move] for the full class of MG de-

pendency tree languages and MDEP[merge] for the
subclass of movement-free MGs (no lexical item
carries any licensee features).

Theorem 2. MDEP[merge] (STA

This is just a corollary of a more fundamen-
tal property of MGs. For any arbitrary L ∈
MDEP[merge] and nodes u and v of s, t ∈ L,
spines(u) = spinet(v) necessarily entails that
feat(s/u) = feat(t/v), so that Theorem 2 im-
mediately follows from Lemma 1. We omit a full
proof here as Lemma 3 will cover a more complex
case that subsumes this one.

Even with the dependency tree format, though,
STAs are too weak for standard MGs with both
Merge and Move.

Theorem 3. MDEP[merge,move] and STA are in-
comparable.

Proof. Consider the dependency trees l and r in
Fig. 3. The respective instances of the :: N+D−

have different values under feat (〈D−, ε〉 and
〈D−,wh−〉, respectively). By Lemma 1, then,
their subtrees are not interchangeable even though
spinel(the :: N+D−) = spiner(the :: N+D−). 2

The example in Fig. 3 is peculiar, though. The
left dependency tree encodes the derivation for
Who does a teacher of like the father of John,
which is severely degraded. It has been ar-
gued that such cases of left-branch subextraction
are generally forbidden. MGs can be equipped
with the Specifier Island Constraint (SpIC) to

17

ε :: T+wh+C−

does :: V+T−

like :: D+D+V−

a :: N+D−

teacher :: P+N−

of :: D+P−

who :: D−wh−

the :: N+D−

father :: P+N−

of :: D+P−

John :: D−

ε :: T+wh+C−

does :: V+T−

like :: D+D+V−

a :: N+D−

teacher :: P+N−

of :: D+P−

John :: D−

the :: N+D−

father :: P+N−

of :: D+P−

who :: D−wh−

Figure 3: Even though the boxed nodes have the same spine, their subtrees cannot be exchanged.

rule out movement from within a specifier. This
takes the form of an additional restriction on feat
that only allows complements to properly contain
unchecked licensee features. Since the comple-
ment of a head is its rightmost daughter in the de-
pendency tree (rather than the leftmost one), the
SpIC amounts to a restriction on all daughters ex-
cept the last one.

Definition 11 (SpIC). Suppose s1, . . . , sm areG-
trees and σ ∈ G(m). Then feat(σ(s1, . . . , sm)) is
undefined if there is an i < m and 1 ≤ j ≤ n such
that feat(si) is of the form 〈γ, δ1, . . . , δj , . . . , δn〉
and δj 6= ε.

Note that any licensee features on the head of a
specifier are part of γ, not δj , so specifiers can
still move without violating the SpIC. Only ex-
traction of a proper subtree from within a speci-
fier is not allowed. Also note that our version of
the SpIC only bans extraction from base specifiers,
but not from specifiers that are derived via move-
ment. This is why it can be easily stated over de-
pendency trees. Even so, this limited version of
the SpIC greatly limits the weak generative capac-
ity of MGs with the SMC, while still keeping them
mildly context-sensitive (Michaelis, 2004, 2009;
Kobele and Michaelis, 2011). For our purposes,
though, the major contribution of the SpIC is that
it also lowers the complexity of MG dependency
trees into STA.

Lemma 3. Given an MG G that obeys the SpIC,
pick arbitrary nodes u and v of s, t ∈ dep(G), re-
spectively. If spines(u) = spinet(v), then feat(s/
u) = feat(t/v).

Proof. Since s and t are well-formed, both
feat(s/u) and feat(t/v) must be defined. By

Lemma 2 we may assume w.l.o.g. that feat(s/
u) := 〈F−δ, δ1, . . . , δn〉 and feat(t/v) :=
〈F′−δ′, δ′1, . . . , δ′n〉. As u and v have identical
spines, u and v themselves must be identical.
Therefore both F− = F′− and δ = δ′ hold. Now
suppose that δi 6= δ′i for some 1 ≤ i ≤ n. Then
either s/u or t/v is missing a licensee feature f−

that is present in the other. Suppose it is s/u that
is missing a feature present in t/v. Note that this
immediately entails by the SpIC that t/v is a com-
plement, wherefore s/u is also a complement be-
cause u and v have identical spines. Since both s
and t are well-formed, whatever feature is missing
in s/u must occur somewhere else in s to match
some f+ in the spine of u. But by the SpIC, f−

cannot occur properly inside any specifier. We al-
ready know that s/u is a complement, so f− can
only occur on an ancestor of u or on one of its left
siblings. But then it would occur on a node in the
spine of u, which contradicts our initial assump-
tion that spines(u) = spinet(v). Hence δi = δ′i
after all, wherefore feat(s/u) = feat(t/v). 2

Theorem 4. For every MGG that obeys the SpIC,
it holds that dep(G) ∈ STA.

Proof. Lemma 1 and 3 jointly imply that dep(G)
is spine-closed, which guarantees that it can be
recognized by an STA (Thm. 1). 2

Intuitively, Theorem 4 holds because the SpIC
creates a unique “elsewhere case” for missing
movers. Suppose that an STA is at node n in a G-
tree t. Since it has processed t top-down, it knows
exactly which movers it has to look for by virtue of
the licensor features it has come across. With its
look-ahead of 1, the STA can scan the daughters
of n to see if any of them carry some of the de-
sired licensee features. Any licensee features that

18

are not among them must be embedded deeper in
the tree. Due to the SpIC, though, they can only
reside in the complement, i.e. the subtree rooted
in the rightmost daughter of n.

The SpIC is just one way of creating such an
elsewhere case. STA-recognizability would also
hold if movers could only escape from the left-
most argument, or if the label of the selecting
head decides which one of its arguments can be
extracted from. Extraction from arguments could
also be parameterized for each feature so that wh-
movers may only leave complements whereas top-
icalization is only allowed from the last but one
argument, if it exists. Or the STA could switch
between these four constraints depending on the
number of ancestors of the current node modulo
4. STA-recognizability holds as long as distribut-
ing the head’s δi across its arguments is fully de-
terministic based on the information available to a
sensing rule (current state, label of selecting head,
labels of selected heads). Hence the class of STA-
recognizable MG dependency tree languages is
larger than what is allowed by the SpiC.

This does not change the fact, though, that the
initial finding of Graf (2012a) regarding the in-
sufficiency of STAs is incomplete. In the case
of Merge, the insufficiency disappears with the
more compact representation format of MG de-
pendency trees. Alternatively, one could also
keep the derivation tree format while increasing
the STA look-ahead beyond just one level —
this is a point we will revisit soon in §6.2 and
§6.3, for very different reasons. With respect
to Move, the choice of representation format is
immaterial. Neither derivation trees nor depen-
dency trees make movement as defined in MGs
STA-recognizable. However, the SpIC does make
movement STA-recognizable because specifiers
do not need to be probed deeper than their head.
For MG dependency trees, this coincides with the
1-level look-ahead of STAs, whereas derivation
trees once again require a more generous look-
ahead window. The choice of representation thus
has an impact on the amount of required look-
ahead, but the essence of our STA-recognizability
result for MGs rests on the SpIC, not the tree for-
mat.

5 STAs and C-Command Conditions

The previous section has successfully established
that the central operations of MGs can be han-

dled by STAs, assuming that I) they are con-
strued as constraints on MG dependency trees,
and II) movement is subject to the SpIC. But the
structure-building operations Merge and Move are
just one part of syntax. Licensing conditions also
play a major role, in particular those rooted in c-
command. This section shows that these condi-
tions are also captured by STAs.

Licensing conditions based on c-command are
ubiquitous in the syntactic literature. They were
recently studied from a subregular perspective by
Graf and Shafiei (2019) and Shafiei and Graf
(2019). Both papers use similar ideas, but define
them very differently. We adopt the formalism of
Graf and Shafiei (2019) because it defines all es-
sential concepts directly in terms of dependency
trees.
Definition 12 (C-string). Let t be some MG de-
pendency tree. For every node n of t in config-
uration m(d1, . . . , di, n, di+1, . . . , dj) , its imme-
diate c[ommand]-string is ics(n) = d1 · · · di n.
The augmented c[ommand]-string acs(n) of n is
recursively defined as shown below, where ↑ is a
distinguished symbol:

acs(n) :=

{
ics(n) if n is the root of t
acs(m) ↑ ics(n) if m is n’s mother

y
Example 4. The c-string of the :: N+D− in Fig. 3
is ε :: T+wh+C− ↑ does :: V+T− ↑ like ::
D+D+V− ↑ a :: N+D− the :: N+D− y

Licensing conditions are then formalized as
constraints on the shape of permissible c-strings.
This is comparable to restricting a tree via its path
language, except that paths are now replaced by
c-strings.
Definition 13 (C-string constraints). A c-string
constraint C is some string language L over Σ ∪
{↑}. A Σ-tree t is well-formed with respect to C
iff acs(n) ∈ L for every node n of t. y
Which subregular class provides the most appro-
priate fit for syntactic licensing conditions is still
a matter of debate. Graf and Shafiei (2019) pro-
pose IO-TSL as a generous upper bound. IO-TSL
is a subregular string language recently defined in
(Graf and Mayer, 2018) in their analysis of San-
skrit n-retroflxion. Shafiei and Graf (2019), on the
other hand, argue that at least island constraints are
best captured by IBSP, another class from subreg-
ular work on phonology (Graf, 2017, 2018a). Nei-
ther class is particularly well-understood at this

19

point. Intuitively, IO-TSL treats local dependen-
cies as primitive and reduces non-local constraints
to local ones over enriched representations. IBSP,
on the other hand, takes all constraints to be non-
local and then uses locality domain to prune down
their reach. Either way there is ample evidence
that all attested conditions that can be correctly
stated over c-strings are at most regular. That’s
all we need to show that they can be enforced by
an STA.

Before we proceed, the reader should take note
that c-strings as defined in Graf and Shafiei (2019)
do not quite capture the standard notion of c-
command over phrase structure trees. First of
all, movement is factored out, so that c-strings
only capture the c-command relations between the
base positions where arguments enter the deriva-
tion. Graf and Shafiei (2019) point out several
options for adding movement, but they do not ex-
plore them in depth. We will provide our own STA
account for movement interactions later on (§6.1).
Another, less important deviation from standard c-
command pertains to the status of heads and spec-
ifiers. If one interprets linear precedence in com-
mand strings as c-command, then specifiers do
not c-command their selecting head even though
they c-command the head’s object. At the same
time, the head c-commands the specifier. While
there seem to be no cases in the syntactic liter-
ature where this difference to c-command mat-
ters, it nonetheless highlights that c-strings only
approximate the standard notion of c-command.

This approximation of c-command is very con-
venient for our purposes, though. The construc-
tion of a node’s c-string closely mirrors the def-
inition of a node’s spine, so it is perhaps unsur-
prising that every regular c-string constraint can be
enforced by an STA. The construction of an STA
automaton for this purpose is remarkably straight-
forward.

First, we simplify c-string constraints by con-
sidering only constraints that generate prefix-
closed sets of c-strings. The lemma below estab-
lishes that this assumption is innocuous for deter-
mining tree well-formedness.

Lemma 4. Let L be some regular language of
well-formed c-strings, and let Lp be the largest
subset of L such that u /∈ Lp entails uv /∈ Lp
for all u ∈ (Σ∪ {↑})+ and v ∈ (Σ∪ {↑})∗. Then
a Σ-tree is well-formed with respect to L iff it is
well-formed with respect to Lp.

Proof. We only consider c-strings that do not start
or end with ↑ as these never occur in any trees to
begin with. Since Lp ⊆ L and, by Def. 13, a tree
is well-formed with respect to c-string set C iff all
its c-strings are members of C, two entailments
follow immediately: I) if t is well-formed with re-
spect to Lp, it is well-formed with respect to L,
and II) if t is ill-formed with respect to L, it is ill-
formed with respect to Lp.

Next, suppose t is well-formed with respect to
L. Since it contains no illicit c-string, t could
only be ill-formed with respect to Lp if it contains
some licit c-string uv such that u /∈ Lp, where-
fore uv /∈ Lp. But if uv is a c-string of t, then so
is every non-empty prefix of uv that does not end
in ↑. By our initial assumption, t is well-formed,
and hence every non-empty prefix of uv is a mem-
ber of L. It then must also be a member of Lp
because, by definition, Lp must be largest among
the prefix-closed subsets of L. It follows that t is
well-formed with respect to Lp, too.

Finally, consider the case where t is ill-formed
with respect to Lp. Then there is some c-string u
of t such that u /∈ Lp but every non-empty pre-
fix of u (that does not end in ↑) is a member of
Lp. In this case it must also hold that u /∈ L, for
otherwise Lp is either not largest or violates pre-
fix closure. Consequently, t is also ill-formed with
respect to L. 2

Intuitively, Lemma 4 capitalizes on the fact that
whenever a tree contains at least one unlicensed
node, the status of other nodes no longer matters
because the tree is already ill-formed. Hence we
may freely assume that the c-string of node n is
illicit as soon as a prefix of that c-string is illicit,
even in cases where n itself would be licensed.

Now let D := 〈Σ ∪ {↑} , Q, qI , F, δ〉 be
the complete, deterministic finite-state string
automaton that recognizes Lp as defined in
Lemma 4. As D is deterministic, it has a
unique initial state qI . Its transition relation
δ : (Q × Σ) × Q is a function. We ex-
pand δ to strings such that δ(q, σ1σ2 · · ·σn) :=
δ(· · · δ(δ(q, σ1), σ2) · · · , σn). Since Lp is prefix-
closed, it also holds that Q = F ∪ {s}, where
s /∈ F is some sink state from which no other state
can be reached except s itself. Prefix closure also
entails that qI ∈ F , so that empty c-strings are
always allowed (since by definition c-strings are
never empty, this is innocuous).

We then construct the corresponding STA

20

AD := 〈Σ, Q, qI ,∆〉. For n ≥ 1, each sensing
rule in ∆ is of the form

q(σ(n)(~σ1, ~σ2, . . . , ~σn))→
σ(δ(q, σ ↑)(~σ1),

δ(q, σ ↑ σ1)(~σ2),

. . . ,

δ(q, σ ↑ σ1σ2 · · ·σn−1)(~σn)))

where q ∈ F and, as previously defined at the be-
ginning of §2.2, the use of ~σi with some symbol
σ

(n)
i is a shorthand for σi(xi1 , . . . , xin). For leaf

nodes, we require q(σ(0)) → σ(0) ∈ ∆ iff both
q ∈ F and δ(q, σ) ∈ F .

This construction effectively simulates runs of
the string automaton D over c-strings. The only
complication is that the process of assigning a
state to σi does not consider σi itself. But σi
does affect the states of its right siblings and all
its daughters. And if σi is a leaf, it indirectly de-
termines whether the state can be removed so that
the tree may be accepted.

Theorem 5. Let L be a regular language of well-
formed c-strings. Then there is some STA A such
that L(A) is the set of all Σ-trees that are well-
formed with respect to L.

Proof. Following Lemma 4, we replace L by Lp
and consider the complete, deterministic automa-
ton D that generates Lp. We construct A from D
in the manner described above. We then give a
proof by induction on the depth of Σ-trees.

Pick some Σ-tree t and suppose t ∈ Σ(0). The
only c-string of t is t. Then A recognizes t iff
qI ∈ F and δ(qI , t) ∈ F . The former holds by
definition, so t ∈ L(A) iff t ∈ L(D). This estab-
lishes the base case.

Next, consider any arbitrary configuration
q(σ(n)(σ1, . . . , σn)). By our induction assump-
tion, q = δ(qI , u) with acs(σ) = uσ. Sup-
pose acs(σi) /∈ Lp for some 1 ≤ i ≤ n. Then
δ(qI , acs(σi)) = δ(q, σ ↑ σ1 · · ·σi) /∈ F . If
i < n, A will assign some non-final state to σi+1.
If i = n and σi is not a leaf, A assigns the non-
final state to the leftmost daughter of σi. In both
cases, t now contains some node with a non-final
state. But there is no sensing rule with a non-
final state on its left-hand side, so that A cor-
rectly rejects t. If i = n and σi is a leaf, then
δ(δ(q, σ ↑ σ1 · · ·σi−1), σi) is not final and conse-
quently there is no suitable leaf rewrite rule. As

this covers all possible configurations for σi, we
conclude thatA rejects every tree that is ill-formed
with respect to Lp.

In the other direction, suppose A rejects
t. Then there must be some configuration
σ(q1(σ1), . . . , qi(σi), . . . , qn(σn)) such that qi is
not a final state. But then acs(σi−1) /∈ Lp, as de-
sired. 2

Theorem 5 establishes that the same subreg-
ular machinery of STAs can be used for both
the structure-building operations Merge and Move
and the c-command licensing conditions that
deeply permeate syntax. The STA perspective
also provides a new answer as to why c-command
should play such an important role in syntax.
How an STA treats a given node depends solely
on the spine of that node. The spine contains
the node itself, all its ancestors, and the sib-
lings of all the nodes in the spine. This imme-
diately precludes generalized notion of command
like the S-command relation of Barker and Pul-
lum (1990), which in modern terminology would
be CP-command: x CP-commands y iff x does not
reflexively dominate y (or the other way round)
and every CP that properly dominates x properly
dominates y. As x and y can be arbitrarily deep
within distinct subtrees while S-commanding each
other, this is not an STA-recognizable command
relation. C-command, on the other hand, stays
within the narrow confines of STAs.

Admittedly STAs could also selectively ignore
some c-commanders, operate with “inverse c-
command” where a complement c-commands into
its specifiers, or switch between different notions
of c-command based on some modulo counting
condition. So just as with the SpIC, the power
of STAs goes quite a bit beyond what is desir-
able for c-command. Still, it is striking that c-
command is a very natural relation from STA per-
spective, whereas more global notions of com-
mand are correctly ruled out. As long as one is
willing to accept dependency structures as a natu-
ral representation that arises from head-argument
relations, c-command is a natural companion of
STA-recognizability.

A lot of work remains to be done, though. As
just discussed, STAs allow for some very unnat-
ural command relations. Even more troubling is
that any arbitrary regular constraint over c-strings
can be enforced by an STA. Seeing how syntactic
constraints are very limited in the shape of depen-

21

dencies they enforce, STAs are overly powerful.
Hence STAs can only act as an upper bound.

At the same time, our current STA approach
is too limited. In cases where licensing condi-
tions interact with movement, the licensing ele-
ment might not be part of the c-string of a node.
Our STA construction, which is based purely on
c-strings, will necessarily fail in these cases. In
addition, some cases of licensing involve general-
ized notions of c-command that go beyond what
STAs can handle. We are confident, though, that
these issues can be addressed in future work. The
next section briefly sketches the solutions we have
in mind.

6 Expanding the Core Results

6.1 Interactions of Movement and Licensing

Linguists have identified many cases where move-
ment obfuscates licensing configurations by dis-
placing the licensed element. A simple example
would be [which book about himself]i does John
like ti, where the reflexive is not c-commanded
by its antecedent John in the corresponding phrase
structure tree. These cases are entirely unproblem-
atic for STAs since the MG dependency trees fully
factor out movement, so which book about him-
self remains in the object position where it is c-
commanded by the subject John. The problematic
cases are much rarer, to such a degree that con-
vincing examples are hard to come by: I) move-
ment of a licensed element bleeding licensing, and
II) movement of a licensing element feeding li-
censing.

The first case covers configurations where a li-
censed element — or a subtree containing it —
moves to a position above the element’s licensor
and where the subsequent change in c-command
relations does make licensing impossible (in con-
trast to the binding example above, where licens-
ing holds nonetheless). In MGs with the SpIC this
can be captured by an STA. The states of the STA
would be n-tuples similar to the output of the feat-
function we defined for MGs. The first compo-
nent records c-string states in the usual fashion,
whereas each other component i records the most
recent head hwith an f+

i -feature, plus the state that
was assigned to h. When an fi-mover m is found,
the information in the i-th component is used to
compute the state for m as if m were a left daugh-
ter of h. In this case, m is also excluded from the
state computation of its siblings in the dependency

tree. The details remain to be worked out, but
movement of a licensee should be easy enough to
handle because the STA can separately keep track
of the c-command configurations for each position
that is targeted by a mover.

The second option is more complicated. Here
some phrase must move into a higher position
from where it can c-command the element that
must be licensed. In combination with the SpIC,
this means that the licensing of a node can be con-
tingent on the nodes contained by its rightmost
sibling. An STA can still handle this, but it re-
quires a very different construction from the one
described in this paper. As in the bleeding case, a
state consists of multiple components, each one of
which corresponds to a movement feature. Com-
ponent i records all the types of licensing condi-
tions that still must be met for nodes that are c-
commanded from the most recent head with licen-
sor feature f+

i . The states also keep track of the c-
command relations between the heads hosting the
relevant licensor features. When a mover with f−i
is encountered, the STA checks if the mover can
satisfy any of the licensing requirements in com-
ponent i. If so, those are removed from compo-
nent i and all other components whose heads are
c-commanded by the head for component i. At
the end, no state may contain any non-empty com-
ponents. This strategy reimplements licensing as
a mechanism where the STA accrues “licensing
debt” while moving through the tree. This debt has
to be paid off by movers at a later point. The strat-
egy works because the SpIC allows us to correctly
synchronize the licensing debt across the states of
all daughter nodes.

While each strategy is relatively simple on its
own, integrating them is more difficult. An ele-
ment may move to a higher position p from where
it is only licensed by another element that moves
to an even higher position. This requires keeping
track of potential licensing debts for p which are
then narrowed down to the actual licensing debt
once it is known what actually moves to p, and
then this debt must be paid off by whatever moves
to a position above p. Further complicating the
picture, some licensing requirements only need to
be satisfied once (e.g. Principle A in the exam-
ple above), whereas others hold throughout the
derivation and are enforced after each movement
step. The individual components of the automa-
ton states thus must be synchronized in just the

22

right way, which complicates the construction of
the STA even more.

6.2 Subcommand

It has been argued that some cases of long-
distance binding involve subcommand instead of
c-command (see Tang 1989 and Huang and Liu
2001, a.o.). A node x subcommands y iff x c-
commands y or x is a specifier of some z that c-
commands y. From the perspective of c-strings, x
c-commands y iff there is some z in the c-string
of y such that x = z or x is the left sibling of
a daughter of z. For instance, if Principle A in
English allowed for subcommand instead of just
c-command, then John’s picture pleases himself
would be well-formed as John is a specifier of the
subject DP and thus subcommands himself.

Subcommand is beyond the reach of STAs be-
cause it makes the status of a node n dependent on
the daughters of n’s left siblings. Similar to the
case of movement interactions, there are two pos-
sible replies to this. One could point out the rarity
of subcommand, and that in the few cases where
it arises, it serves as a means to furnish additional
antecedents for reflexives beyond those that are al-
ready provided via c-command. Hence subcom-
mand might be limited to the syntax-semantics in-
terface and may not directly factor into licensing.
Alternatively, one could simply increase the look-
ahead of STAs from 1 to 2 so that the daughters
of daughters are also taken into account. Sub-
command then is just a more demanding case of
c-command.

6.3 Extension to MG Derivation Trees

Once one equips STAs with a more powerful look-
ahead mechanism to handle subcommand, MG
derivation trees once again become a viable alter-
native to MG dependency trees. All the results in
this paper extend from dependency tree to deriva-
tion trees if one generalizes STAs to determinis-
tic top-down tree automata with finite look-ahead.
That is not surprising because dependency trees
can be converted to derivation trees by a linear tree
transduction. This shows that derivation trees are
the result of separating mothers and daughters in
a dependency tree by a finitely bounded amount
of material (Merge and Move nodes). Finite look-
ahead is a means to reconstruct the relations of the
dependency tree that have been obfuscated by this
additional material.

It remains to be seen which one of the two rep-
resentation formats ultimately provides for more
insightful characerizations. One issue that deriva-
tion trees might shed some light on is the mono-
tonic nature of c-command. With an STA over de-
pendency trees, the daughters could be evaluated
in any order to determine the states for a c-string
constraint. While our current model proceeds left-
to-right, we could have just as well gone right-to-
left, inside out, or switched between those options
based on the label of the mother. Yet only the first
option corresponds to c-command as we know it.
In a derivation tree, all information is conveyed
via dominance. A specifier is not a sibling of
the complement but rather resides in a structurally
higher position (cf. the positions of John and the
CP-complement in Fig. 2). Among all the com-
mand variants we just described, the empirically
attested one in the form of c-command is the only
one that is monotonic with respect to dominance.

6.4 Adjuncts
Another problem of dependency trees is the sta-
tus of adjuncts. In order to obtain the correct c-
command relations, an adjunct of node n would
have to be treated as a left sibling of all the speci-
fiers of n. But since adjunction is unbounded, this
would mean that a node can have arbitrarily many
daughters, whereas STAs are usually defined for
trees with a finitely bounded arity. Adjuncts in
derivation trees, on the other hand, do not create
such issues because each adjunct grows the tree
vertically rather than horizontally.

Either way, adjuncts must be subject to the same
restriction as specifiers to preserve recognizability
by STAs or a suitably generalized variant: even
though an adjunct may move on its own, nothing
may move out of an adjunct. This is of course
a well-established property of adjuncts, known as
the Adjunct Island Constraint. Once again, then,
our specific subregular perspective derives a well-
known limitation of movement.

The Adjunct Island Constraint has some prin-
cipled exceptions such as [which car]i did John
drive Mary crazy while trying to fix ti (Truswell,
2007). It remains to be seen how these exceptions
can be reconciled with our approach.

6.5 Across-the-Board Movement
Another well-known island constraint is the Coor-
dinate Structure Constraint (CSC), which forbids
extraction from a conjunct. The CSC itself is easy

23

enough to enforce with an STA. It is the excep-
tion to the CSC that is of interest here: extraction
from a conjunct is permitted if extraction takes
place from all conjuncts in the same coordination.
Hence which beer did Ed buy and Greg drink is
well-formed even though which beer did Ed buy
wine and Greg drink is illicit. This is known as
across-the-board movement (ATB).

Curiously, the ATB-exception is very natural
from the STA perspective. STAs fail if one can-
not clearly tell from the local configuration which
one of several subtrees a move feature should
be passed into. The SpIC and the Adjunct Is-
land Constraint address this by excluding speci-
fiers and adjuncts from this equation, leaving the
complement as the only subtree that might con-
tain additional movers. ATB-movement consti-
tutes the opposite solution where the feature is in-
stead passed into every subtree. This, too, is a
fully deterministic process and thus within the lim-
its of STAs. If even one conjunct did not need
to contain a mover, then STAs would be faced
with a non-deterministic choice that they cannot
handle. While this has to be explored in greater
detail based on a proper formalization of ATB-
movement (e.g. Torr and Stabler 2016), it is re-
markable that the abilities of STAs closely line up
with the attested movement configurations.

6.6 Connection to Parsing

The preceding discussion shows that STAs not
only furnish a tighter upper bound on syntactic
complexity, they also explain core aspects of syn-
tax: the importance of island constraints, the avail-
ability of ATB-movement, and the central role of
c-command, which merely co-opts mechanisms
that are independently needed for movement. But
this in turn raises the fundamental question why
STA-recognizability should be a relevant concept
in syntax. We conjecture that STAs exhibit two
properties that are attractive for parsing: top-down
recognition, and determinism.

The highly predictive nature of human sentence
processing suggests that some top-down strategy
is employed, either directly in the form of recur-
sive descent parser, or as a top-down filter of a left-
corner parser. Given a choice between bottom-up
or top-down recognition, the latter is a much more
natural match for such parsing algorithms. Pre-
compiling a top-down filter into the parse schema
of an MG parser like the one in Stabler (2011b)

or Stanojević and Stabler (2018) is not trivial, but
feasible. Determinism ensures that this precom-
pilation does not explode the parse space, which
would slow down the parser. Hence STAs are a
good match for current MG models of human sen-
tence processing (Kobele et al., 2013; Gerth, 2015;
Graf et al., 2017).

Of course a deterministic top-down automaton
would also exhibit these properties, but these au-
tomata cannot even handle Merge, let alone Move.
STAs are a minimal extension of deterministic top-
down automata while also furnishing plenty of
power for syntactic dependencies. They require
some restrictions on movement, but each one of
them also improves parsing performance by expo-
nentially reducing the search space (see the discus-
sion of the SpIC’s impact on parsing performance
in Stabler 2013).

If one assumes that the grammar is but a high-
level description of the parser, the restriction to
STAs may be an abstract counterpart to various
parser constraints that are meant to improve effi-
ciency. Subregular complexity in syntax may thus
be closely connected to parsing.

7 Conclusion

We have shown that all current results on the
subregular complexity of syntax are insightfully
subsumed by sensing tree automata operating
over MG dependency trees. The limits of
STA-recognizability line up closely with well-
established restrictions on movement and syntac-
tic licensing conditions. A lot of issues remain to
be formally worked out, but we are confident that
the perspective developed in this paper will greatly
expand our understanding of subregular syntax.

Acknowledgments

The work reported in this paper was supported
by the National Science Foundation under Grant
No. BCS-1845344. We thank the participants of
the 2019 workshop on subregular complexity at
Stony Brook University for their feedback. We
are also grateful to the three anonymous review-
ers, whose suggestions allowed us to streamline
a lot of the formal definitions. In particular Re-
viewer 3 went above and beyond the call of duty.

24

References
Rolf Backofen, James Rogers, and K. Vijay-Shanker.

1995. A first-order axiomatization of the theory of
finite trees. Journal of Logic, Language and Infor-
mation, 4:5–39.

Hyunah Baek. 2018. Computational representation of
unbounded stress: Tiers with structural features. In
Proceedings of CLS 53, pages 13–24.

Chris Barker and Geoffrey K. Pullum. 1990. A theory
of command relations. Linguistics and Philosophy,
13:1–34.

Patrick Blackburn, Claire Gardent, and Wilfried
Meyer-Viol. 1993. Talking about trees. In Proceed-
ings of the Sixth Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 30–36.

Marisa Ferrara Boston, John T. Hale, and Marco
Kuhlmann. 2010. Dependency structures derived
from Minimalist grammars. In Christian Ebert, Ger-
hard Jäger, and Jens Michaelis, editors, MOL 10/11,
volume 6149 of Lecture Notes in Computer Science,
pages 1–12. Springer, Berlin.

Noam Chomsky. 1995. The Minimalist Program. MIT
Press, Cambridge, MA.

H. Comon, M. Dauchet, R. Gilleron, C. Löding,
F. Jacquemard, D. Lugiez, S. Tison, and M. Tom-
masiK. 2008. Tree automata: Techniques and
applications. Published online: http://www.
grappa.univ-lille3.fr/tata. Release
from November 18, 2008.

Thomas Cornell and James Rogers. 1998. Model the-
oretic syntax. In The Glot International State of
the Article Book, volume 1 of Studies in Generative
Grammar 48, pages 101–125. Mouton de Gruyter.

Robert Frank and K Vijay-Shanker. 2001. Primitive c-
command. Syntax, 4(3):164–204.

Sabrina Gerth. 2015. Memory Limitations in Sentence
Comprehension. A Structure-Based Complexity Met-
ric of Processing Difficulty. Ph.D. thesis, University
of Potdsam.

Saul Gorn. 1967. Explicit definitions and linguis-
tic dominoes. In Systems and Computer Science,
Proceedings of the Conference held at University
of Western Ontario, 1965, Toronto. University of
Toronto Press.

Thomas Graf. 2012a. Locality and the complexity of
Minimalist derivation tree languages. In Formal
Grammar 2010/2011, volume 7395 of Lecture Notes
in Computer Science, pages 208–227, Heidelberg.
Springer.

Thomas Graf. 2012b. Movement-generalized Mini-
malist grammars. In LACL 2012, volume 7351 of
Lecture Notes in Computer Science, pages 58–73.

Thomas Graf. 2017. The power of locality domains in
phonology. Phonology, 34:385–405.

Thomas Graf. 2018a. Locality domains and phonolog-
ical c-command over strings. In NELS 48: Proceed-
ings of the Forty-Eighth Annual Meeting of the North
East Linguistic Society, volume 1, pages 257–270,
Amherst, MA. GLSA.

Thomas Graf. 2018b. Why movement comes for free
once you have adjunction. In Proceedings of CLS
53, pages 117–136.

Thomas Graf and Connor Mayer. 2018. Sanskrit n-
retroflexion is input-output tier-based strictly local.
In Proceedings of SIGMORPHON 2018, pages 151–
160.

Thomas Graf, James Monette, and Chong Zhang. 2017.
Relative clauses as a benchmark for Minimalist pars-
ing. Journal of Language Modelling, 5:57–106.

Thomas Graf and Nazila Shafiei. 2019. C-command
dependencies as TSL string constraints. In Proceed-
ings of the Society for Computation in Linguistics
(SCiL) 2019, pages 205–215.

Jeffrey Heinz, Anna Kasprzik, and Timo Kötzing.
2012. Learning in the limit with lattice-structured
hypothesis spaces. Theoretical Computer Science,
457:111–127.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner.
2011. Tier-based strictly local constraints in phonol-
ogy. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics,
pages 58–64.

Cheng-Teh James Huang and Cheng-Sheng Luther Liu.
2001. Logophoricity, attitudes and ziji at the inter-
face. In Peter Cole, Gabrielle Herman, and Cheng-
Tea James Huang, editors, Long Distance Reflexives,
volume 33 of Syntax and Semantics, pages 141–195.
Academic Press, New York.

M. A. C. Huybregts. 1984. The weak adequacy of
context-free phrase structure grammar. In Ger J.
de Haan, Mieke Trommelen, and Wim Zonneveld,
editors, Van Periferie naar Kern, pages 81–99. Foris,
Dordrecht.

Adam Jardine and Kevin McMullin. 2017. Efficient
learning of tier-based strictly k-local languages. In
Proceedings of Language and Automata Theory and
Applications, Lecture Notes in Computer Science,
pages 64–76, Berlin. Springer.

C. Douglas Johnson. 1972. Formal Aspects of Phono-
logical Description. Mouton, The Hague.

Ronald M. Kaplan and Martin Kay. 1994. Regular
models of phonological rule systems. Computa-
tional Linguistics, 20(3):331–378.

Gregory M. Kobele. 2006. Generating Copies: An In-
vestigation into Structural Identity in Language and
Grammar. Ph.D. thesis, UCLA.

25

Gregory M. Kobele, Sabrina Gerth, and John T. Hale.
2013. Memory resource allocation in top-down
Minimalist parsing. In Formal Grammar: 17th and
18th International Conferences, FG 2012, Opole,
Poland, August 2012, Revised Selected Papers, FG
2013, Düsseldorf, Germany, August 2013, pages 32–
51, Berlin, Heidelberg. Springer.

Gregory M. Kobele and Jens Michaelis. 2011. Dis-
entangling notions of specifier impenetrability. In
The Mathematics of Language, volume 6878 of Lec-
ture Notes in Artificial Intelligence, pages 126–142,
Berlin, Heidelberg. Springer.

Gregory M. Kobele, Christian Retoré, and Sylvain Sal-
vati. 2007. An automata-theoretic approach to Min-
imalism. In Model Theoretic Syntax at 10, pages
71–80.

Wim Martens. 2006. Static Analysis of XML
Transformation- and Schema Languages. Ph.D. the-
sis, Hasselt University.

Wim Martens, Frank Neven, and Thomas Schwentick.
2008. Deterministic top-down tree automata: Past,
present, and future. In Proceedings of Logic and
Automata 2008, pages 505–530.

Kevin McMullin. 2016. Tier-Based Locality in Long-
Distance Phonotactics: Learnability and Typology.
Ph.D. thesis, University of British Columbia.

Jens Michaelis. 2004. Observations on strict deriva-
tional minimalism. Electronic Notes in Theoretical
Computer Science, 53:192–209.

Jens Michaelis. 2009. An additional observation on
strict derivational minimalism. In FG-MOL 2005,
pages 101–111.

Jens Michaelis and Marcus Kracht. 1997. Semilin-
earity as a syntactic invariant. In Logical Aspects
of Computational Linguistics, volume 1328 of Lec-
ture Notes in Artifical Intelligence, pages 329–345.
Springer.

Uwe Mönnich. 2006. Grammar morphisms. Ms. Uni-
versity of Tübingen.

Frank Morawietz. 2003. Two-Step Approaches to Nat-
ural Language Formalisms. Walter de Gruyter,
Berlin.

James Rogers. 1998. A Descriptive Approach to
Language-Theoretic Complexity. CSLI, Stanford.

James Rogers. 2003. Syntactic structures as multi-
dimensional trees. Research on Language and Com-
putation, 1(1):265–305.

James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlef-
sen, Molly Vischer, David Wellcome, and Sean
Wibel. 2010. On languages piecewise testable in the
strict sense. In Christan Ebert, Gerhard Jäger, and
Jens Michaelis, editors, The Mathematics of Lan-
guage, volume 6149 of Lecture Notes in Artificial
Intelligence, pages 255–265. Springer, Heidelberg.

Sylvain Salvati. 2011. Minimalist grammars in the
light of logic. In Sylvain Pogodalla, Myriam Qua-
trini, and Christian Retoré, editors, Logic and Gram-
mar — Essays Dedicated to Alain Lecomte on the
Occasion of His 60th Birthday, number 6700 in
Lecture Notes in Computer Science, pages 81–117.
Springer, Berlin.

Nazila Shafiei and Thomas Graf. 2019. The subregular
complexity of syntactic islands. Ms., Stony Brook
University.

Stuart M. Shieber. 1985. Evidence against the context-
freeness of natural language. Linguistics and Phi-
losophy, 8(3):333–345.

Edward P. Stabler. 1997. Derivational Minimalism. In
Christian Retoré, editor, Logical Aspects of Compu-
tational Linguistics, volume 1328 of Lecture Notes
in Computer Science, pages 68–95. Springer, Berlin.

Edward P. Stabler. 2011a. Computational perspectives
on Minimalism. In Cedric Boeckx, editor, Oxford
Handbook of Linguistic Minimalism, pages 617–
643. Oxford University Press, Oxford.

Edward P. Stabler. 2011b. Top-down recognizers for
MCFGs and MGs. In Proceedings of the 2nd Work-
shop on Cognitive Modeling and Computational
Linguistics, pages 39–48.

Edward P. Stabler. 2013. Two models of minimalist,
incremental syntactic analysis. Topics in Cognitive
Science, 5:611–633.

Miloš Stanojević and Edward Stabler. 2018. A
sound and complete left-corner parser for Minimal-
ist grammars. In Proceedings of the 8th Workshop
on Cognitive Aspects of Computational Language
Learning and Processing, pages 65–74.

Chih-Chen Jane Tang. 1989. Chinese reflexives. Natu-
ral Language and Linguistic Theory, 7:93–121.

John Torr and Edward P. Stabler. 2016. Coordination in
Minimalist grammars: Excorporation and across the
board (head) movement. In Proceedings of the 12th
International Workshop on Tree Adjoining Gram-
mars and Related Formalisms (TAG+12), pages 1–
17, Düsseldorf, Germany.

Robert Truswell. 2007. Extraction from adjuncts and
the structure of events. Lingua, 117:1355–1377.

Mai Ha Vu. 2018. Towards a formal description of
NPI-licensing patterns. In Proceedings of the Soci-
ety for Computation in Linguistics (SCiL) 2018, vol-
ume 1, pages 154–163. Article 17.

Mai Ha Vu, Nazila Shafiei, and Thomas Graf. 2019.
Case assignment in TSL syntax: A case study. In
Proceedings of the Society for Computation in Lin-
guistics (SCiL) 2019, pages 267–276.

26

Presupposition Projection and Repair Strategies in Trivalent Semantics

Yoad Winter
Utrecht University
The Netherlands

y.winter@uu.nl

Abstract
In binary propositional constructions S1 con
S2, the Strong Kleene connectives explain fil-
tering of S1’s and S2’s presuppositions de-
pending on their logical relations with their
non-presuppositional content. However, the
presuppositions derived by the Strong Kleene
connectives are weak conditional presupposi-
tions, which raise the “proviso problem” in
cases where no filtering is motivated. Weak
Kleene connectives do not face this problem,
but only because their presuppositions are of-
ten too strong, and hence do not account for
filtering phenomena altogether. While various
mechanisms have been proposed to allow fil-
tering without the proviso problem, their re-
lations with the standard trivalent Kleene sys-
tems have remained unclear. This paper shows
that by sacrificing truth-functionality, we un-
cover a rich domain of possibilities in triva-
lent semantics in between the Weak Kleene
and Strong Kleene connectives. These systems
derive presupposition filtering while avoiding
the proviso problem. The Kleene-style opera-
tors studied are generalized to arbitrary binary
functions, which further clarifies the connec-
tion between their different “repair” strategies
and presupposition projection.

1 Introduction

Logical theories of natural language semantics
and pragmatics treat presupposition (Beaver and
Geurts, 2014) as a special sort of inference, which
in the following examples we denote ‘ ’:

(1) Sue stopped smoking
 Sue used to smoke

The king of France is bald
 There is a (unique) king of France

Dan regretted visiting LA
 Dan visited LA

It was Zoe who stole my car
 Someone stole my car

What makes presuppositions semantically dis-
tinguished from other entailments is their spe-
cial projection properties: presuppositions are pre-
served under various operators that make other en-
tailments disappear. For instance, the complex
sentences in (2)-(4) below embed the sentence Sue
stopped smoking, whose non-presuppositional en-
tailment Sue doesn’t smoke is not entailed by any
of these complex sentences. By contrast, the state-
ment Sue used to smoke is also a presupposition of
sentences (2)-(4). In semantic jargon we say that
presuppositions are “projected” from conditionals,
negation and epistemic modals.1

(2) If Sue stopped smoking then Dan is happy
now.

(3) It is not the case that Sue stopped smoking.

(4) Possibly, Sue stopped smoking.

We treat such basic projections in trivalent se-
mantics, where natural language sentences are rep-
resented using propositions that denote 1 (true),
0 (false) or � (presupposition failure). We say
that a proposition ϕ is bivalent if ��ϕ��M ~� � for
any model M . Basic entailment, presupposition
and bivalent-presupposition relations are defined
as follows (Keenan, 1973; Beaver, 1997):

Definition 1.1. For propositions ϕ and ψ:

1When it comes to complex sentences like (2)-(4), the lit-
erature is divided on the status of projected presuppositions
like Sue used to smoke: semantic theories treat projected pre-
suppositions as logically entailed from one reading of the em-
bedding sentence; pragmatic theories (Gazdar, 1979; Chier-
chia and McConnel-Ginet, 1990) see them as instances of de-
feasible reasoning. With the rest of the literature on semantic
presupposition, we here assume a logical entailment account,
embracing a systematic ambiguity of sentences like (2)-(4).
Under one reading the presupposition is suspended, e.g. using
Bochvar’s assertion operator (Beaver and Krahmer, 2001) or
Heim’s strategy of local accommodation (Heim, 1983). This
suspension is highlighted in contexts it is not the case that
Sue stopped smoking, since she never smoked, which were
the center of the Russell-Strawson debate.

27

ϕ� ψ � ϕ entails ψ if

for every model M : if ��ϕ��M �1 then ��ψ��M �1

ϕ ψ � ϕ presupposes ψ if

for every model M : if ��ϕ��M ~�� then ��ψ��M �1

ψ � MBP�ϕ� � ψ is the maximal bivalent
presupposition (MBP) of ϕ if

for every model M : ��ϕ��M ~�� iff ��ψ��M �1

To construct elementary presuppositional
propositions from bivalent propositions, we
employ Blamey’s transplication operation on
bivalent propositions (Blamey, 1986; Beaver and
Krahmer, 2001). For bivalent propositions ϕ1 and
ϕ2, the transplication �ϕ1 � ϕ2� is defined by:

���ϕ1 � ϕ2���M � � ��ϕ2��M ��ϕ1��M � 1

� ��ϕ1��M � 0

For instance, using the bivalent propositions US
and S, we employ the following treatments of sim-
ple natural language sentences:

(5) a. Sue used to smoke US

b. Sue doesn’t smoke S

c. Sue stopped smoking �US � S�
In this analysis, (5c) entails but doesn’t presuppose
(5b), and presupposes (hence entails) (5a), as intu-
itively required. Furthermore, (5a) is the maximal
bivalent presupposition of (5c).

For any bivalent ϕ1, ϕ2 and ψ, the implication
operator in the Weak Kleene system (WK, Table
1) satisfies the following:

(WK1) MBP��ϕ1 � ϕ2�� ψ� � ϕ1

For instance, in sentence (2), property (WK1) cor-
rectly accounts for the projection of the presuppo-
sition Sue used to smoke. Implication in the Strong
Kleene system (SK, Table 2) supports a weaker
presupposition:

(SK1) MBP��ϕ1 � ϕ2�� ψ� � ϕ1 - ψ

This property means that SK implication expects
sentence (2) to presuppose Sue used to smoke or
Dan is happy, invoking the intuitively irrelevant
disjunct Dan is happy. This kind of derivation of
irrelevant disjuncts in presuppositions is referred
to as the “proviso problem” (Geurts, 1996), and
appears with all SK connectives (see e.g. (10) be-
low).

0 1
1 0
� �

, 0 1 �

0 0 0 �

1 0 1 �

� � � �

- 0 1 �

0 0 1 �

1 1 1 �

� � � �

� 0 1 �

0 1 1 �

1 0 1 �

� � � �

Table 1: Weak Kleene (WK) connectives

0 1
1 0
� �

, 0 1 �

0 0 0 0
1 0 1 �

� 0 � �

- 0 1 �

0 0 1 �

1 1 1 1
� � 1 �

� 0 1 �

0 1 1 1
1 0 1 �

� � 1 �

Table 2: Strong Kleene (SK) connectives

However, as has been often observed (Peters,
1979; Beaver, 1997), other cases of presupposi-
tion projection reveal substantial advantages to SK
connectives over WK connectives in terms of their
linguistic adequacy. Let us consider for example
the following sentence:

(6) If Sue used to smoke, she stopped smoking.

Sentence (6), unlike (2), is not felt to presuppose
that Sue used to smoke, and similarly sentence (7)
below:

(7) If Sue used to smoke Marlboros, she stopped
smoking.

In semantic jargon, we say that sentences (6)
and (7) are cases of presupposition filtering. In
these sentences, the antecedent Sue used to smoke
(Marlboros) entails the presupposition Sue used to
smoke of the consequent. As a result, that presup-
position gets “filtered out” and is not projected as
an entailment of the conditional sentence. Such
linguistic facts about filtering are accounted for by
SK connectives but not by WK connectives. For
WK and SK implication, this is exemplified by the
following facts for any bivalent ϕ,ψ1 and ψ2:

(WK2) MBP�ϕ� �ψ1 � ψ2�� � ψ1

(SK2) MBP�ϕ� �ψ1 � ψ2�� � ϕ� ψ1

28

Thus, for sentences (6) and (7), WK implication
counter-intuitively expect the MBP to be Sue used
to smoke. By contrast, (SK2) correctly expects the
MBPs of these sentences to be tautological, which
accounts for presupposition filtering.

Conditional MBPs as in the SK system have
been argued to also be intuitively correct in cases
that do not involve simple filtering (Karttunen and
Peters, 1979; Heim, 1983; Beaver, 2001). For in-
stance, let us consider sentence (8) below:

(8) If Sue used to smoke, she stopped smoking
Marlboros.

In this conditional sentence, the antecedent is
asymmetrically entailed by the consequent. Fact
(WK2) above means that the WK implication op-
erator expects the MBP of (8) to be Sue used to
smoke Marlboros. This is incorrect, for such an
MBP would entail the antecedent in sentence (8),
with would counter-intuitively treat the sentence
as equivalent to the non-conditional sentence Sue
stopped smoking Marlboros. To avoid this prob-
lem, Karttunen and Peters (1979) and others pro-
posed treatments where the MBP of sentence (8)
is as paraphrased below:

(9) If Sue used to smoke, she used to smoke
Marlboros.

When analyzed as a material implication, this con-
ditional statement is also what fact (SK2) about
Strong Kleene implication expects as the MBP of
sentence (8).

To summarize, while both the WK implication
and the SK implication deal with basic projec-
tion problems, they are facing complementary dif-
ficulties. The WK implication often “projects too
much”, failing to filter out presuppositions in the
consequent, or at least conditionalize them. In
other cases, however, WK implication is advan-
tageous to the conditional presuppositions derived
by the SK implication. These SK-based presuppo-
sitions are often too weak, and lead to the so-called
“proviso problem” for SK implication.

Similar puzzles appear with the other binary
propositional connectives in the Kleene truth ta-
bles. For instance, the WK and SK conjunction
connectives satisfy the following:

(WK3) MBP�ϕ , �ψ1 � ψ2�� � ψ1

(SK3) MBP�ϕ , �ψ1 � ψ2�� � ϕ� ψ1

For instance, with EX, S/SM and US/USM for
“Sue exercises”, “Sue smokes (Marlboros)” and

“Sue used to smoke (Marlboros)”, respectively,
this leads to the following analyses of the sen-
tences below:

(10) Sue exercises a lot and stopped smoking
 Sue used to smoke

by (WK3): MBP�EX , �US � S�� � US
3 (no proviso problem)

by (SK3): MBP�EX , �US � S�� � EX� US
7 (proviso problem)

(11) Sue used to smoke Marlboros and stopped
smoking~ Sue used to smoke
by (WK3): MBP�USM , �US � S�� � US

7 (no filtering)

by (SK3): MBP�USM , �US � S�� � USM� US
3 (tautological presupposition, hence filtering)

(12) Sue used to smoke and stopped smoking
Marlboros~ Sue used to smoke Marlboros2

by (WK3): MBP�US , �USM � SM�� � USM
7 (no filtering or conditional presupposition)

by (SK3): MBP�US , �USM � SM�� � US� USM
3 (conditional presupposition)

Table 3 summarizes the theoretical puzzle for
the WK and SK connectives. To solve this puz-
zle, we should like a trivalent account of presup-
position projection to avoid proviso-like presup-
positions while allowing presupposition filtering
and conditional presuppositions. This paper pro-
poses such an account, by considering the possi-
bilities that open up once we renounce the truth-
functionality of the WK and SK connectives.

Filtering Conditional No Proviso
presuppositions

WK 7 7 3

SK 3 3 7

Table 3: Kleene systems and presupposition projection

2To see that Sue used to smoke Marlboros is not sim-
ply presupposed by the sentence in (12), we should look at
sentences where such conjunctions are embedded, as in: if
Sue used to smoke and stopped smoking Marlboros, then she
might be smoking now other brands of cigarettes. This makes
it clear that the statement Sue used to smoke Marlboros is not
projected as a presupposition of the conditional, hence, rea-
sonably, also not of the conjunction that it contains.

29

2 Kleene systems of intermediate
strength

This section develops two trivalent systems that
on the one hand account for presupposition filter-
ing and conditional presuppositions, and on the
other hand avoid the unnecessarily weak presup-
positions that lead to the “proviso problem” with
SK connectives. This account involves employing
inferential relations between arguments of binary
propositional operators. While such inferences be-
tween operands have occasionally been employed
under various assumptions (Beaver, 1999; Las-
siter, 2012; Mandelkern, 2016), we aim here to
employ them within a purely trivalent semantics
that allows a better insight the role of Kleene con-
nectives in natural language semantics, in search
for a linguistically adequate “intermediate” triva-
lent semantics in between WK and SK.3

2.1 Entailment relations and presupposition
filtering

Let us first reconsider the contrast between
sentences (10) and (11), which are restated below:

(10’) Sue exercises a lot and stopped smoking.

(11’) Sue used to smoke Marlboros and
stopped smoking.

As we saw, sentence (10) intuitively presupposes
that Sue stopped smoking, whereas sentence (11)
does not. This kind of difference in filtering is
often analyzed in terms of whether the presuppo-
sition of the second conjunct is entailed by the first
conjunct (Mandelkern, 2016). In example (11)
the first conjunct Mary used to smoke Marlboros
entails the MBP Sue used to smoke of the second
conjunct. Such an entailment is missing in (10).
These facts are used as the source of filtering in
(11) and the lack thereof in (10).

Formalizing this filtering principle in trivalent
semantics, we get the following restriction on the
interpretation of ϕ , ψ:

3The present modification of Kleene systems is orthogo-
nal to the familiar proposal in (Peters, 1979), where the “in-
termediate” Kleene system is aimed to treat left-right asym-
metries of presupposition projection with binary connectives
(Mandelkern et al., 2017). This kind of asymmetry does
not concern “proviso problems” that result from presuppo-
sitions of the righthand operand, which are the focus of the
present paper. Peters’s asymmetries are introduced in the cur-
rent non-truth-functional proposal (see note 6 below), but if
needed they can also be removed.

(13) Left-to-right filtering in conjunctions ϕ , ψ:

If ϕ�MBP�ψ�, then MBP�ϕ��MBP�ϕ , ψ�
In words: if the left-hand conjunct ϕ in a con-
junction ϕ,ψ entails the maximal presupposition
of the right-hand conjunct ψ, then that presuppo-
sition gets “filtered out”, i.e. all presuppositions
of ϕ , ψ are inherited from ϕ. In example (11),
the left-hand conjunct (Sue used to smoke) is biva-
lent, hence (13) correctly expects the conjunction
to also be bivalent. This accounts for the “filter-
ing” of the presupposition in the right-hand con-
junct. At the same time, (13) on its own does
not expect filtering in (10), where the entailment
ϕ�MBP�ψ� does not hold.

As illustrated by the WK analysis of sentence
(11) (section 1), WK conjunction does not sat-
isfy the condition in (13), hence its failure to ac-
count for filtering phenomena in such sentences.
By contrast, the following fact about SK conjunc-
tion makes it clear that it does satisfy (13):

(14) ��MBP�ϕ ,SK ψ���M �

¢̈̈̈̈
¦̈̈̈
¤̈

1 ���MBP�ϕ���M �1 and ��MBP�ψ���M �1�
or ��ϕ��M �0 or ��ψ��M �0

0 otherwise

Fact (14) about SK conjunction leads to its desir-
able filtering property, but it also leads to proviso
problems as in (10), for there are cases where the
entailment ϕ � MBP�ψ� does not hold, but SK
conjunction admits models where ��ϕ , ψ��M is
bivalent although ��ψ��M �� – namely, the models
M where ��ϕ��M �0.

To address these problems of the WK and SK
systems, it is useful to first observe their take on
the following question:

(Q) Let op2 be a bivalent binary propositional op-
erator, and let op3 be the corresponding triva-
lent operator. Which formulas ϕ,ψ and mod-
elsM admit a bivalent value for ��ϕop3ψ��M
when ��ϕ��M �� or ��ψ��M ��?

The WK system treats the value ‘�’ as “nonsense”,
and accordingly, its answer on (Q) is “no formulas,
and no models”.

The SK system treats the value ‘�’ as “un-
known”, and uses the fact that certain values of
an argument of a binary function may determine
the result of the function regardless of the value

30

of the other argument. For the standard biva-
lent connectives, these “decisive values” are 0 for
both operands of conjunction, 1 for both operands
of disjunction, and 0/1 respectively for the left-
hand/righthand operand of implication.4 The an-
swer of the SK system to (Q) may then be ex-
pressed as follows:

(A1) SK’s answer on (Q): All formulas, and any
model where the value ��ϕ��M or ��ψ��M de-
termines the result of op2.
(Motivation: extract as much information as
possible from known values)

The proviso problem demonstrates that for nat-
ural language, the answer in (A1) is too liberal.
The problem lies in the fact that the SK answer al-
lows “saving” a formula ϕop3ψ from having a ‘�’
value in some model, with no respect to whether
the formula can also be “saved” in the same way
in other models. Thus, supposing that the second
conjunct in sentence (10) involves a presupposi-
tion failure, we see that SK incorrectly “saves”
the conjunction from failure if the first conjunct
is false. At the same time, SK correctly treats such
a conjunction as a failure in models where the first
conjunct is true. We consider this “global insta-
bility” of the way failures are handled in SK as the
source of the proviso problem. Instead of (A1), we
propose a “globally stable” variant of SK’s answer
to (Q). Since this answer minimally strengthened
WK, we refer to the system on which it is based as
‘WK�’. The “WK� answer” is informally stated
below:

(A2) WK� answer on (Q): Only formulas where
a failure of one operand guarantees that the
other operand also fails, or else has a value
that determines the result of op2.
(Motivation: extract as much information as
possible from known values in formulas that
can be globally saved from failure)

This answer, put informally here, summarizes a
common linguistic intuition about the contrast be-
tween sentences (10) and (11). In sentence (11) it
is guaranteed than whenever the second conjunct
fails, the first conjunct is false. This is the value
that determines the result of bivalent conjunction,
hence can “save” the formula from failing.5 There

4Some bivalent connectives, specifically exclusive dis-
junction, do not have decisive values. For such connectives,
the “WK and SK answers” above give identical results, as
they do for formulas like �ϕ - ψ� , �ϕ , ψ�.

5Cases where both conjuncts fail are discussed below.

is no such guarantee for sentence (10). Thus, an-
swer (A2) employs the general SK reasoning, but
only for “saving”, or “repairing”, some of the pre-
supposition failures that SK addresses: those fail-
ures that can be globally saved from failing the for-
mula (or, using another metaphor: can be globally
“repaired”).

Following this reasoning, in (15) below we de-
fine a conjunction operator that, like SK conjunc-
tion, satisfies the condition in (13), but without
the general property (14). The operator in (15)
“strengthens” WK conjunction to satisfy property
(13), hence we refer to it as a strengthened WK
(WK�) conjunction operator, which is denoted
‘.WK’:

(15) Conjunction in WK�:
For propositional formulas ϕ and ψ, withM
a class of models andM >M s.t. ��ϕ��M and��ψ��M are inductively specified, we define:

��ϕ .WK ψ��M �

¢̈̈̈̈
¨̈̈̈
¦̈̈̈
¨̈̈̈̈
¤

��ϕ , ψ��M ��ϕ��M ~�� and ��ψ��M ~��
��ϕ��M ��ψ��M �� and ¦M �

>M:
if ��ψ��M �

�� then ��ϕ��M � ~�1
� otherwise

The first clause in definition (15) standardly re-
tains bivalent conjunction. The second clause
makes sure to respect the condition (13). 6 An
advantage of the .WK operator over SK conjunc-
tion is the avoidance of proviso problems as in
(10): falsity of ϕ entails falsity of ϕ .WK ψ only
if the condition in the second clause of definition
(15) holds, which is not the case in (10). Formally,
for any bivalent propositions ϕ,ψ1 and ψ2, we ob-
serve the following fact on the WK, WK� and SK
conjunction operators:

6Note that this clause is asymmetric: it makes WK� con-
junction respect the condition in (13), but not the symmetric
condition (if ψ�MBP�ϕ�, then MBP�ψ��MBP�ϕ,ψ�).
Modifying (15) into a symmetric version is straightforward,
but it is questionable if such left-right symmetry (similar to
that of the SK connectives) would be empirically motivated,
as it would expect right-to-left filtering, which is empiri-
cally dubious (Peters, 1979; Mandelkern et al., 2017). Thus,
to simplify the presentation in this paper, we here only de-
fine operators that derive asymmetric filtering and conditional
presuppositions.

31

(16) Assuming that ϕ� ψ1, we have:

WK7 MBP�ϕ ,WK �ψ1 � ψ2�� � ψ1

WK�3 MBP�ϕ .WK �ψ1 � ψ2�� � �
(17) Assuming that ϕ ~� ψ1, we have:

SK7 MBP�ϕ ,SK �ψ1 � ψ2�� � � ϕ� - ψ1

WK�3 MBP�ϕ .WK �ψ1 � ψ2�� � ψ1

The � symbol standardly refers to the univalent
proposition denoting 1 in all models. In (16), the
‘3’/‘7’ symbols mark the correct/incorrect treat-
ment of filtering in sentences like (11). In (17)
they mark the avoidance/retainment of the proviso
problem in sentences like (10).

A disadvantage of WK� conjunction over SK
conjunction is that the second clause in defi-
nition (15) makes WK� conjunction non-truth-
functional, as it relies on logical relations within
the whole class of modelsM.7

The .WK operator follows the general “repair”
strategy of SK conjunction. When the second
clause in (15) is met, the assignment of the inter-
pretation of ϕ to ��ϕ .WK ψ��M is motivated by the
wish to preserve the following classical property
of bivalent conjunction:

��ϕ��M �0 � ��ϕ , ψ��M �0.

Similarly, the following classical property of ma-
terial implication motivates the treatment of filter-
ing with conditionals as in (7):

��ϕ��M �0 � ��ϕ� ψ��M �1.

With disjunction the motivation is to preserve the
following property:

��ϕ��M �1 � ��ϕ - ψ��M �1.

This motivation is geared by filtering as in the fol-
lowing disjunctive example, which does not pre-
suppose that Sue used to smoke:

(18) Either Sue never smoked Marlboros, or she
stopped smoking.

These considerations about filtering with condi-
tionals and disjunction lead to the following def-

7This drawback of WK� conjunction is shared with other
previous “globalist” accounts of the proviso problem (Las-
siter, 2012; Mandelkern, 2016). If desirable, it might be re-
moved by couching definition (15) within a possible world
semantics, replacing quantification over models by quantifi-
cation over indices in a given model.

initions of the respective WK� operators, in anal-
ogy to (15) above:8

(19) Implication and disjunction in WK�:

��ϕ .
�WK ψ��M �

¢̈̈̈̈
¨̈̈̈
¦̈̈̈
¨̈̈̈̈
¤

��ϕ� ψ��M ��ϕ��M ~�� and ��ψ��M ~��
�� ϕ��M ��ψ��M �� and ¦M �

>M:
if ��ψ��M �

�� then ��ϕ��M � ~�1
� otherwise

��ϕ /WK ψ��M �

¢̈̈̈̈
¨̈̈̈
¦̈̈̈
¨̈̈̈̈
¤

��ϕ - ψ��M ��ϕ��M ~�� and ��ψ��M ~��
��ϕ��M ��ψ��M �� and ¦M �

>M:
if ��ψ��M �

�� then ��ϕ��M � ~�0
� otherwise

Based on the“WK� answer” in (A2) above, the
reasoning behind all these definitions is general,
as is further explored in section 3.

The WK� conjunction operator, as well as WK�

disjunction and implication, also deals with cases
where the first conjunct is not bivalent, as in the
following example:

(20) [Sue stopped drinking but continued to
smoke two Marlboro packs a day], and [now
she has finally also stopped smoking].

Intuitively, sentence (20) presupposes that Sue
used to drink. This requirement holds indepen-
dently of Sue’s smoking habits. Definition (15)
makes sure that the presupposition Sue used to
drink of the first conjunct in (20) gets projected,
despite the filtering of the presupposition Sue used
to smoke of the second conjunct. In general: for
any proposition ϕ� that is presupposed by ϕ, we
have ϕ� presupposed by ϕ .WK ψ as well.9

8Since the 0 value in the left argument similarly deter-
mines the result of both conjunction and material implica-
tion, the general principle underlying left-to-right filtering
with implication is the same as for conjunction in (13). By
contrast, with disjunction, the 1 value determines the re-
sult, hence the general principle analogous (13) is: if ϕ �
MBP�ψ�, then MBP�ϕ��MBP�ϕ - ψ�.

9Proof: LetM be a model where ��ϕ.WKψ��M ~��. Thus,
either clause 1 or 2 of definition (15) is satisfied. Clause 1
trivially entails ��ϕ��M ~��. Clause 2 entails ��ϕ .WK ψ��M �

��ϕ��M , from which we also conclude ��ϕ��M ~� �. If ϕ
ϕ�, then in every model M s.t. ��ϕ .WK ψ��M ~� �, we have
��ϕ���M �1. We conclude that �ϕ .WK ψ� ϕ�.

32

Definitions (15) and (19) quantify over models
in a way that accounts for filtering phenomena as
in the following example (Beaver, 1999) :

(21) If Jane takes a bath, Bill will be annoyed that
there is no more hot water.

As Beaver notes, while the relation between tak-
ing a bath and lack of hot water is by no means
logical, in normal conversations the presupposi-
tion there is no more hot water of the consequent
in (21) gets filtered out. In general, this filtering
is on a par with the filtering phenomena discussed
above, where the relations between conjuncts are
logical. However, there is one empirical caveat: an
entailment ϕ�MBP�ψ� in (13) which is not log-
ical but restricted to a designated class of models
can be explicitly denied in conversation. For in-
stance, when a given context explicitly denies the
relation between taking a bath and lack of hot wa-
ter, filtering in (21) disappears:

(22) The hot water supply in Bill’s place uses gas
heating, so that no single person could pos-
sibly take a bath that would stop the hot wa-
ter supply. At present there’s some prob-
lem with Bill’s heating system. Not knowing
that, Bill suggests Jane, who is staying at his
place, to take a bath whenever she pleases.
If Jane takes a bath, Bill will be annoyed (to
hear from her) that there is no more hot wa-
ter.

Unlike the use of sentence (21) in an out-of-the-
blue context, in the context of (22) sentence (21)
does presuppose that there in no more hot wa-
ter. Thus, due to the explicit denial in (22) of any
causal relation between Jane’s bath and the lack
of hot water, filtering does not take place. Us-
ing a given class of modelsM in definitions (15)
and (19), rather than all possible models, allows
the filtering mechanism to take into account im-
plicit epistemic assumptions, without getting into
the separate question of how these assumptions
should be modeled. A similar point is made in
(Mandelkern, 2016) in relation to a framework of
context-change potentials.

2.2 Conditional presuppositions
The WK� operators defined above do not expect
conditional presuppositions, which were exempli-
fied in sentence (8), restated below:

(8’) If Sue used to smoke, she stopped smoking
Marlboros.

In this case the MBP of the consequent Sue used
to smoke Marlboros asymmetrically entails the an-
tecedent. The second clause in the definition of
the WK� implication operator in (19) does not
hold in such cases. Accordingly, this operator in-
correctly expects the presupposition Sue used to
smoke Marlboros to be projected in (8). Formally,
for any bivalent propositions ϕ,ψ1 and ψ2, we ob-
serve the following fact on the SK and WK� im-
plication operators:

(23) Assuming that ψ1�ϕ and ϕ ~�ψ1, we have:

SK3 MBP�ϕ�SK �ψ1 � ψ2�� � � ϕ� - ψ1

WK�7 MBP�ϕ .
�WK �ψ1 � ψ2�� � ψ1

The ‘3’/‘7’ symbols mark here the cor-
rect/incorrect modelling of conditional pre-
suppositions in sentences like (8).

Treating this kind of problem has led previous
work to assume that the MBP of sentences like (8)
should be expressed by the following disjunction:

(24) Either Sue never smoked or she used to
smoke Marlboros.

Within a trivalent system, this treatment of (8) is
generalized using the following condition:

(25) Left-to-right conditional presuppositions in
implications ϕ� ψ:

If MBP�ψ�� ϕ, then:

 ϕ - �MBP�ϕ� ,MBP�ψ���MBP�ϕ� ψ�.
In words: when the MBP of the consequent ψ
in ϕ � ψ entails the antecedent ϕ, the negation
of ϕ satisfies the MBP of ϕ � ψ, as a possible
alternative to the straightforward WK-based pre-
supposition MBP�ϕ� , MBP�ψ�. Principle (25)
correctly makes the disjunction in (24) entail the
MBP of sentence (8), as expected by the Strong
Kleene system. Indeed, SK implication satisfies
(25). However, as in relation to presupposition
filtering, this treatment of conditional presuppo-
sitions comes at the cost of leading to the proviso
problem.

A simple trivalent extension of WK� derives
some of the most typical conditional presupposi-
tions that were addressed in the literature.10 We

10There are empirical questions on whether conditional
presuppositions are needed at all (Mandelkern, 2016). On
the other hand, there are also empirical questions on whether
principle (25) can cover all conditional presuppositions
(Schlenker, 2011). For space and time limitations I ignore

33

refer to this extension as weakened SK (SK�), and
base its behavior on the following answer to ques-
tion (Q) above regarding the formulas that allow a
repair of a presupposition failure:

(A3) SK� answer on (Q): Only formulas as in
WK� (cf. (A2)) as well as formulas where if
one operand has a value that determines the
result of op2, the other operand fails.
(Motivation: as in (A2), plus the additional
motivation to extract information from a sin-
gle known value only when this is globally
required in order to save a formula from a
failure)

Minimal strengthening of the ‘ .
�WK’ opera-

tor using this principle leads to the following
operator, which we denote ‘ .

�SK’:

(26) Implication in SK�:
For propositional formulas ϕ and ψ, withM
a class of models andM >M s.t. ��ϕ��M and��ψ��M are inductively specified, we define:

��ϕ .
�SK ψ��M �

¢̈̈̈̈
¨̈̈̈̈̈
¨̈̈̈̈̈
¨̈¦̈̈̈
¨̈̈̈̈̈
¨̈̈̈̈̈
¨̈̈¤

��ϕ� ψ��M ��ϕ��M ~�� and ��ψ��M ~��
�� ϕ��M ���ψ��M �� and ¦M �

>M:
if ��ψ��M �

�� then ��ϕ��M � ~�1�
or
���ϕ��M � ~�1 and ¦M �

>M:
if ��ϕ��M � ~�1 then ��ψ��M �

���
� otherwise

This definition of SK� implication agrees with
SK implication on conditional presuppositions for
sentences like (8), but, like WK� and unlike SK,
does not generate proviso problems. Formally, for
any bivalent propositions ϕ,ψ1 and ψ2, we have:

(27) a. Filtering – if ϕ� ψ1:
SK3: MBP�ϕ�SK �ψ1 � ψ2�� � �
SK�3: MBP�ϕ .

�SK �ψ1 � ψ2�� � �
these questions here. I believe that further linguistic work is
needed in order to determine if conditional presuppositions,
or certain types thereof, should be semantically derived. The
SK� system is only presented here as one natural extension
of WK�, with no claims for empirical comprehensiveness.

b. Cond.Pres. – if ψ1 � ϕ:
SK3: MBP�ϕ�SK �ψ1 � ψ2�� � � ϕ� - ψ1

SK�3: MBP�ϕ .
�SK �ψ1 � ψ2�� � � ϕ� - ψ1

c. No Proviso – if ϕ ~� ψ1 and ψ1 ~� ϕ:
SK7: MBP�ϕ�SK �ψ1 � ψ2�� � � ϕ� - ψ1

SK�3: MBP�ϕ .
�SK �ψ1 � ψ2�� � ψ1

This establishes that in cases like (8), SK� impli-
cation shows the desirable properties of SK impli-
cation, without the undesirable proviso problem.

The way in which definition (26) quantifies over
models accounts for conditional presuppositions
that are not triggered by logical entailment, but
only due to contextually salient inferential rela-
tions, similarly to filtering in sentence (21). For
instance, according to (Schlenker, 2011), sentence
(28) below has the presupposition in (29):

(28) If John visits his parents for Christmas, his
sister too will give them hard time.

(29) If John visits his parents for Christmas,
someone (namely John) will give them hard
time.

This presupposition is treated here by assuming a
contextual entailment from John visits his parents
for Christmas to someone will give John’s parents
a hard time, which is of course far from being a
logical entailment.

The reasoning behind the definition of SK� im-
plication is also used in the following definitions
of conjunction and disjunction:

(30) Conjunction and disjunction in SK�:

��ϕ .SK ψ��M �

¢̈̈̈̈
¨̈̈̈̈̈
¨̈̈̈̈̈
¦̈̈̈̈
¨̈̈̈̈̈
¨̈̈̈̈̈
¨̈¤

��ϕ , ψ��M ��ϕ��M ~�� and ��ψ��M ~��
��ϕ��M ���ψ��M �� and ¦M �

>M:
if ��ψ��M �

�� then ��ϕ��M � ~�1�
or
���ϕ��M � ~�1 and ¦M �

>M:
if ��ϕ��M � ~�1 then ��ψ��M �

���
� otherwise

34

��ϕ /SK ψ��M �

¢̈̈̈̈
¨̈̈̈̈̈
¨̈̈̈̈̈
¦̈̈̈̈
¨̈̈̈̈̈
¨̈̈̈̈̈
¨̈¤

��ϕ - ψ��M ��ϕ��M ~�� and ��ψ��M ~��
��ϕ��M ���ψ��M �� and ¦M �

>M:
if ��ψ��M �

�� then ��ϕ��M � ~�0�
or
���ϕ��M � ~�0 and ¦M �

>M:
if ��ϕ��M � ~�0 then ��ψ��M ���

� otherwise

Similarly to SK� implication, these conjunction
and disjunction operators admit conditional pre-
suppositions while avoiding the proviso problem.
Thus, when ϕ, ψ1 and ψ2 are bivalent, we get:

If ψ1 � ϕ: MBP�ϕ .SK �ψ1 � ψ2�� � � ϕ� - ψ1.

If ψ1 � ϕ: MBP�ϕ /SK �ψ1 � ψ2�� � ϕ - ψ1.

2.3 Summary
We have defined two sets of binary operators, re-
ferred to as ‘WK�’ and ‘SK�’, which satisfy the
following, for any operator op and trivalent propo-
sitions ϕ and ψ:

MBP�ϕopWKψ� � MBP�ϕopWK� ψ�
� MBP�ϕopSK� ψ� � MBP�ϕopSKψ�

Further, we have shown (wit. (27c), (23), (16)):

MBP�ϕopSKψ� ~� MBP�ϕopSK� ψ�
~� MBP�ϕopWK� ψ� ~� MBP�ϕopWKψ�

This describes a hierarchy where SK/WK opera-
tors derive the weakest/strongest presuppositions,
respectively. Equivalently, and more in line with
common nomenclature, Strong Kleene operators
have the strongest “failure conditions” (the nega-
tion of their MBPs) whereas the failure conditions
of Weak Kleene operators are the weakest. In
terms of this “strength”, the WK� and SK� op-
erators are properly in between the two classical
Kleene connectives.

3 Repair and value determination with
general binary functions

The key to the proposal in section 2 is in the gen-
eral specification of “repair” conditions for fail-
ures in propositional arguments. These are princi-
ples that specify the situations under which a pre-
supposition failure in one of a binary function’s
arguments may still allow the function to return a
value. Following (George, 2008, 2014), we aim to
make the reasoning behind our proposal more ex-

plicit by generalizing it to arbitrary functions. Un-
like George’s work, we do not necessarily seek to
generalize the Strong Kleene connectives, which
lead to the proviso problem, but rather to avoid
this problem using intermediate levels of presup-
position projection as in the WK� and the SK� op-
erators. This section generalizes these operators to
arbitrary binary functions.

Given a set X ` E and an element � in E �X ,
we denote X�

� X 8 ���. Following (de Groote
and Lebedeva, 2010), we view presupposition fail-
ure (�) as an “exception”, which should be opti-
mally “handled” or “repaired”. A repair strategy
α is a method for defining fα � �A�

�B�� � C�

for any given binary function f � �A �B�� C.
The Weak Kleene strategy is “no repair”. Thus,

fWK
� �A�

�B��� C� is defined by:

(31) fWK�x, y� �

� f�x, y� x > A and y > B

� x�� or y��

By contrast, Strong Kleene is based on a “maximal
repair” strategy. A function f SK

� �A�
�B��� C�

is capable of “repairing” failures of its left/right
whenever the result of f can be determined by the
value of the right/left argument alone, respectively.
This notion of left/right (L/R) determination is de-
fined as follows:

Definition 3.1. For any function f � �A�B�� C
and value c > C, we say that:

A value a > A L-determines f as c if ¦y >

B.f�a, y� � c
A value b > B R-determines f as c if ¦x >

A.f�x, b� � c
Using the notion of L-determination, we define the
L-determination function LDf � A�

� C� of a
function f � �A �B�� C as follows:

(32) LDf�x� �

� c x > A and x L-determines f as c
� otherwise

Symmetrically, the R-determination function
RDf � B

�
� C� of f is defined by:

(33) RDf�y� �

� c y > B and y R-determines f as c
� otherwise

Bivalent conjunction, disjunction and implication
satisfy:

35

LD,�0� � RD,�0� �0 LD,�1� � RD,�1� ��
LD-�1� � RD-�1� �1 LD-�0� � RD-�0� ��
LD
�
�0�� RD

�
�1��1 LD

�
�1�� RD

�
�0���

Using the LD and RD functions, we define a
Strong Kleene function f SK

� �A�
� B�� � C�

for any binary function f � �A �B�� C:

(34) f SK�x, y� �¢̈̈̈̈
¨̈̈¦̈̈̈
¨̈̈̈¤

f�x, y� x > A and y > B

c c > C and �LDf�x� � c
or RDf�y� � c�

� otherwise

It will be observed that the standard WK/SK con-
nectives (tables 1 and 2) apply the respective re-
pair strategies (31)/(34) to the bivalent connec-
tives. Like their propositional instantiations in the
Kleene tables, the more general strategies (31) and
(34) are “local” in that for given values x and
y, they completely determine the value fα�x, y�
based on f , x and y. By contrast, the WK� and
SK� operators of section 2 rely on entailments be-
tween propositional formulas, hence they are not
local in this sense (as mentioned above, the WK�

and SK� operators are not truth-functional).

In order to compare the WK and SK strategies
(31) and (34) to global generalizations of the WK�

and SK� operators, we first define global versions
of the former. Let M be a model over expres-
sions within a type system for n-place functions
and products (e.g. van Benthem (1991)). For any
type τ , we standardly denote DM

τ for the domain
of values of type τ in M , allowing partial func-
tion values. For any such type and model, we as-
sume that the exceptional value � is not in DM

τ ,
and denote DM�

τ � �DM
τ ��. For an expression

exp of type τ , we need to specify an element of
DM�

τ as the denotation of exp. This element is de-
noted ��exp��M�

. Globalizing the WK and SK re-
pair strategies above, we assume that F is a binary
function expression of type �a Yb�c, and exp1 and
exp2 are expressions of type a and b, respectively.
We assume by induction that for every model
M >M: ��F ��M >DM

�aYb�c, ��exp��M�

>DM
a

�

and

��exp��M�

>DM
b

�

.

Definition 3.2. The global WK and SK strate-

gies for ��F �exp1, exp2���M�

are defined by:

��F WK�exp1, exp2���M�

�

���F ��M�WK���exp1��M�

, ��exp2��M��
��F SK�exp1, exp2���M�

�

���F ��M�SK���exp1��M�

, ��exp2��M��
For example, let ‘mult’ denote a the standard
binary multiplication operator over real number
expressions, and let ‘~’ denote the standard par-
tial division operator over real number expres-
sions. Let ��1~r��M�

be inductively specified as �
in models M� where ��r��M�

� 0. Considering
the Kleene-repaired expression multα�r,1~r�,
we observe that any model M s.t. ��r��M�

�

0 satisfies ��multWK�r,1~r���M�

� � whereas��multSK�r,1~r���M�

� 0.
Generalizing the and WK� and SK� operators

of section 2 involves considering the global strate-
gies they employ. In such global strategies, we
need to classify which expressions F �exp1, exp2�
are “repairable” in cases of failure of exp2. This
classification depends on the denotations of F ,
exp1 and exp2 in different models. We start out
with generalizing the WK� operators. Definition
3.3 below specifies the conditions under which the
WK� strategy is allowed to “repair” failures of
exp2. As in definition 3.2, we are given a binary
function expression F of type �aYb�c, and expres-
sions exp1 and exp2 of type a and b, respectively,
s.t. for every model M >M: ��F ��M > DM

�aYb�c,��exp��M�

>DM
a

�

and ��exp��M�

>DM
b

�

.

Definition 3.3. Given a class of modelsM, let c >
�M>MDM

c , and suppose that every modelM >M

where ��exp2��M�

�� and ��exp1��M� ~�� satisfies:
LD��F ��M ���exp1��M�� � c. Then we say that the
expression F �exp1, exp2� is R-repairable as c.

In words: an expression F �exp1, exp2� is R-
repairable when there is a value c of type c
shared by all models, and for all models, c is L-
determined by the value of exp1 for F whenever
exp2 fails and exp1 does not.11

Example 1: Let us again consider the expression
mult�r,1~r�. The expression 1~r denotes � pre-
cisely in those models where the value of r is 0,
which L-determines the result of mult as 0. Thus,
mult�r,1~r� is R-repairable with respect to stan-

11For the sake of presentation, this condition is stronger
than necessary: we might as well require the value c to only
be shared by models where exp2 fails and exp1 does not.

36

dard models of the real numbers.

Example 2: Let us consider the expression
F �r,ºr� over the real numbers, where F �x, y�
is defined by 0 for x � �3 and by x � y other-
wise. In models where r � �3, this is the value
of the left-hand argument of the expression F ,
which L-determines the result of the function that
F denotes. Accordingly, for r � �3 the value of
F SK�r,ºr� is 0, which repairs the failure of

º
r.

However, since the expression
º
r fails for all neg-

ative values of r other than �3, and these values
do not L-determine the value of F , the expression
F �r,ºr� is not generally R-repairable.

Example 2 highlights a general difference be-
tween the SK repair strategy and the WK� repair
strategy employed in section 2. The SK connec-
tives deal with failures of the right-hand value in
all models where the value of the left-hand value
L-determines the result. By contrast, the WK� op-
erators only deal with failures of the right-hand
argument as long as any such failure entails that
the value of the left-hand argument L-determines
the result. Thus, our propositional WK� opera-
tors only deal with failures of ψ formulas in R-
repairable formulas of the form ϕ op ψ. To gen-
eralize this WK� strategy, we again let F be a bi-
nary function expression of type �a Y b�c, and let
exp1 and exp2 be expressions of type a and b, re-
spectively. We assume by induction that for every
model M >M: ��F ��M > DM

�aYb�c, ��exp��M�

>

DM
a

�

and ��exp��M�

>DM
b

�

.

Definition 3.4. The (global) WK� strategy for��F �exp1, exp2���M�

is defined by:

��F WK��exp1, exp2���M�

�

¢̈̈̈̈
¨̈̈̈̈̈
¨̈¦̈̈̈
¨̈̈̈̈̈
¨̈̈¤

��F �exp1, exp2���M��exp1��M� ~�� and ��exp2��M� ~��
c LD��F ��M ���exp1��M�� � c > �M>MDM

c

and F �exp1, exp2� is R-repairable as c

� otherwise

The propositional WK� operators of section 2 are
instances of definition 3.4, which is also applica-
ble to binary functions more generally. For in-
stance, based on the facts in examples 1 and 2
above, we conclude that multWK��r,1~r� � 0
when r � 0, but FWK��r,ºr� � � when r � �3,
in contrast with F SK�r,ºr� � 0. This is by virtue

of the R-reparability of mult�r,1~r� and the non-
R-reparability of F �r,ºr�.

The generalization of the SK� operators of
section 2 is similarly obtained, by reversing
the direction of the implication in the definition
of R-reparability. We call this notion anti-R-
reparability and define it as follows:

Definition 3.5. Given a class of modelsM, let c >
�M>MDM

c , and suppose that every model where
LD��F ��M ���exp1��M�� � c, we have ��exp2��M�

�

�. Then we say that the expression F �exp1, exp2�
is anti-R-repairable as c.

In words: an expression F �exp1, exp2� is anti-R-
repairable when there is a value c of type c shared
by all models, and in all models where c is L-
determined by exp1 for F , the evaluation of exp2
fails.

The expression F �r,ºr� of example 2 above
is an instance of an anti-R-repairable expression,
for the only value of r that L-determines the value
of this expression, namely r � �3, fails the right-
hand argument.

In the following definition we use the notion of
anti-R-reparability to generalize the SK� strategy.

Definition 3.6. The (global) SK� strategy for��F �exp1, exp2���M�

is defined by:

��F SK��exp1, exp2���M�

�

¢̈̈̈̈
¨̈̈̈̈̈
¨̈̈̈
¦̈̈̈
¨̈̈̈̈̈
¨̈̈̈̈
¤

��F �exp1, exp2���M��exp1��M� ~�� and ��exp2��M� ~��
c LD��F ��M ���exp1��M�� � c > �M>MDM

c

and F �exp1, exp2� is R-repairable as c
or anti-R-repairable as c

� otherwise

Definition 3.6 adds to definition 3.4 the possi-
bility that the expression F �exp1, exp2� is anti-
R-repealable. The propositional SK� operators of
section 2 are instances of definition 3.6, which is
also applicable to binary functions more generally.
For instance, the expression F �r,ºr� in example
2 satisfies F SK��r,ºr� � 0 when r � �3. Still,
in terms of its repair potential, the SK� strategy
is weaker than the SK strategy. The following ex-
ample illustrates that with a non-propositional ex-
pression.

Example 3: Let us consider the expression
G�r,ºs�, where G�x, y� is defined by 0 for x @ 0
and by x � y otherwise. In models where r � �5
and s � �3, the value of the left-hand argument

37

(�5) L-determines the value of G. Accordingly,
when r � �5 and s � �3, the value of GSK�r,ºs�
is 0 despite the failure of

º
s.12 By contrast, there

are models where the expression
º
s fails and r is

positive, hence does not L-determine the value of
G. Conversely, there are also models where the ex-
pression

º
s does not fail and r is negative, hence

L-determines the value of G. This means that the
expression G�r,ºs� is neither R-repairable nor
anti-R-repairable. As a result, in models where
r � �5 and s � �3, the expression GSK��r,ºs�
fails, unlike its SK parallel.

From the definitions above and examples 1-3
we conclude that the more general repair strategies
for binary functions show the same hierarchy that
we pointed out for the propositional connectives:
the SK strategy is the most general repair strategy,
WK allows no repair, whereas the repair strategies
of WK� and SK� are properly in between these
two extremes.

4 Concluding remarks

This paper proposed new binary operators on
truth-value denoting expressions, which, unlike
the Weak Kleene connectives, allow filtering and
conditional presuppositions, and unlike the Strong
Kleene connectives, do not face the “proviso”
problem. We defined asymmetric operators that
allow left-to-right filtering (the “Weak Kleene
plus” operators) as well as conditional presupposi-
tions (the “Strong Kleene minus” operators) with-
out proviso-like problems. These operators were
generalized for arbitrary binary function expres-
sions, which reveals the centrality of values that
left/right-determine the result of a function for the
treatment of presupposition projection in trivalent
semantics.

One last note is in place about the special sta-
tus of Strong Kleene (SK) connectives in the treat-
ment of the third truth-value �. As has been previ-
ously observed (Muskens, 1995; Beaver and Krah-
mer, 2001), SK conjunction and disjunction are
greatest lower bound and least upper bound opera-
tors, respectively, with respect to the less-or-equal
partial order, where ‘1’ and ‘0’ are treated numer-
ically and ‘�’ is treated numerically as ½. This

12We may consider this kind of case as an illustration of
a “proviso problem” for non-propositional binary functions:
L-determination by the left-hand argument guarantees a suc-
cessful evaluation of the function in cases when its right-hand
argument fails, even if that failure is logically unrelated to L-
determination.

gives the following lattice structure in SK trivalent
logic (see Fitting (1991) for generalizations):

When it comes to theories of presupposition pro-
jection, this formal elegance has an empirical
price: the SK-based partial order is a proper subset
of the order determined by the Tarskian notion of
entailment (Keenan, 1973; Beaver, 1997) in defi-
nition 1.1. Tarskian entailment in trivalent seman-
tics supports the following preorder:

Importantly, when it comes to entailment in natu-
ral language there is reason to prefer the Tarskian
preorder to the SK partial order. For instance, the
sentence Sue has stopped shouting intuitively en-
tails the sentence Sue is not shouting, but the for-
mer can denote ‘�’ while the latter denotes ‘0’
(e.g. in situations where Sue has just started shout-
ing). This indicates that the preorder determined
by the Tarskian condition is advantageous to the
SK-based partial order as a basis for a trivalent
semantics of presuppositions. The 0 and � val-
ues are distinguished by their projection but no
by their support of entailment relations. This is
expected by the Tarskian preorder and not by the
SK partial order. Thus, although the SK truth ta-
bles are logically natural, and indeed have led to
interesting logical results, their modelling of the
� value as “unknown” or “in between 0 and 1”
is the source of their proviso problem when used
for meanings of natural language operators. A lin-
guistically more adequate view ensues from treat-
ing the � value as a “failure” or an “exception” as
in the Weak Kleene connectives or (de Groote and
Lebedeva, 2010). This requires further inquiries
into intermediate systems like the WK� or SK�

operators that were studied above. These opera-
tors sacrifice truth-functionality – or, more gener-
ally, locality or at least extensionality – but model
filtering and conditional presuppositions similarly
to the Strong Kleene connectives, without running
into their well-known problems.

38

Acknowledgments

I am grateful to three MOL reviewers, as well as to
Lisa Bylinina, Danny Fox, Philippe de Groote, Ed
Keenan, Matthew Mandelkern, Rick Nouwen, Ja-
copo Romoli and members of the presupposition
reading group in Utrecht. Work on this paper was
partially funded by the European Research Coun-
cil (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant
agreement No 742204).

References
David I. Beaver. 1997. Presupposition. In van Ben-

them and Alice ter Meulen, editors, Handbook of
Logic and Language, pages 939–1008. Elsevier,
Amsterdam.

David I. Beaver. 1999. Presupposition accommoda-
tion: A plea for common sense. In Lawrence S.
Moss, Jonathan Ginzburg, and Maarten de Rijke, ed-
itors, Logic, Language and Computation, volume 2.
CSLI Publications, Stanford, CA.

David I. Beaver. 2001. Presupposition and Assertion in
Dynamic Semantics. CSLI Publications, Stanford,
CA.

David I. Beaver and Bart Geurts. 2014. Presupposition.
In Edward N. Zalta, editor, The Stanford Encyclope-
dia of Philosophy, winter 2014 edition.

David I. Beaver and Emiel Krahmer. 2001. A par-
tial account of presupposition projection. Journal
of Logic, Language and Information, 10(2):147.

Johan van Benthem. 1991. Language in Action: Cat-
egories, Lambdas and Dynamic Logic. North-
Holland, Amsterdam.

Stephen Blamey. 1986. Partial logic. In D. Gabbay
and F. Guenthner, editors, Handbook of Philosophi-
cal Logic, volume 3, pages 1–70. D. Reidel Publish-
ing Company, Dordrecht.

Gennaro Chierchia and Sally McConnel-Ginet. 1990.
Meaning and Grammar: an introduction to seman-
tics. MIT Press, Cambridge, Mass.

Melvin Fitting. 1991. Kleene’s logic, generalized.
Journal of Logic and Computation, 1(6):797–810.

Gerald Gazdar. 1979. Pragmatics: Implicature, Pre-
supposition, and Logical Form. Academic Press,
New York.

Benjamin R. George. 2008. Presupposition repairs:
a static, trivalent approach to predicting projection.
Master thesis, UCLA.

Benjamin R. George. 2014. Some remarks on cer-
tain trivalent accounts of presupposition projection.
Journal of Applied Non-Classical Logics, 24(1-
2):86–117.

Bart Geurts. 1996. Local satisfaction guaranteed: A
presupposition theory and its problems. Linguistics
and Philosophy, 19(3):259–294.

Philippe de Groote and Ekaterina Lebedeva. 2010. Pre-
supposition accommodation as exception handling.
In Proceedings of the 11th Annual Meeting of the
Special Interest Group on Discourse and Dialogue,
pages 71–74. Association for Computational Lin-
guistics.

Irene Heim. 1983. On the projection problem for pre-
suppositions. In Proceedings of WCCFL 2, pages
114–125, Stanford, CA. CSLI Publications.

Lauri Karttunen and Stanley Peters. 1979. Conven-
tional implicature. In Choon-Kyu Oh and David A.
Dinneen, editors, Syntax and semantics, volume 11,
pages 1–56. Academic Press, New York.

Edward L. Keenan. 1973. Presupposition in natural
logic. The Monist, 57(3):344–370.

Daniel Lassiter. 2012. Presuppositions, provisos, and
probability. Semantics and Pragmatics, 5:1–37.

Matthew Mandelkern. 2016. Dissatisfaction theory. In
Procedings of SALT 26, pages 391–416.

Matthew Mandelkern, Jérémy Zehr, Jacopo Romoli,
and Florian Schwarz. 2017. Asymmetry in presup-
position projection: The case of conjunction. In
Procedings of SALT 27, pages 504–524.

Reinhard Muskens. 1995. Meaning and partiality.
CSLI Publications, Stanford, CA.

Stanley Peters. 1979. A truth-conditional formulation
of Karttunen’s account of presupposition. Synthese,
40(2):301–316.

Philippe Schlenker. 2011. The proviso problem: a
note. Natural Language Semantics, 19(4):395–422.

39

Dependently-Typed Montague Semantics in the Proof Assistant Agda-flat

Colin Zwanziger
Department of Philosophy

Carnegie Mellon University
Pittsburgh, PA, USA
zwanzig@cmu.edu

Abstract

We apply the Agda-flat proof assistant (Vez-
zosi, 2019) to computational semantics. Com-
putational semantics in Agda-flat is distin-
guished from the approach based on Coq
(Chatzikyriakidis and Luo, 2014) in that it al-
lows an implementation of the classical, inten-
sional semantic analyses of Montague (1973).
That is, it synthesizes the modern dependent
type theory and Montague intensional logic
traditions in the computational semantics set-
ting. To demonstrate this, we show how to
replicate Montague’s analyses in the type the-
ory of Zwanziger (2018), which closely corre-
sponds to the Agda-flat system. Accompany-
ing code type-checks these analyses in Agda-
flat.

1 Introduction

Proof assistants, e.g. Coq (Chatzikyriakidis and
Luo, 2014), have been applied in computational
semantics to support natural language inference.
By translating (declarative) sentences of a natural
language into the language of a proof assistant, the
problem of whether one natural language sentence
implies another is reduced to finding a proof of
implication in that proof assistant. Ideally, both
the translation and the proof search are automated.

While proof assistants like Coq and the similar
system Agda are adequate for implementing most
semantic analyses given in the modern dependent
type theory tradition (Ranta, 1994), they do not
provide an obvious implementation of the clas-
sical intensional semantic analyses of Montague
(1973). The criterion that a computational seman-
tics system be general enough to capture Mon-
tague’s analyses has been termed the “Montague
Test” (Morrill and Valentı́n, 2016).

The present work introduces computational se-
mantics in the Agda-flat proof assistant. Agda-flat
(Vezzosi, 2019) is a variation on ordinary Agda

implementing a so-called comonadic modal de-
pendent type theory. Agda-flat was created by An-
drea Vezzosi (c. 2017-2019) as a tool for verifying
mathematical theorems in type-theoretical foun-
dations. The logic behind the most recent mode
of Agda-flat is essentially similar to CHoTT,
which was isolated by Zwanziger (2018) as a
natural dependently-typed, optionally hyperinten-
sional analog of Montague’s simply-typed inten-
sional logic. As such, Agda-flat passes (the rele-
vant incarnation of) the Montague Test. Further-
more, CHoTT can be used as a readable notation
for Agda-flat.

Below, we develop enough of natural language
semantics in CHoTT and Agda-flat to pass the
Montague Test. In Section 2, we review the
type theory CHoTT of Zwanziger (2018), which
closely corresponds to the Agda-flat system, and
is seen to provide a dependently-typed version
of Montague intensional logic. In Section 3,
the Montague Test sentences are translated into
CHoTT. In Section 4, we discuss the Agda-flat
system, and in particular the straightforward ren-
dering of CHoTT sentences therein. Pursuant to
the translations given in Section 3, an auxiliary
repository is provided type-checking the transla-
tions of all Montague Test sentences.

2 Comonadic Homotopy Type Theory

We review the type theory CHoTT of Zwanziger
(2018), which provides a dependently-typed ver-
sion of the intensional logic IL of Montague
(1973). To motivate CHoTT, a preview of the cor-
respondence between CHoTT and IL is given in
Subsection 2.1. Furthermore, some context for the
development of CHoTT is provided in Subsection
2.2. The technical discussion of CHoTT is in Sub-
section 2.3.

40

IL CHoTT English Gloss
t Prop “type of truth values/propositions”

xs, ay 5A “type of intensions of terms of type a/A”
pα t5 “the intension of term α/t”
qα t5 “the extension of term α/t”
2φ 2φ “necessarily φ”

Table 1: An IL-to-CHoTT Dictionary

2.1 Cheat Sheet for CHoTT

As any extension of intensional logic should, the
type theory CHoTT will include analogs of the
intension, extension, and other operators of IL.
These are foreshadowed in Table 1. The variant
notation from IL follows Shulman (2018), and re-
flects the essentially independent origins of IL and
Shulman’s system.

Pursuant to the correspondence of Table 1, the
translations of the Montague Test sentences given
in Section 3 will bear an obvious similarity to
those of Montague. There will be a few techni-
cal points of divergence between CHoTT and IL,
though, discussed in the course of Subsection 2.3.
Though these particularities of CHoTT can be jus-
tified on technical grounds, it is also worthwhile
to understand CHoTT and its relation to IL in the
context of the literature.

2.2 Provenance of CHoTT

We here review some historical context and justi-
fication for CHoTT. A reader less concerned by
such matters can skip ahead to Subsection 2.3 for
the technical development.

The type theory CHoTT is a “comonadic ho-
motopy type theory”, combining a version of
Montague’s intensional logic (“comonadic type
theory”) with homotopy type theory (HoTT), a
version of dependent type theory. We visit each
of these aspects in turn.

2.2.1 Intensional Logic and Comonadic Type
Theory

The identification of Montague intensional logic
with comonadic type theory dates to joint work
of the author (Awodey et al., 2015), and is devel-
oped in the M.S. thesis of the author (Zwanziger,
2017), in both syntactic and semantic aspects.
Comonadic type theory is a variety of modal type
theory which was first treated systematically in
the 1990’s, with approaches due to Bierman and
de Paiva (2000) and Davies and Pfenning (Pfen-

ning and Davies, 2001). Montague’s intensional
logic can thus be understood retrospectively as
the original comonadic type theory. However,
Montague’s syntax lacks β-conversion (AKA λ-
conversion) and the usual rules for quantifiers, an
issue addressable within these modern approaches
(Zwanziger, 2017). The present paper follows the
Davies and Pfenning approach, and and in particu-
lar Shulman (2018)’s extension to homotopy type
theory.

2.2.2 Homotopy Type Theory

HoTT (Univalent Foundations Program, 2013) is
a proposed type-theoretic alternative to axiomatic
set theory as a foundation for math. HoTT incor-
porates dependent type theory, a framework which
has been fruitfully applied in natural language se-
mantics since Sundholm (1989) and Ranta (1994).
Recently, dependent type theory has been called
“modern type theory” in the context of natural lan-
guage semantics, to distinguish it from the simply-
typed intensional logic of Montague (Chatzikyri-
akidis and Luo, 2018). Particularly appealing ap-
plications of dependent type theory in natural lan-
guages semantics, dating to the early work, in-
clude the use of the baked-in bounded quantifica-
tion to model the bounded quantification of natural
language (part of the “common nouns-as-types”
viewpoint) (Luo, 2012), and a natural approach to
dynamic semantics.

As for the “homotopy” part, it is argued in
Zwanziger (2018) that this provides a natural ap-
proach to hyperintensional natural language se-
mantics. As a homotopy type theory, CHoTT in-
cludes two notions of equality: definitional equal-
ity, written”, and thought of as (hyper)intensional
equality, and typal equality, written“, and thought
of as an a posteriori equality. In line with this
intuition, ” is stronger than “. In CHoTT, we
find ‘intensional’ operators which respect only ”,
not “. Furthermore, this more “granular” inten-
sional equality need not conflate statements with

41

ctx-Emp.¨ | ¨ ctx

∆ | Γ $ B : U
ctx-Ext.e

∆ | Γ, x : B ctx
∆ | Γ, x : A,Γ1 ctx

Var.e
∆ | Γ, x : A,Γ1 $ x : A

∆ | ¨ $ B : U
ctx-Ext.i

∆, u : t5u B | ¨ ctx
∆, u : t5u A,∆1 | Γ ctx

Var.i
∆, u : t5u A,∆1 | Γ $ u : A

Table 2: The Extensional (´e) and Intensional (´i) Context Rules

the same truth conditions. A hyperintensional se-
mantics of CHoTT, inspired by the homotopy-
theoretic semantics of HoTT, is the subject of
other research by the author (Zwanziger, 2019).

In summary, CHoTT and the closely related
Agda-flat, while building directly on a separate
tradition than intensional logic, do incorporate in-
tensional logic, together with additional features.
Furthermore, these extra features have various
uses for the natural language semanticist, rather
than being peculiarities inflicted on them by the
Agda-flat system. That said, since our intention
is to make a beeline for formalizing the Montague
Test sentences, these modeling advantages will not
be pursued below, with the exception of common
nouns-as-types.

2.3 The System CHoTT

We now turn to delineating the system CHoTT,
with a focus on the similarities and differences
with IL.

Officially, CHoTT is the fragment of Shulman
(2018) consisting of the usual notions of homo-
topy type theory, together with the comonadic type
operator 5, which we think of as an intension
type operator performing the role of Montague’s
xs,´y. In less condensed terms, we have the fol-
lowing:

In the tradition of Pfenning and Davies (2001)
and Shulman (2018), CHoTT has two variable
judgements,

u : t5u A
and

x : A

We will say (at variance with prior terminology)
that “u is an intensional variable of type A,” when
u : t5u A and that “x is an extensional variable of
type A,” when x : A.

Remark 1 Intuitively, having an assumption u :
t5u A of an intensional variable of type A is akin
to having an assumption x : 5A of an extensional
variable of the type of intensions of terms of type
A. Indeed, such assumptions will turn out to be in-
terchangeable.

The hypothetical judgements of CHoTT have
the form

∆ | Γ $ t : B

and
∆ | Γ $ t ” u : B

where ∆ represents a list of intensional typed vari-
ables, and Γ a list of extensional typed variables.
This ∆ | Γ is called the context, and we will have,
as usual, that a type appearing in the context may
depend only on typed variables to its left. So types
in Γ can depend on variables in ∆, but not vice
versa.

Due to the two variable judgements, there is a
duplication of the rules for context extension and
variables, with variants for extensional and inten-
sional variables. These are given in Table 2. In
view of Remark 1, the rule Var.i is understood as
the principle that an assumption of an intension of
a term of type A yields a term of type A. This
rule is, naturally, implicated in the derivation of
the Montague extension operator, below.

We import the usual homotopy-type-theoretical
notions (Univalent Foundations Program, 2013),
including

ś
- and

ř
-types (analogs of the quan-

tifiers @ and D), type universes and universe
polymorphism, “-types, higher inductive types
(HITs), and univalence. However, as a simplifying
assumption, the typing rules are assumed to ma-
nipulate extensional variables only. For instance,
the formation rule for

ś
is

∆ | Γ $ A : U ∆ | Γ, x : A $ B : U

∆ | Γ $ ś
x:AB : U

42

∆ | ¨ $ B : U 5-Form. (Montague’s xs,´y)
∆ | Γ $ 5B : U

∆ | ¨ $ t : B 5-Intro. (Montague’s pp´q)
∆ | Γ $ t5 : 5B

∆ | Γ, x : 5A $ B : U ∆ | Γ $ s : 5A ∆, u : t5u A | Γ $ t : Bru5{xs 5-Elim.
∆ | Γ $ plet u5 :“ s in tq : Brs{xs

∆ | Γ, x : 5A $ B : U ∆ | ¨ $ s : A ∆, u : t5u A | Γ $ t : Bru5{xs 5-β-Conversion
∆ | Γ $ let u5 :“ s5 in t ” trs{us : Brs5{xs

Table 3: The Rules for 5

∆ | ¨ $ B : U
Weakening

∆ | Γ, x : 5B $ B : U ∆ | Γ $ t : 5B Var.i
∆, u : t5u B | Γ $ u : B 5-Elim.

∆ | Γ $ plet u5 :“ t in uq ”: t5 : B

Figure 1: Derivation of 5-Elim.-Simp. (Montague’s qp´q)

in which x : A is required to be extensional.

Finally, we have a comonad 5 corresponding to
Montague’s xs,´y, the rules for which appear as
Table 3.

Note that the 5-Form. and 5-Intro. (intension
operator) rules only apply “in an intensional con-
text”, that is, when no extensional variables are
present in the context.1 Thus, in a well-typed term,
any intensional operator (5p´q or p´q5) that ap-
pears must have been adduced during a phase of
the derivation with an intensional context.2 Since
variables within the scope of an intensional oper-
ator must receive de re interpretation (Zwanziger,
2017), and only intensional variables occur within
the scope of an intensional operator, intensional
variables can be motivated as a technical device
for keeping track of which locations within a term
receive de re interpretation.

The 5-Elim. rule provides a way of substituting
a term of type 5A for an intensional variable of
type A via an explicit let-notation. This principle
is in keeping with Remark 1. Furthermore, it gives
a benign way of “substituting into an intensional

1While IL does not place any similar restriction on the in-
tension operator p p´q, Montague does stipulate a constant-
domain Kripke semantics for IL. The analogous Kripke-
Montague semantics for CHoTT need not stipulate constant
domains. But a type 5A of intensions will, naturally, have a
constant domain interpretation regardless. Remark 1 relates
extensional variables of type 5A with intensional variables of
type A.

2In the current terminology, then, an intensional context is
not, as traditionally, defined by the presence of an intensional
operator, but rather a more primitive notion that is prerequi-
site for the presence of an intensional operator.

context”. To illustrate, such a substitution

let u5 :“ s in tpu5q5 ,

in which s receives de re interpretation, does not
in general 5-β-reduce to the de dicto form

tpsq5 ,

and thus avoids the usual pitfall of substitution into
intensional contexts. As a corollary, β-conversion
(for function types) clearly gives

pλx.let u5 :“ x in tpu5q5qpsq ”
let u5 :“ s in tpu5q5 ,

not

pλx.let u5 :“ x in tpu5q5qpsq ” tpsq5 ,

explaining why β-conversion is benign in
CHoTT.

Though 5-Elim. is subtle, the reader may take
heart that we can use it to derive an ‘extension’ op-
erator corresponding to Montague’s qp´q, which,
again following Shulman (2018), we call p´q5.
That is, the rule

∆ | Γ $ t : 5B 5-Elim.-Simple
∆ | Γ $ t5 : B

is derivable (Figure 1). As foreshadowed above,
this derivation also makes crucial use of the rule
Var.i.

Furthermore, we have the conversion pt5q5 ” t,
familiar from Montague. That is, the principle

∆ | ¨ $ t : B 5-β-Conv.-Simp.
∆ | Γ $ pt5q5 ” t : B

43

is derivable, obtained with

pt5q5 ” let u5 :“ t5 in u pDef’n. of p´q5q
” t p5-β-Conv.q

as calculation.
It is with all the comonadic rules in concert that

Remark 1 is ultimately justified. The reader may
confirm, for instance, that the principles

u : t5u A | ¨ $ t : B

¨ | x : 5A $ let u5 :“ x in t : let u5 :“ x in B

and

¨ | x : 5A $ t : B

u : t5u A | ¨ $ tru5{xs : Bru5{xs
are derivable.

3 Natural Language Semantics in
CHoTT

We now set about rendering the Montague Test
sentences in CHoTT.

To illustrate the issues involved, let’s examine
what will be the translations of the sentence, “John
believes that a fish walks.” This sentence is tradi-
tionally held to have two construals, a de dicto and
a de re. These construals are to be represented by

believepj, pDpx : fishq.walkpipxqqq5q
and

Dpx : fishq.let u5 :“ ipxq in

believepj, walkpu5q5q ,

respectively. These formulas exhibit several less
familiar features which bear discussion, including
defined (non-primitive) notation for logic inside
HoTT (D), common nouns-as-types (x : fish) and
associated type coercions (i), and the handling of
de re with (let-substitutions for) intensional vari-
ables.

In Subsection 3.1, we explicate any prerequisite
defined notation and associated theory. In Sub-
section 3.2, we give the CHoTT renderings of the
Montague Test sentences.

3.1 Defined Notations
We now develop several notions for eventual use
in Subsection 3.2. Unless otherwise specified, the
definitions of the present subsection are adapted
from Chapter 3 of the HoTT Book (Univalent
Foundations Program, 2013).

3.1.1 Predicate Logic
Central to the approach of the current section is the
use of the type Prop of “propositions” in lieu of
Montague’s type t of “truth values”. Within HoTT,
propositions are identified with those types that
have at most one term (up to the equality “). In-
tuitively, such types encode no more (extensional)
information than whether they have a term (“are
inhabited”) or not. In such case, truth is identified
with inhabitation. Formally speaking, we have the
following definitions:

Definition 2 For any type A : U , let
isProppAq :” ś

x,y:A x “ y.

When isProppAq is inhabited, we say that A is a
proposition, and when such A is inhabited, we say
A is true.

Definition 3 Prop :” ř
A:U isProppAq

Whereas a sequent of form ∆ | Γ, x : A $
B : U is thought of as a type depending on A,
a sequent of form ∆ | Γ, x : A $ P : Prop
may be thought of as a predicate on A, rather than
a “proposition depending on A”. This notion of
predicate gives rise to a notion of predicate logic
inside type theory with the following constructs:

Definition 4

J :” 1

K :” 0

P ^Q :” P ˆQ
P _Q :” ‖P `Q‖
P ñ Q :” P Ñ Q

 P :” P ñ K
@px : AqP pxq :”

ź

x:A

P pxq

Dpx : AqP pxq :” ‖
ÿ

x:A

P pxq‖ ,

where ∆ | Γ, x : A $ P,Q : Prop.

Here, ‖´‖ denotes “propositional truncation”, as
defined in Chapter 3 of the HoTT Book (Univalent
Foundations Program, 2013), which quotients any
type to a proposition.

To the logic of the HoTT Book, we do add one
definition:

Definition 5 Let ∆, u : t5u A | ¨ $ P : Prop.
Then 2P :” ‖5P‖.
This pregnant and perhaps surprising definition
can be understood in terms of the type-theoretic

44

E : U

j, b : 5E
walk,man, talk, fish, woman, unicorn, park : 5E Ñ Prop

believe : 5Prop Ñ 5E Ñ Prop

seek, catch, eat, find, love, lose : 5p5p5E Ñ Propq Ñ Propq Ñ 5E Ñ Prop

slowly, try : 5p5E Ñ Propq Ñ 5E Ñ Prop

in : 5p5p5E Ñ Propq Ñ Propq Ñ 5p5E Ñ Propq Ñ
5E Ñ Prop

Figure 2: Lexicon for the Montague Test

tendency to conflate truth with inhabitation. In
Kripke-Montague semantics, intensions for (the
interpretation of) a typeA only exist when (the do-
main interpreting) A at each world is non-empty.
So 5A at a world is non-empty (i.e. true) when A
is nonempty (i.e. true) at every world.3

3.1.2 Subtypes and Coercions
We will have reason to view common nouns as
types (for the purposes of type-bounded quantifi-
cation). Yet predicates like “talks” are apt to apply
to women, men, donkeys (perhaps), etc. Conse-
quently, “talks” is better interpreted as a predicate
on a type of entities subsuming women, men, and
donkeys. To accommodate both impulses, we re-
quire a notion of subtype and type coercion, which
will allow us to write logical forms like, e.g., @px :
manq.talkpipxqq for “Every man talks.” This mo-
tivates our use of the subtypes of HoTT, defined as
follows:

Definition 6 Let ∆ | Γ, x : A $ P : Prop. Then
tx : A | P pxqu :” ř

x:A P pxq. Furthermore let
i :” π1 :

ř
x:A P pxq Ñ A.

This tx : A | P pxqu is said to be the subtype
of A satisfying property P , and i the inclusion or
coercion of tx : A | P pxqu into A.

For readability, we will furthermore coin the
following abuse of notation:

Convention 7 The type tx : A | P pxqu, where
∆ | Γ, x : A $ P : Prop, may simply be denoted
by P , where confusion is unlikely.

3It would be more satisfying to have simply 2P :” 5P ,
but CHoTT is apparently too weak to prove that 5P is a
proposition, as desired of 2P . This gives a hint that CHoTT,
despite its advantages, may not be the last word in comonadic
type theory.

The formula @px : manq.talkpipxqq is now un-
derstood as using Convention 7, as well as a coer-
cion.

3.2 The Montague Test Sentences

With the benefit of the foregoing, we now render
the Montague Test sentences in CHoTT. We will
treat exactly the sentence suite formulated by Mor-
rill and Valentı́n (2016) in introducing the Mon-
tague Test.

We assume a ground type E, together with
a number of constants that serve as the transla-
tions of natural language terms, detailed in Fig-
ure 2. These are simply taken from Dowty et al.
(1981), Chapter 7, using the correspondences sug-
gested by Table 1, plus a single important stipu-
lation: wherever the type e appears for Dowty et
al., 5E (rather than E) appears for us. This un-
fortunate technical device is necessitated by our
approach to de re readings, which makes use of
let-substitution. One can substitute terms of type
5E using let, but not E.4

The CHoTT forms for the Montague Test sen-
tences are given in Table 4, below. Any refer-
ence numbers come from Chapter 7 of Dowty et
al. (1981).

Overall, CHoTT formulas of Table 4 closely re-
flect those given by Montague (1973). To illus-
trate the similarities and differences, we return, at
last, to the translations of “John believes that a fish
walks.” The de dicto reading is translated as

believepj, pDpx : fishq.walkpipxqqq5q .

4One way around this problem would be to use adjoint
type theory (Benton and Wadler, 1996; Licata and Shulman,
2016), in which some ground types already have “constant
domain”, in lieu of comonadic type theory.

45

Ref. No. Sentence Translation(s)
7 John walks. walkpjq
16 Every man talks. @px : manq.talkpipxqq
19 The fish walks. Dpx : fishq.walkpipxqq ^ @py : fishq.‖y “ x‖
32 Every man walks or talks. @px : manq.walkpipxqq _ talkpipxqq
34 Every man walks or every man talks. p@px : manq.walkpipxqqq _ p@px : manq.talkpipxqqq
39 A woman walks and she talks. Dpx : womanq.walkpipxqq ^ talkpipxqq
43 John believes that a fish walks. believepj, pDpx : fishq.walkpipxqqq5q
45 Dpx : fishq.let u5 :“ ipxq in believepj, walkpu5q5q
48 Every man believes that a fish walks. Dpx : fishq.let u5 :“ i1pxq in

@py : manq.believepi2pyq, walkpu5q5q
49 @py : manq.Dpx : fishq.let u5 :“ i1pxq in

believepi2pyq, walkpu5q5q
n/a @py : manq.believepi2pyq, pDpx : fishq.walkpi1pxqqq5q
57 Every fish such that it walks talks. @px : fish^ walkq.talkpipxqq
60 John seeks a unicorn. seekpj, pλpP : 5p5E Ñ Propqq.Dpx : unicornq.P5pipxqqq5q
62 Dpx : unicornq.let u5 :“ ipxq in

seekpj, pλpP : 5p5E Ñ Propqq.P5pu5qq5q
73 John is Bill. ‖j “ b‖
76 John is a man. manpjq
83 Necessarily, John walks. 2pwalkpjqq
86 John walks slowly. slowlypwalk5qpjq
91 John tries to walk. trypj, walk5q
94 John tries to catch a fish and eat it. trypj, pλpy : 5Eq.let u5 :“ y in Dpx : fishq.

catch1ppλpP : 5p5E Ñ Propqq.P5pu5qq5qpipxqq^
eat1ppλpP : 5p5E Ñ Propqq.P5pu5qq5qpipxqqq5q

98 John finds a unicorn. Dpx : unicornq.let u5 :“ ipxq in
findppλpP : 5p5E Ñ Propqq.P5pu5qq5qpjq

105 Every man such that he loves a woman Dpy : womanq.let u5 :“ i2pyq in
loses her. @px : man^ loveppλpP : 5p5E Ñ Propqq.P5pu5qq5qq.

loseppλpP : 5p5E Ñ Propqq.P5pu5qq5qpi1pxqq
110 John walks in a park. Dpx : parkq.let u5 :“ ipxq in

inppλpP : 5p5E Ñ Propqq.P5pu5qq5qpwalk5qpjq
116 Every man doesn’t walk. @px : manq.walkpipxqq
118 @px : manq. walkpipxqq

Table 4: Montague Test Sentences

Aside from being pleasingly compact, in keeping
with dependent type theory’s type-bounded quan-
tification, this formula is hardly changed from
Montague (1973).

Things get more interesting for the de re read-
ing, which is represented by

Dpx : fishq.let u5 :“ ipxq in

believepj, walkpu5q5q ,

making use of the let-substitution not familiar
from IL. To explicate, it is perhaps helpful to think

of walkpu5q as walkpyqru5{ys. That is, walkpyq
was altered to have an intensional variable, in
keeping with Remark 1. As discussed in Section
2.3, the intensional variable u signals de re inter-
pretation, and makes it possible to adduce an in-
tension operator, forming walkpu5q5. We later de-
sire a(n extensional) quantification, so we switch
back to extensional variables by substituting into
the intensional context, forming

let u5 :“ ipxq in believepj, walkpu5q5q ,

and then quantify.

46

In sum, this example, as well as the rest of
the Montague Test sentences, are well-handled in
CHoTT, and manifestly similarly to in IL.

4 Agda-flat

We now discuss Agda-flat, and the implementa-
tion therein of the Montague Test sentences, as
rendered in CHoTT in the previous section.

4.1 About Agda-flat

Agda-flat (Vezzosi, 2019) is a proof assistant due
to Andrea Vezzosi (c. 2017-2019). It is a branch
of the Agda proof assistant (Norell, 2007) which
grew out of Vezzosi’s work on modal dependent
type theory (Nuyts et al., 2017). Agda is similar
to other dependently-typed proof assistants, like
Coq. Agda-flat adds on a modal operator, 5.

Agda-flat was intended as a proof assistant for
mathematical theorems. Early mathematical uses
include Licata et al. (2018) and Wellen (2018).
The original version of Agda-flat is largely in-
compatible with linguistic applications, due to its
relatively strong proof theory. Amongst other
things, one can prove that 5 is idempotent (that
is, 55A » 5A), which does not hold in the famil-
iar model of Montague (1973). Following a 2019
request from the author, Vezzosi implemented a
new mode, called (“no-flat-split”), with a weaker
proof theory. It is this “no-flat-split” mode which
corresponds closely to CHoTT, and thus provides
a setting for (optionally hyperintensional) Mon-
tague semantics.

4.2 Agda-flat for Computational Semantics

4.2.1 Installation and Configuration
Agda-flat is available for download at: https:
//github.com/agda/agda/tree/flat.
Unfortunately, the process of installing Agda and
turning on Agda-flat is system-dependent and
potentially complex. The Agda Wiki (Agda Col-
laboration) can provide guidance, and one may
wish to avail oneself of a friendly Agda user,
including online.

As mentioned in Section 4.1, the “no-flat-split”
option is necessary for computational semantics
applications. To engage the “no-flat-split” option,
place the code

{-# OPTIONS --no-flat-split #-}

at the beginning of a module.

4.2.2 Use

Agda-flat and CHoTT are similar, with both ad-
mitting a 5-operator, and in particular having a way
of restricting the 5-Form. and 5-Intro operations.
Whereas in CHoTT, this is achieved by restrict-
ing these operations to an intensional context, in
Agda, the variable contexts are not made explicit,
and instead heavy use is made of

ś
-types. Of ne-

cessity, then, the
ś

-types of Agda-flat are permit-
ted to be of the form

ź

u:t5u A

P , in which an inten-

sional variable is bound. In “Agda notation”, how-
ever,

ź

u:t5u A

P is written (u :{5} A) Ñ P.

Agda-flat allows a similar manipulation of in-
tensional variables by the rules for inductive types.
Furthermore, 5 is actually defined as an inductive
type in Agda-flat, and uses pattern matching in-
stead of an Elim. rule, as for any inductive types
in Agda.

That is, 5 is defined as an inductive type by, in
pseudo-code,

data 5 (A :{5} Type) : Type where
int : (a :{5} A) Ñ 5A .

Whenever the 5-Elim. rule would be used in
CHoTT, we instead use pattern matching. For in-
stance, we define Montague’s extension operator
thus:

ext: {A :{5} Type} Ñ (5A Ñ A)

ext (int u) = u .

Once the 5 operator is defined, and the above
stylistic differences between CHoTT and Agda-
flat accounted for, the rendering of CHoTT terms
in Agda-flat proceeds as expected.

4.2.3 The Montague Test

The logical forms given in Table 4 are ren-
dered in type-checkable code, available on the
GitHub of the author at https://github.
com/zwanzigerc/Montague-Test. This
repository makes use of the conventions and code-
base of the HoTT-Agda library (Brunerie et al.).
In addition to the “official” renderings, there are
also alternative ones which use the universe Type
in lieu of the more complex Prop.

Agda-flat thus satisfies the Montague Test, and
is seen to accommodate computational depen-
dently typed Montague semantics.

47

5 Future Work

With the basic setup of intensional computational
semantics in Agda-flat achieved, a key goal be-
comes automation, both of the translation from
natural language into Agda-flat, and of proof
search. Since Agda is so similar to Coq, it is
possible that Agda-flat could be integrated with
the translation from Grammatical Framework used
in FraCoq (Bernardy and Chatzikyriakidis, 2017).
As for proof search, Agda has some limited au-
tomation options, such as the command “auto”,
which should be explored. Ultimately the per-
formance of Agda-flat at natural language infer-
ence should be compared to other systems that sat-
isfy the Montague Test, such as CatLog3 (Morrill,
2017).

In summary, CHoTT and the closely related
Agda-flat, while building directly on a separate
tradition than intensional logic, do incorporate in-
tensional logic, together with additional features.
Furthermore, these extra features have various
uses for the natural language semanticist, rather
than being peculiarities inflicted on them by the
Agda-flat system. That said, since our intention is
to m

Agda-flat (without the assumption of inten-
sional “-induction) is furthermore an appropriate
system to implement hyperintensional semantics
in the style of Zwanziger (2018). A full discus-
sion of this is deferred to later work.

Acknowledgments

This paper was made possible by Andrea Vez-
zosi’s programming of Agda-flat. In particular,
many thanks are due for the new option, “no-flat-
split”, which makes the system general enough for
the purposes of the present paper. Felix Wellen
and Zesen Qian provided valuable help with Agda.
And thank you to Steve Awodey for suggesting
and supporting my focus on Agda-flat.

The logical forms given for purposes of the
Montague Test (which in particular do not use
common noun types to model verb selectional re-
strictions) were influenced by personal communi-
cation with Carl Pollard.

Any errors in the present work are my own.

References
The Agda Collaboration. The Agda wiki.
https://wiki.portal.chalmers.se/

agda/pmwiki.php. Accessed: 2019-04-22.

Steve Awodey, Ulrik Buchholtz, and Colin Zwanziger.
2015. Comonadic categorical semantics of mon-
tague’s intensional logic. In Slides from Dynamics
Semantics Workshop: Modern Type Theoretic and
Category Theoretic Approaches, Ohio State Univer-
sity, Columbus, Ohio.

Nick Benton and Philip Wadler. 1996. Linear logic,
monads and the lambda calculus. In Proceedings
11th Annual IEEE Symposium on Logic in Computer
Science, pages 420–431. IEEE.

Jean-Philippe Bernardy and Stergios Chatzikyriakidis.
2017. A type-theoretical system for the FraCaS test
suite: Grammatical framework meets Coq. In Long
Papers of the 12th International Conference on on
Computational Semantics (IWCS).

Gavin Bierman and Valeria de Paiva. 2000. On an in-
tuitionistic modal logic. Studia Logica, 65(3):383–
416.

Guillaume Brunerie, Kuen-Bang Hou (Favonia), Evan
Cavallo, Tim Baumann, Eric Finster, Jesper Cockx,
Christian Sattler, Chris Jeris, Michael Shulman,
et al. Homotopy type theory in Agda. https://
github.com/HoTT/HoTT-Agda. Accessed:
2019-04-22.

Stergios Chatzikyriakidis and Zhaohui Luo. 2014. Nat-
ural language inference in Coq. Journal of Logic,
Language and Information, 23(4):441–480.

Stergios Chatzikyriakidis and Zhaohui Luo. 2018. For-
mal Semantics in Modern Type Theories. Wiley and
ISTE Science Publishing Ltd.

David R. Dowty, Robert Wall, and Stanley Pe-
ters. 1981. Introduction to Montague Semantics.
Springer Science and Business Media.

Daniel R. Licata, Ian Orton, Andrew M. Pitts, and
Bas Spitters. 2018. Internal universes in mod-
els of homotopy type theory. arXiv preprint
arXiv:1801.07664.

Daniel R. Licata and Michael Shulman. 2016. Ad-
joint logic with a 2-category of modes. In Interna-
tional Symposium on Logical Foundations of Com-
puter Science, pages 219–235. Springer.

Zhaohui Luo. 2012. Common nouns as types. In Pro-
ceedings of the International Conference on Logical
Aspects of Computational Linguistics, pages 173–
185. Springer.

Richard Montague. 1973. The proper treatment of
quantification in ordinary English. In K. Hintikka,
J. Moravcsik, and Suppes P., editors, Approaches to
Natural Language, pages 221–242. D. Reidel, Dor-
drecht.

48

Glyn Morrill. 2017. Parsing logical grammar: Cat-
Log3. In Proceedings of the Workshop on Logic
and Algorithms in Computational Linguistics 2017,
pages 107–131, Stockholm. Stockholm University.

Glyn Morrill and José Oriol Valentı́n. 2016. Computa-
tional coverage of type logical grammar: The Mon-
tague Test. In Empirical Issues in Syntax and Se-
mantics 11, pages 141–170.

Ulf Norell. 2007. Towards a practical programming
language based on dependent type theory. Ph.D. the-
sis, Chalmers University of Technology.

Andreas Nuyts, Andrea Vezzosi, and Dominique De-
vriese. 2017. Parametric quantifiers for dependent
type theory. In Proceedings of the ACM on Pro-
gramming Languages, ICFP. ACM.

Frank Pfenning and Rowan Davies. 2001. A judg-
mental reconstruction of modal logic. Mathematical
Structures in Computer Science, 11(4):511–540.

Aarne Ranta. 1994. Type-Theoretical Grammar. Ox-
ford University Press.

Michael Shulman. 2018. Brouwer’s fixed-point theo-
rem in real-cohesive homotopy type theory. Mathe-
matical Structures in Computer Science, 28(6):856–
941.

Göran Sundholm. 1989. Constructive generalized
quantifiers. Synthese, 79(1):1–12.

The Univalent Foundations Program. 2013. Homotopy
Type Theory: Univalent Foundations of Mathemat-
ics. https://homotopytypetheory.org/
book, Institute for Advanced Study, Princeton.

Andrea Vezzosi. 2019. Agda-flat. https://
github.com/agda/agda/tree/flat. Ac-
cessed: 2019-04-22.

Felix Wellen. 2018. Flat. https://github.
com/felixwellen/DCHoTT-Agda/blob/
master/Flat.agda. Code library. Accessed:
2019-04-22.

Colin Zwanziger. 2017. Montague’s intensional logic
as comonadic type theory. M.S. thesis, Carnegie
Mellon University, Pittsburgh.

Colin Zwanziger. 2018. Propositional attitude
operators in homotopy type theory: Extended
abstract. https://colinzwanziger.
com/wp-content/uploads/2019/06/
nlcs-2018-extended-abstract.pdf. In
Fifth Workshop on Natural Language and Computer
Science, Oxford.

Colin Zwanziger. 2019. Natural model semantics for
comonadic and adjoint modal type theory. In Pro-
ceedings of the Second Applied Category Theory
Conference, Compositonality.

49

Quantifier-free Least Fixed Point Functions for Phonology

Jane Chandlee
Haverford College

Haverford, PA, USA
jchandlee@haverford.edu

Adam Jardine
Rutgers University

New Brunswick, NJ, USA
adam.jardine@rutgers.edu

Abstract

In this paper we define quantifier-free least
fixed point functions (QFLFP) and argue that
they are an appropriate and valuable ap-
proach to modeling phonological processes
(construed as input-output maps). These func-
tions, characterized in terms of first order logic
interpretations over graphs, provide a close fit
to the observed typology, capturing both local
and long-distance phenomena, but are also re-
strictive in desirable ways. Namely, QFLFP
logical functions approximate the computation
of deterministic finite-state transducers, which
have been argued to form a restrictive hypoth-
esis for phonological processes.

1 Introduction

A lot of recent work in computational phonol-
ogy has taken the approach of representing phono-
logical processes as maps or functions from
input strings/underlying representations to out-
put strings/surface representations (Chandlee and
Heinz, 2012; Heinz and Lai, 2013; Chandlee,
2014; Luo, 2017; Payne, 2017). The question of
interest underlying such work is how computa-
tionally powerful or expressive the functions in-
volved in phonology need to be. In particular,
these authors have argued that various proper sub-
sets of the regular relations (i.e., subregular func-
tions) are sufficient to model the attested range of
phonological phenomena. Special attention has
been given to one such subclass, the subsequen-
tial functions, which are restrictive in being deter-
ministic but still sufficiently expressive to capture
the needed range of segmental phonological pro-
cesses, both local and long-distance.

While this work has largely proceeded using
the finite-state formalism, a related line of work
has aimed to address similar questions using logi-
cal characterizations (Jardine, 2016; Chandlee and
Jardine, 2019), one advantage of logic being that it

offers a unified approach to modeling both linear
(i.e., string-based) and non-linear (i.e., autoseg-
mental representations, metrical structure) phe-
nomena. However, a restrictive logic that is still
sufficiently expressive to cover a wide range of
phonological phenomena has yet to be established.
Recent work has studied the relationships between
classes of automata and logical transductions (En-
gelfriet and Hoogeboom, 2001; Filiot, 2015; Fil-
iot and Reynier, 2016), but no work has studied a
logical characterization of the subsequential func-
tions.

This paper thus aims to fill this gap by propos-
ing a type of logic that approximates the sub-
sequential class of functions in an important
way. This logic is quantifier-free least fixed point
(QFLFP), which is first order logic without quan-
tifiers but with a (monadic) least fixed point oper-
ator. We will define this type of logic and demon-
strate how it can be used to model a range of
phonological processes in a recursive and output-
oriented way. We will also show that the functions
can be defined with this type of logic are in fact a
proper subset of the subsequential functions. This
is interesting both because it shows how logical
transductions can be related to subsequential func-
tions, and also because it closely fits the attested
typology of phonological processes.

The paper is organized as follows. In §2 we pro-
vide the needed preliminaries, and in §3 we give
an overview of the hierarchy of function classes
in the finite-state formalism. In §4 we provide
relevant background on logical characterizations
of functions, quantifier-free logic, and least fixed
point operators, before defining QFLFP functions.
In §5 we demonstrate the application of QFLFP
functions to phonology by giving example anal-
yses of phonological processes. In §6 we estab-
lish certain properties of QFLFP, and in §7 we dis-
cuss the implications of our findings and highlight

50

a few areas for future work. §8 concludes.

2 Preliminaries

Given a finite alphabet Σ, with Σ∗ we designate
the set of all possible finite strings of symbols from
Σ and with Σ≤n we designate the set of all possible
finite strings of length ≤ n. The length of a string
w is ∣w∣. The unique empty string is λ, so ∣λ∣ = 0.

Let P(X) denote the powerset of a set X .
For a set of strings

L,pref(L) = {u ∣∃v such that uv ∈
L},suff(L) = {v ∣∃u such that uv ∈
L}, and for a string w,pref(w) = {u ∣w =
uv for some string v},

prefn(w) = w if ∣w∣ ≤ n; otherwise
w1, where w = w1w2, ∣w1∣ = n,

suffn(w) = w if ∣w∣ ≤ n; otherwise
w2, where w = w1w2, ∣w2∣ = n.

For a stringw = σ1...σi...σn, letw(i) denote σi.
For a set of strings L ⊆ Σ∗ and two strings

w, v ∈ Σ∗, we write w ≡L v iff ∀z ∈ Σ∗, wz ∈
L ↔ vz ∈ L. This is an equivalence relation on
Σ∗ inducing a partition PL on Σ∗. A set L is
regular if and only if PL is finite. Note that if
w, v ∈ A for some A ∈ PL, then for any z ∈ Σ∗
then wz ∈ A′ ↔ vz ∈ A′ for some other A′ ∈ P .

We can define a similar notion for functions on
Σ∗. For a set of strings L, the longest common
prefix is the longest shared prefix of all the strings
in L. Formally,

lcp(L) = u ∈ ⋂w∈L pref(w), ∣u∣ ≥ ∣u′∣
for all u′ ∈ ⋂w∈L pref(w).

For a function f ∶ Σ∗ → Γ∗, and a string w ∈ Σ∗,
the tails of w with respect to f are defined as fol-
lows:

tailsf(w) = {(z, z′) ∣ f(wz) = uz′,
u = lcp(f(wΣ∗))}.

Two strings w, v ∈ Σ∗ are tail-equivalent, writ-
ten w ≡f v iff tailsf(w) = tailsf(v). Note
that ≡f is an equivalence relation on Σ∗; let Pf
be the partition it induces on Σ∗. A function f is
subsequential (SUBSEQ) iff Pf is finite (Oncina
et al., 1993).

We will make use of the following operation
that takes the pairwise intersection of the blocks
of two partitions P1 and P2 on some set X .

P1 ⊗ P2
def= {A ∩B ≠ ∅ ∣ A ∈ P1,B ∈ P2}

It is elementary to show that P1 ⊗ P2 is also a
partition on X , and that the operation is associa-
tive and commutative.

3 Transducers and function classes

It will be helpful to first define some impor-
tant function classes and illustrate them with au-
tomata. The SUBSEQ class is exactly described
by subsequetial finite-state transducers (SFSTs),
or determinstic finite state machines that output
a string for each input symbol and upon ending
on a state (Schützenberger, 1977; Mohri, 1997).
Note that this makes SUBSEQ a strict sublcass
of the regular (or rational) functions, or ex-
actly those describable with an FST (determinis-
tic or otherwise). Formally, a SFST is a tuple⟨Q, q0,Qf ,Σ,Γ, δ, ω⟩ where Q is the set of states,
q0 ∈ Q is the single initial state, Qf ⊆ Q is the set
of final states, Σ and Γ are the input and output
alphabets, respectively, δ ∶ (Q × Σ) → (Γ∗ × Q)
is a transition function, and ω ∶ Qf → Γ∗ is the
output function. Note that because δ takes pairs
in (Q × Σ) (that is, it does not have transitions
on an input λ), and because it is a function, the
machine is deterministic. We define the transitive
closure δ∗ of δ recursively in the usual way; i.e.
δ∗(q, λ) = (λ, q) and if δ∗(q,w) = (v1, q1) and
δ(q1, σ) = (v2, q2) then δ∗(q,wσ) = (v1v2, q2).

A transducer T = ⟨Q, q0,Qf ,Σ,Γ, δ, ω⟩ de-
scribes a function fT ∶ Σ∗ → Γ∗ defined as
fT (w) = uv where δ∗(q0,w) = (u, qf) for some
qf ∈ Qf , and v = ω(qf). As an example, the
SFST in Fig 1 models the function described by
the rewrite rule in (1) (‘change an a that follows
a b to b’). (In all SFSTs in this paper, the initial
state is indicated with a small unlabeled incom-
ing arrow, all states are assumed to be final, and
the output function is represented in the state label
with the string to the right of the colon.)

(1) a → b / b (simultaneous)

As stated above, SUBSEQ is exactly the class
of functions with a finite set of tail-equivalence
classes. In the minimal SFST for a subsequen-
tial function, each state corresponds to a tail-
equivalence class.

Restrictions on the nature of these tail-
equivalence classes offer subclasses of
SUBSEQ that have been argued to be rele-
vant to phonology. One such class is the input
strictly local (ISL) functions, a subsequential

51

0 ∶ λ 1 ∶ λ
a ∶ a b ∶ b

b ∶ b
a ∶ b

Figure 1: A SFST implementing the rule a → b / b ,
applied simultaneously, for Σ = Γ = {a, b}. This func-
tion is ISL2.

class defined by Chandlee (2014), which Chan-
dlee and Heinz (2018) argue can model any local
phonological rule that applies simultaneously.
Formally, the ISL class is defined as below.

Definition 1 (ISL; Chandlee 2014) A function f
is ISLk iff for all strings w, v, suffk−1(w) =
suffk−1(v) implies tailsf(w) = tailsf(v).

Intuitively, the ISL class is exactly those func-
tions for which, for any symbol in the string, its
output is entirely decided by the preceding k − 1
symbols in the input. This means that any ISLk
function can be described by a SFST whose states
correspond to the k − 1 suffixes of Σ∗. Fig. 1 is
exactly one such SFST: its states represent the pre-
vious 1 symbol in the input—state 0 represents a
preceding a in the input, and state 1 a preceding b.
The function is thus ISL2.

Another notion of local string functions is those
for which the output of a string is based on the
preceding k − 1 symbols in the output; this is the
output strictly local (OSL) class. A definition for
this class is given below.

Definition 2 (OSL; Chandlee 2014)
A function f is OSLk iff for all
strings w, v, suffk−1(f(w)) =
suffk−1(f(v)) implies tailsf(w) =
tailsf(v).

(Note: this is an incomplete definition, but for
the purposes of this paper it is sufficient. For the
complete definition see Chandlee et al. 2015.) The
definition for OSL is parallel to that for ISL, ex-
cept it refers to the output of the function. An ex-
ample is given in Fig. 2 for the rule in (2), applied
iteratively.

(2) a → b / b (iterative)

By “applied iteratively,” we mean that an a be-
comes a b after a b which may have been present
in the input (and so remained a b in the output) or

0 ∶ λ 1 ∶ λ
a ∶ a a ∶ b, b ∶ b

b ∶ b

Figure 2: A SFST implementing the rule a → b / b ,
applied iteratively, for Σ = Γ = {a, b}. This function is
OSL2.

may have been an a in the input (and so was it-
self turned into a b in the output). This is OSL2,
because (either way) whether or not an input a is
output as b depends on the immediately preceding
output symbol.

The way in which ISL and OSL correspond
to the difference between simultaneous and iter-
ative application of rules can be seen more clearly
when one compares the output strings for these
two FSTs for the input baabaa. The FST in Fig.
1 outputs bbabba for this input string, such that all
a’s that follow b’s in the input are changed to b.
In contrast, the FST in Fig. 2 outputs bbbbbb, such
that all a’s are changed to b. The structural differ-
ence in the FSTs that is responsible for this differ-
ence is that in Fig. 1 all transitions with the same
input symbol lead to the same state whereas in Fig.
2 all transitions with the same output string lead to
the same state.1

The ISL and OSL functions are strict subclasses
of SUBSEQ. That ISL ⊊ SUBSEQ is witnessed
by Fig. 3. The SFST in this figure represents a
function that changes a to b if it follows a b, where
any number of c’s can intervene. The strings ck

and bck clearly have the same suffix of length k −
1 (for any k), but (contra Definition 1) they have
different tails, as (a, a) is in the tails of ck while(a, b) is in the tails of bck.

That OSL ⊊ SUBSEQ is also witnessed by Fig.
3. The strings f(ck) = ck and f(bck) = bck again
have the same suffix of length k − 1 (for any k),
but (contra Definition 2) they have different tails,
as (a, a) is in the tails of ck while (a, b) is in the
tails of bck.

The ISL and OSL classes are thus restrictive
classes of functions that have been posited as
strong hypotheses for the computational complex-
ity of phonological processes with local triggers
(Chandlee, 2014; Chandlee and Heinz, 2018). Ex-
amples of their connection to phonological pro-

1For more on how FSTs model modes of rule application
see Kaplan and Kay (1994) and Hulden (2009).

52

0 ∶ λ 1 ∶ λ
a ∶ a

c ∶ c

a ∶ b

b ∶ b

c ∶ c
b ∶ b

Figure 3: A SFST changing any a following a b in a
word, regardless of any number of intervening c’s, to a
b. This function is neither ISL or OSL.

cesses are given below. The purpose of this pa-
per is to investigate, through logical transduc-
tions, a class that generalizes the intuitions behind
these classes, and also captures non-ISL and non-
OSL functions, like Fig. 3, that are relevant to
phonology.

4 Logical transductions

We consider finite strings models over the signa-
ture I of strings in Σ with predecessor function p,
delimited by boundaries ⋊ and ⋉, and assume that
for a string of length n (including the boundaries)
the domain of its model is D = {1, ..., n}.

I = {p,⋊,⋉, Pσ∈Σ}
Figure 4 gives a model for a string over the al-

phabet Σ = {a, b} with D = {1,2,3,4,5,6,7}.
For each σ ∈ Σ ∪ {⋊,⋉}, Pσ ⊆ D includes those
members of D that are labeled with σ. For exam-
ple, in the figure Pb = {3,4,6}.

⋊1 a2 b3 b4 a5 b6 ⋉7

Figure 4: Model for the string abbab

The signature also includes a predecessor func-
tion p that gives the immediately proceeding po-
sition for each position—e.g., p(3) = 2, p(2) = 1,
etc.

We define a monadic second order (MSO) logicLI over I in the usual way; that is, LI is a predi-
cate logic whose atomic formulae are of the form
σ(t), where σ(t) is true when the term t is inter-
preted as a member of Pσ. More formally, a term
is either some member x of a countably infinite
set of first-order variables (which range over the
domains of models) or the application p(t) of the
predecessor function to a term t. MSO is then a
logic defined recursively in which σ(t) for some t

and σ ∈ Σ is a well-formed formula (WFF); X(t)
for some term t and some variableX drawn from a
countably infinite set of set variables is a WFF; for
WFFs ϕ and ψ, ¬ϕ and ϕ ∨ ψ are WFFs; and for
WFFs ϕ(x) and ψ(X) with free first-order and
set variables x and X , respectively, (∃x)[ϕ(x)]
and (∃X)[ψ(X)] are WFFs. As shorthand, for
k ≥ 0, pk(x) denotes x when k = 0, p(pk−1(x))
otherwise. The semantics of LI are defined as
usual over string models with the first-order vari-
ables mapped to positions in a string and second-
order variables mapped to sets of positions in the
string. In particular we write S ⊧ ϕ(x)[x ↦ i]
for a string model S that satisfies ϕ(x) when x is
mapped to i ∈D.

For example, b(p(x)) is a WFF in LI , as is
b(x) ∧ b(p(x)). The string in Fig. 4 satisfies
b(p(x)) when x is mapped to positions 4, 5, or 7
(that is, the positions whose predecessor is labeled
b). The string in Fig. 4 satisfies b(x) ∧ b(p(x))
only when x is mapped to 4, as that is the only po-
sition that is both a b and is immediately preceded
by a b.

We can define functions logically through a log-
ical interpretation of an output signature O in the
logic LI of the input signature. Specifically, a
MSO transduction T to the output signature O
over strings in Γ

O = {<′, Pγ∈Γ}
is a finite ordered copy set C = {1, ..., n} and a
series of formulae γc(x) in LI with exactly one
free variable x and for each γ ∈ Γ and c ∈ C. The
copy set allows us to create up to n output copies
of each input element.2 See below for an exam-
ple demonstrating the use of multiple copies of an
input element.

We define the semantics of T following Engel-
friet and Hoogeboom (2001). For an input string
model S over the signature I with domain D, its
output T (S) is a string S ′ over the signature O
with domain D′ and unary relations Pγ∈Γ built
in the following way. For each d ∈ D, there
is a dc ∈ D′ that belongs to Pγ if and only ifS ⊧ γc(x)[x ↦ d] for exactly one γ ∈ Γ and ex-
actly one c ∈ C. If no such γ or c exists, then no
output position is constructed for d. We assume

2We can also consider a closed domain formula ϕdom

which specifies the domain of the function; as long as this
formula is in MSO or lower, this does not change any of the
below results, so we do not discuss it in detail here. For more
see Engelfriet and Hoogeboom (2001); Filiot (2015).

53

that the transduction is order-preserving; that is,
the output order <′ in O is such that for any d ∈ D
and i < j ∈ C, di <′ dj , and for any distinct d, e ∈D
and i, j ∈ C, for the copies di and ej in D′, di <′ ej
if and only if d < e.

Thus, a MSO transduction T thus defines a
function f(T) from strings in ⋊Σ∗⋉ to strings in
Γ∗.

As an example, we logically define the func-
tion for ‘change a b following another b to a c’
rule given in (3), assuming Σ = {a, b} and Γ ={a, b, c}.

(3) b→ c / b

Since this rule makes no mention of a’s, all po-
sitions in the input model that are labeled a can
likewise be labeled a in the output model. The
formula in (4-a) achieves this. As this is a ‘sub-
stitution’ rule that doesn’t extend the length of the
string, only a single copy of each input position
is needed. Therefore we simply mark the output
relations with a prime γ′ instead of a number.

(4) a. a′(x) def= a(x)
b. b′(x) def= b(x) ∧ ¬b(p(x))
c. c′(x) def= b(x) ∧ b(p(x))

Likewise, the formula in (4-b) declares which po-
sitions in the output model are labeled b: namely,
those positions that are labeled b in the input
model but whose predecessors are not also labeled
b (so excluding those b’s that are subject to the rule
in (3)). Lastly, the formula in (4-c) declares which
positions are labeled c in the output model: those
positions that are subject to the rule in (3). The
collective result is the output model shown in Fig-
ure 5.

⋊1 a2 b3 b4 a5 b6 ⋉7↧
a2′ b3′ c4′ a5′ b6′

Figure 5: Transduction of abbab following (4).

The following example demonstrates the use of
a copy set with a size larger than 1. With the fol-
lowing formulas and a copy set C = {1,2} we de-
fine a function that inserts a c after every input b.

(5) a. a1(x) def= a(x)
b. a2(x) def= False

c. b1(x) def= b(x)
d. b2(x) def= False

e. c1(x) def= False

f. c2(x) def= b(x)
The formulas (5-a) and (5-c) create a first copy la-
beled a and b in the output, respectively, for each a
and b in the input. The formula (5-f), then, creates
a second copy labeled c for each b in the input. As
the other formula are set to False, no other copies
are produced in the output. Finally, following the
precedence relation defined above, each 1 copy b
precedes the 2 copy c. Thus, abbab is output as
abcbcabc.

Fig. 6 illustrates the transduction defined by
these formulas with the input string abbab.

⋊1 a2 b3 b4 a5 b6 ⋉7↧
a21 b31 b41 a51 b61

c32 c42 c62

Figure 6: Transduction of abbab into abcbcabc follow-
ing (5)

We fix the precedence relations in the output
due to the following equivalence.

Theorem 1 (Filiot 2015) A function f is regular
iff there is an order-preserving monadic second or-
der transduction T such that f = f(T).

Theorem 1 thus guarantees that any logic and
signature we use that is less than or equal to
monadic second order logic in expressivity will
give us (sub-)regular functions.

4.1 Quantifier-free logic
Note that none of the formulas used in the previous
example included quantifiers. Let quantifier-free
(QF) denote the restriction on LI to formula with
no quantifiers (and thus no set variables).

Chandlee and Lindell (in prep.) relate QF to
the ISL class, showing that any ISL function with
bounded deletion is QF-definable. However, their
definitions do not consider functions with the out-
put order as defined above. We show in §6.2 that,
given this order, QF = ISL exactly.

An example of a phonological rule that cannot
be modeled with this restricted logic is unbounded
iterative spreading of a feature, such as the spread-
ing of nasality from a nasal consonant to a follow-
ing sequence of vowels: nV V V ↦ nṼ Ṽ Ṽ . The

54

formula in (6) would achieve the nasalization of
the first vowel following the input nasal.

(6) Ṽ ′(x) def= n(p(x))
The problem with modeling this process using
only QF formula arises when trying to account for
the nasalization of the second and third vowels. Of
course we can add to (6) n(p2(x)) ∨ n(p3(x)),
which would accommodate the present example.
But then what about a form like /nVVVV/, for
which the nasalization of the final vowel would re-
quire a formula to identify the nasality of the pre-
decessor of its predecessor of its predecessor of its
predecessor (i.e., p4(x))? The issue now should
be clear: for an unbounded pattern such as this
one, the input nasal that triggers the nasalization
of a given vowel may be an unbounded number of
segments away. Without knowing in advance how
large of a bound that is, a formula in terms of the
predecessor function cannot be defined. Instead,
what is needed is a quantifier: nasalize a vowel if
there exists a nasal consonant at a prior position.

The traditional analysis of a feature spreading
process like this one is that after the first nasaliza-
tion of the vowel immediately following the nasal
consonant, the actual trigger of the next nasaliza-
tion is the most ‘recently’ nasalized vowel. But
capturing that intuition requires specifying some-
thing about the labels in the output model, not the
input model, which falls beyond the capabilities
of QF. In that sense the limitation here is not the
need for the quantifier, but the restriction on the
formula to referring to the input model only.

In the next section we will show how to model
such output-oriented processes using QF formula
with the addition of the least fixed point (lfp) op-
erator.

4.2 Least fixed point quantifier-free logic

Least fixed point logic allows us to add inductive
definitions to our logics. The following is based
on Libkin (2004, Ch. 10), but simplified for unary
predicates.

For a set U an operator on U is a function F ∶P(U) → P(U). A set X ⊆ U is a fixed point
if F (X) = X . A set X is the least fixed point
lfp(F) of F iff it is a fixed point of F and for
every other fixed point Y of F , X ⊆ Y . We write
lfp(F) for the least fixed point of F .

An operator F is monotone if X ⊆ Y implies
F (X) ⊆ F (Y). For every monotone operator F ,

lfp(F) = ⋃iXi, where each Xi is from the se-
quence in (7).

(7) X0 = ∅,Xi+1 = F (Xi)
That is, lfp(F) is the set that is converged to by
recursive applications of F . Given models with
finite domains, there is always such a (finite) set
for a monotone operator on the domain.

For a signature S and any modelM in the sig-
nature whose universe is M , we extend our logic
with an additional set predicate A not in S. A for-
mula ϕ(A,x) with a single free variable x and free
set variableA induces an operator Fϕ onM as fol-
lows.

Fϕ(X) = {m ∣M ⊧ ϕ(A,x)[A↦X,x↦m]}
We will work through an example to illustrate,

using the string model in Figure 7. Let ϕ(A,x) be
defined as in (8).

⋊1 a2 b3 a4 a5 a6 c7 a8 ⋉9

Figure 7: Model for the string abaaaca

(8) ϕ(A,x) = a(x) ∧ (b(p(x)) ∨A(p(x)))
First let X0 = ∅. We then have

Fϕ(∅) = {m ∣ D ⊧ ϕ(A,x)[A↦ ∅, x↦m]}.
No positionm ∈D satisfiesA(p(x)) sinceA = ∅,
but position 4 satisfies both a(x) and b(p(x)), and
so Fϕ(∅) = {4}.

Now X = {4}, so Fϕ({4}) = {m ∣ D ⊧
ϕ(A,x)[A ↦ {4}, x ↦ m]}. Now position 5 sat-
isfies the formula (because it is labeled a and its
predecessor is in A), so Fϕ({4}) = {4,5}.

Now with X = {4,5}, Fϕ({4,5}) = {4,5,6},
and then Fϕ({4,5,6}) = {4,5,6}, so {4,5,6} is
lfp(Fϕ), as no new elements are added.

Whether or not Fϕ is monotone (and thus,
whether lfp(Fϕ) can be determined via the se-
quence in (7)) is undecidable for an arbitrary FO
formula ϕ. So the least fixed point extension of
FO is defined with the following restriction on the
set variable A:

(9) A is positive in ϕ; that is, it is under the
scope of an even number of negations.

We then extend the usual definition of QF with
the following syntax:

55

Definition 3 (QFLFP syntax) Any formula in
QF is in QFLFP.

For a formula ϕ(A,y) in QF extended with the
predicate A(y) satisfying (9), [lfp ϕ(A,y)](x)
is a formula in QFLFP.

A formula [lfp ϕ(A,y)](x) is then true when
x is interpreted as an element in the least-fixed
point of the operator induced by ϕ(A,y).

Definition 4 (QFLFP semantics) For any for-
mula in QFLFP that is also in QF, satisfaction
is the same as in QF.

For a formula [lfp ϕ(A,y)](x) in QFLFP,

M ⊧ [lfp ϕ(A,y)](x)[x↦m] iff m ∈ lfp(Fϕ)
In the next section we will demonstrate such

transductions with phonological examples.

5 QFLFP functions in phonology

First we return to the example of unbounded iter-
ative spreading, discussed in the previous section
as a case that can’t be modeled as a QF transduc-
tion. For simplicity we will assume the alphabet
Σ = {a, b} and use the model in Figure 8.

⋊1 b2 a3 a4 a5 ⋉6

Figure 8: Model for the string baaa

The rule is the same as in (2), repeated below in
(10).

(10) a→ b / b (iterative)

The expected output string is then bbbb. The for-
mula in (11) uses a lfp operator to declare which
output positions should be labeled b.

(11) b′(x) def= [lfp b(y) ∨A(p(y))](x) ∧ ¬ ⋉(x)
At first only position 2 satisfies b(y) ∨ A(p(y)),
since initially A = ∅ and so no positions satisfy
A(p(y)). Now with A = {2}, position 3 satis-
fies b(x) ∨ A(p(y)), since its predecessor is in
A. Next 4 can be added, and then 5, and finally
6. After that no new positions will ever be added,
and so {2,3,4,5,6} is the lfp. The copies of the-
ses positions are all labeled b in the output—with
the exception of 6 due to ¬ ⋉ (x). Thus the map
baaa↦ bbbb is obtained.

We also consider a case of unbounded spread-
ing with blocking, in which the feature spreads un-
boundedly but only up to a particular type of seg-
ment, a blocker. This type of process is attested in
Johore Malay (Onn, 1980), where nasality spreads
from a nasal consonant through a following span
of vowels and glides but stops when it reaches an
obstruent:

(12) Johore Malay (Onn, 1980)
/p@Nawasan/ ↦ [p@Nãw̃ãsan], ‘supervi-
sion’

We will extend our analysis of unbounded spread-
ing to this case as well, using the alphabet Σ ={a, b, c}, where c is a blocker.

⋊1 b2 a3 a4 c5 a6 b7 a8 ⋉9

Figure 9: Model for the string baacaba

As (13) shows, the change is minor: the condi-
tions under which a position is added to the set are
made more stringent by including ¬c(x).

(13) b′(x) def= [lfp(b(y) ∨ (A(p(y)) ∧¬c(y)))](x) ∧ ¬ ⋉ (x)
The effect of this added restriction is that the set
will be built as follows:

∅
{2, 7}
{2, 3, 7, 8}
{2, 3, 4, 7, 8, 9}

This last set is the lfp, which picks out those
positions that will be labeled b in the output (again
except for 9), giving the string bbbcabb. The a that
follows the blocker cwill not receive the spreading
feature because it is never added to the set, because
its predecessor is prevented from joining the set by
being labeled c.

Lastly, we consider a case of unbounded agree-
ment, where a segment takes on a feature from a
triggering segment but (unlike in spreading) the in-
tervening segments are unaffected. An example is
in Kikongo, in which a liquid becomes nasal (un-
derlined below) following a nasal somewhere in a
root (Ao, 1991; Odden, 1994).

(14) Kikongo (Ao, 1991)

56

a. /ku-toot-ila/ ↦[ku-toot-ila]
‘to harvest for’

b. /ku-dumuk-ila/ ↦[ku-dumuk-ina
‘to jump for’

c. /ku-dumuk-is-ila/↦[ku-dumuk-is-ina]
‘to make jump for’

We can model this process schematically with the
function from Fig. 3, in which any a following a b
is output as a b, no matter how many c’s intervene.
We will use the string model in Figure 10, where
b is the trigger, a is the target, and c intervenes
(without blocking).

⋊1 c2 b3 c4 c5 c6 a7 ⋉8

Figure 10: Model for the string cbccca

This time the positions labeled b in the output
are identified by the formula in (15).

(15) b′(x) def= [lfp b(y) ∨ A(p(y))](x) ∧¬c(x) ∧ ¬ ⋉ (x)
The set is built as follows:∅
{3}
{3, 4}
{3, 4, 5}
{3, 4, 5, 6}
{3, 4, 5, 6, 7}
{3, 4, 5, 6, 7, 8}

Note that all positions after the trigger are in-
cluded in the set, but the formula for b′(x) spec-
ifies that to be labeled b in the output a position
has to both be in this set AND not be labeled c (or
again ⋉). So only the trigger and target are labeled
b, giving the output string cbcccb.

6 Properties of QFLFP

6.1 Relation of QFLFP to other classes of
functions

We now show some important properties
of QFLFP. In particular, the structure of
QFLFP concisely restricts its transductions
to subsequential functions. Specifically,
QFLFP transductions model the determinis-
tic computation of the output string reading the
input string left to right.

Remark 1 QFLFP ⊆ MSO.

Proof: It is sufficient to show a transla-
tion into MSO for formulas of the form

[lfp ϕ(A,y)](x). We can replace any such
formula for an equivalent MSO formula(∃X∀y)[(ϕ(A/X,y) → X(y)) ∧ X(x)],
where ϕ(A/X,y) is ϕ(A,y) with each instance
of A(pn(y)) replaced with X(pn(y)). ◻

The following shows that satisfaction of a
QFLFP formula is closed under suffixation; that
is, if a position in a string satisfies a formula, it will
satisfy that formula regardless of how the string is
suffixed. This shows that QFLFP is strictly less
powerful than full MSO transductions.

Lemma 1 For any QFLFP formula[lfp ϕ(A,y)](x), any w ∈ pref(⋊Σ∗⋉),
and any 1 ≤ n ≤ ∣w∣,

w ⊧ [lfp ϕ(A,y)](x)[x↦ n]
implies

wv ⊧ [lfp ϕ(A,y)](x)[x↦ n]
for all v ∈ suff(⋊Σ∗⋉).

Proof: Let lfpw(Fϕ) be the least fixed point with
respect to Fϕ for the domain Dw of (the model
of) w; likewise lfpwv(Fϕ) for wv. We show that
lfpw = (lfpwv ∩Dw); this means that n ∈ lfpw
if and only if n ∈ lfpwv for all 1 ≤ n ≤ ∣w∣.

Consider the series X0
w = ∅, Xi+1

w = Fϕ(Xi
w)

from (7), relativized to the domain of w, and sim-
ilarly X0

w = ∅, Xi+1
wv = Fϕ(Xi

wv) for wv. By defi-
nition X0

w =X0
wv = ∅.

It is then the case that X1
w = (X1

wv ∩Dw). For
any 1 ≤ j ≤ ∣w∣, w ⊧ ϕ(A,y)[A ↦ ∅, y ↦ j]
implies wv ⊧ ϕ(A,y)[A ↦ ∅, y ↦ j] because
they are equivalent with respect to the base cases:
for ϕ(A,y) = a(pm(y)), w ⊧ a(pm(y))[y ↦ j]
iff v ⊧ a(pm(y))[y ↦ j] because prefj(w) =
prefj(wv); w, v /⊧ A(pm(y))[A ↦ ∅, y ↦ j],
because this always evaluates to false. So j ∈ X1

w

iff j ∈X1
wv for 1 ≤ j ≤ ∣w∣.

We then consider Xi
w and Xi

wv for an arbi-
trary i ≥ 2. By hypothesis, assume that Xi

w =(Xi
wv ∩ Dwv). Then for any 1 ≤ j ≤ ∣w∣, be-

cause prefj(w) = prefj(wv),w ⊧ ϕ(A,y)[A↦
Xi
w, y ↦ j] iff v ⊧ ϕ(A,y)[A ↦ Xi

wv, y ↦ j].
So j ∈ Xi+1

w iff j ∈ Xi+1
wv , and thus Xi+1

w =(Xi+1
wv ∩Dwv).

Because we have shown this also for i = 1,
it must then hold for any arbitrary i. Thus
lfpw = (lfpwv ∩Dw). ◻

57

Lemma 2 For any QFLFP formula ϕ(x), any
w ∈ pref(⋊Σ∗⋉), and any 1 ≤ n ≤ ∣w∣,
w ⊧ ϕ(x)[x↦ n] implies wv ⊧ ϕ(x)[x↦ n]

for all v ∈ suff(⋊Σ∗⋉).

Proof: By recursion on the structure of ϕ(x). If
ϕ(x) = a(pm(x)) for some a ∈ Σ ∪ {⋊,⋉}, then
w(n) = wv(n) = a. If ϕ(x) = [lfp ψ(A,y)](x)
and w ⊧ ϕ(x)[x ↦ n] then wv ⊧ ϕ(x)[x ↦ n]
by Lemma 1. The cases for ϕ(x) = ¬ψ(x) and
ϕ(x) = ψ1(x) ∨ ψ2(x) then follow. ◻

The above means that for a QFLFP trans-
duction T the output of a prefix w ∈ Σ∗ in
the input remains constant, regardless of how
we extend w. We formalize this output with
outT (w) = w′

1w
′
2...w

′̀ , where ` = ∣w∣ and each
w′
i = γ1γ2...γn, such that w ⊧ γ1

1(x)[x ↦ i],
w ⊧ γ2

2(x)[x ↦ i], ..., w ⊧ γnn(x)[x ↦ i] for
γ1

1(x), γ2
2(x), ..., γnn(x) ∈ T .

The following is thus important in establishing
the tails of w.

Corollary 1 For any string w ∈ Σ∗, a QFLFP-
definable transduction T and its function f =
f(T), out(w) is a prefix of lcp(f(wΣ∗)).

Proof: Let outT (w) = w′
1w

′
2...w

′̀ as above. The
corollary follows from Lemma 2, because at each
position i in w, i will satisfy the same formulas
no matter how w is extended, so w′

i will be output
no matter how w is extended. Thus, at the least,
w′

1w
′
2...w

′̀ will be output. ◻
The following establishes the set of ‘reach

strings’ for ϕ(x) ∈ T ; that is, strings w such that
some wσ will satisfy ϕ(x). This simulates the set
of strings that will reach a particular state in a FST.

Definition 5 For ϕ(x) ∈ T , let

Lϕ
def= {w ∣ wσ ⊧ ϕ(x)[x↦ ∣wσ∣] for some σ ∈ Σ}

The following follows from the fact that
QFLFP ⊆ MSO.

Remark 2 Lϕ is regular.

For ϕ(x) ∈ T , let Pϕ be the finite partition
on Σ∗ induced by the equivalence relation of Lϕ.
Then for T = {ϕ1(x), ..., ϕn(x)}, let

PT
def= Pϕ1 ⊗ Pϕ2 ⊗ ...⊗ Pϕn

This is the partition of Σ∗ into sets of strings
belonging to the same equivalence class for every
Lϕi . As each Lϕi is regular, it follows that PT is
finite.

Lemma 3 For some QFLFP T ={ϕ1(x), ..., ϕn(x)} and f = f(T), for any
w, v ∈ Σ∗ and A ∈ PT ,

w, v ∈ A ↔ w ≡f v
Proof: (→) Recall (from §2) that for any ϕ(x) ∈
T and B ∈ Pϕ, w, v ∈ B iff for all z ∈ Σ∗, wz ∈ Lϕ
iff vz ∈ Lϕ. Because PT is the pairwise intersec-
tion of all such sets, for any A ∈ PT , w, v ∈ A if
and only if for all z ∈ Σ∗ and for all ϕ(x) ∈ T ,
wz ∈ Lϕ ↔ vz ∈ Lϕ.

Thus, for w, v ∈ A in PT if and only if for all
z ∈ Σ∗ and for all ϕ(x) ∈ T ,

wzσ ⊧ ϕ(x)[x↦ ∣wzσ∣] ↔
vzσ ⊧ ϕ(x)[x↦ ∣vzσ∣]

Consider then any w, v ∈ A for some A ∈ PT
and any u = σ1σ2...σm. It follows that for each
σi wσ1...σi ⊧ ϕ(x)[x ↦ (∣w∣ + i)] if and only if
vσ1...σi ⊧ ϕ(x)[x↦ (∣v∣ + i)].

Then consider u′ = u′1u′2...u′n where each u′i =
γ1

1γ
2
2 ...γ

k
k s.t. wσ1...σi ⊧ γjj (x)[x↦ (∣w∣+ i)] for

γ1
1(x), ..., γkk(x) ∈ T . From Lemma 2 we know

f(wu) = outT (w)u′ and f(vu) = outT (v)u′.
From Corollary 1 it is also the case that

outT(w) is a prefix of lcp(f(wΣ∗)) and outT(v)
is a prefix of lcp(f(vΣ∗)). Let u′p be the portion
of u′ that is in lcp(f(wΣ∗)); that is, u′ = u′pu′s
where lcp(f(wΣ∗)) = outT(w)u′p. Because the
above establishes that w and v share the same out-
put suffixes, it is also the case that lcp(f(vΣ∗)) =
outT(v)u′p. Thus any (u,u′s) is in tailsf(w) if
and only if it is also in tailsf(v).

Thus w, v ∈ A implies that tailsf(w) =
tailsf(v).

(←) The reverse is clear by consid-
ering that (u,u′1u′2...u′n) ∈ tailsf(w)
if and only if for each ui = γ1

1γ
2
2 ...γ

k
k ,

wσ1...σi ⊧ γjj (x)[x ↦ (∣w∣ + i)] for each

γjj (x). If this is also the case for v then it must be
the case that w, v ∈ A for the same A ∈ PT . ◻
Theorem 2 QFLFP ⊆ SUBSEQ.

58

0 1 2

a ∶ λ a ∶ λ a ∶ λ
b ∶ λ

b ∶ b b ∶ b

Figure 11: An OSL3 function we conjecture not to be
QFLFP.

Proof: From Lemma 3 and the fact that PT is
finite. ◻
Lemma 4 QFLFP /⊆ OSL

Proof: This is witnessed by the function of the
SFST in Fig. 3 (which turns any a following a
b into an a, regardless of any intervening c’s),
which was shown not to be OSL, but was shown
in Sec. 5 to be QFLFP-definable. ◻
Conjecture 1 OSL,SUBSEQ /⊆ QFLFP

Consider the OSL function in Figure 11, which
deletes any a and all except for the first two b’s.3

This is OSL3, because whether or not we delete
a b depends on whether or not we have output 2
b’s previously. Now consider a formula b′(x) that
is true for exactly the first two b’s. For the first,
we can write b(x)∧¬[lfp(b(y)∨A(p(y)))](x),
the latter lfp disjunct identifying any elements
following a b. To identify exactly the second b,
we would have to include reference to the first
b in another lfp predicate, thus embedding one
lfp statement in another. We conjecture that this
embedding of one lfp formula in another is neces-
sary; that is, there is no QF formula ϕ(A,y) such
that [lfp ϕ(A,y)](x) can identify the second b.

6.2 Equivalence of QF and ISL

Finally, we show that the QF fragment of
QFLFP describes exactly the ISL functions. We
first show that QF formula can only distinguish
positions in a string based on the previous k − 1
symbols for some k.

Lemma 5 Let T be a QF transduction, and let k
be the value for which pk−1(x) appears in some
γc(x) in T and for any other pj(x) that appears
in some γc(x) in T , j < k. Consider two strings
w, v ∈ pref(⋊Σ∗⋉) such that suffk−1(w) =
suffk−1(v); let `w denote ∣w∣ and likewise `v for

3We thank Shiori Ikawa for this example.

SUBSEQ

OSL QFLFP

ISL = QF

Figure 12: Hierarchy of the relevant function classes

∣v∣. For any γc(x) in T ,

w ⊧ γc(x)[x↦ `w]
if and only if

v ⊧ γc(x)[x↦ `v]
Proof: Let u = suffk−1(w) = suffk−1(v)
and `u denote ∣u∣. If γc(x) = a(pj(x)) for
some a ∈ Σ ∪ {⋊,⋉}, then w ⊧ γc(x)[x ↦ `w]
iff w(`w − j) = a. Since j < k, this im-
plies that u(`u − j) = a and thus also that
v ⊧ γc(x)[x ↦ `v]. Clearly the reverse implica-
tion holds as well. Since w and v are equivalent
with respect to satisfaction of the atomic formulae
for QF, this then extends to the general case for
ϕ(x) based on induction on the structure of QF.◻
Theorem 3 QF = ISL

Proof: (→) From Lemma 3 we know that w and
v have the same set of tails; thus Lemma 5 shows
that suffk−1(w) = suffk−1(v) implies w ≡f v.
Thus QF ⊆ ISL.

(←) For ISL ⊆ QF, we construct a QF trans-
duction for the canonical transducer for an
ISL function. As stated in §3, each state in an
ISLk SFST represents a k − 1 suffix. So we
can construct an equivalent QF transduction T
as follows. For a string w = σ1σ2...σk we can
write ϕw(x) = σ1(pk−1(x)) ∧ σ2(pk−2(x)) ∧ ... ∧
σk−1(p(x)) ∧ σk(x). For each symbol γ ∈ Γ,
we set γi(x) = ϕw1(x) ∨ ϕw2(x) ∨ ... ∨ ϕwn(x),
where w1,w2, ...,wn is the exhaustive set
of strings wj = qjσj for which a transition
δ(qj , σj) = (vj , rj), exists where γ = vj(i).
So for any position in the input string that
exercises a transition δ(q, σ) = (v, r) in the
ISLk machine, it will also satisfy a sequence
γ1

1(x), γ2
2(x), ..., γmm(x) such that γ1γ2...γm = v.◻

Fig. 12 summarizes the results discussed so far.

59

6.3 Left- and right-subsequential functions

We have so far abstracted away from the fact
that SUBSEQ can instead be characterized as
the left-subsequential functions, with the right-
subsequential functions being the reversal of some
left-subsequential function (Mohri, 1997). For-
mally, a function f is right-subsequential iff f ={(wr, vr)∣f ′(w) = v}, where wr is the reverse of
string w, for some left-subsequential function f ′.
Equivalently, the right-subsequential functions are
those that can be described by a SFST reading and
writing strings right-to-left.

In terms of QFLFP, when the input signatureI contains the predecessor function p we obtain
left-subsequential functions. As is perhaps clear
from the above discussion, if we instead use an
identical signature with a successor function s, we
obtain the right-subsequential functions.

Crucially, inclusion of QFLFP in one of the
subsequential classes relies on using either s or p,
but not both. Consider the following transduction
defined with a signature including both s and p.4

(16) a. a′(x) def= a(x) ∧ (⋊ (p(x))→[lfp b(y) ∨A(s(y))](x))
b. b′(x) def= b(x)∧[lfp b(y) ∨A(p(y))](x)
c. c′(x)def= (a(x) ∧ ⋊(p(x))∧¬[lfp b(y) ∨A(s(y))](x))∨(b(x)∧¬[lfp b(y) ∨A(p(y))](x))

This transduction takes strings of a’s and b’s and
outputs as a c 1) the first a if and only if there
are no b’s in a string; or 2) the first b in the
string. The definition of c′(x) in (16-c) out-
puts a c for an input initial a that is not fol-
lowed by a b (the first disjunct; a(x) ∧ ⋊(p(x)) ∧¬[lfp b(y) ∨ A(s(y))](x)) or an input b that is
not preceded by another b (the second disjunct;
b(x) ∧ ¬[lfp b(y) ∨ A(p(y))](x)). The defini-
tions in (16-a) and (16-b) output a’s and b’s, re-
spectively, for any a and b that does not meet the
conditions in (16-c) for outputting a c. A (nonde-
terministic) FST for this function is given in Fig.
13; examples of the mapping are given below in
(17).

4We thank Nate Koser for this example.

0

1

2 3

a ∶ a
a ∶ a b ∶ b

a ∶ c

a ∶ a b ∶ c
Figure 13: A properly regular function definable using
QFLFP with both successor s and predecessor p func-
tions.

(17) aaaaaa↦ caaaaa
aababa↦ aacaba

It can be shown that this function is not subse-
quential, and thus there is no equivalent SFST for
the FST in Fig 13. The reason is made clear by the
definition in (16): the transduction looks ahead to
the right to check if an initial a should be output
as a c, but looks behind to the left to check if a b is
the first b. These cannot both be accomplished by
a deterministic FST that reads either right-to-left
or left-to-right. Thus, restricting the signature to
either p or s is crucial to capturing the behavior of
subsequential FSTs.

7 Discussion

We have introduced a class of functions called
QFLFP that are defined as graph interpretations
using quantifier-free first order logic formulas aug-
mented with a least fixed point operator. In this
section we discuss some of the implications of us-
ing this class to model phonological processes and
highlight a few important areas of future work.

One of the main advantages of such logical
characterizations of phonological processes is that
they enable a unified approach to both linear and
non-linear representations. The graphs used to
represent strings in this approach can be extended
to represent additional structure used in phono-
logical theory such as autosegmental represen-
tations and feature geometry (Goldsmith, 1976;
Clements, 1985), syllable constituents (Selkirk,
1984), or metrical structure (Hayes, 1995). This
flexibility allows us to directly apply the notion
of subsequentiality to other types of representa-
tions, which in turn enables more direct com-
parison among types of phonological phenomena
and theories of phonological representation, as we
can change the models to accommodate the added

60

structure but maintain the restrictions on the log-
ical formalism (see Chandlee and Jardine, 2019,
for an example). This was not as straightforward
with finite-state automata.

We have argued that the QFLFP class provides
an attractive fit to the observed typology of phono-
logical functions, capturing both local and long-
distance phenomena, which the previously defined
ISL and OSL classes cannot do without introduc-
ing the mechanism of string markup. Compared to
the subsequential functions, QFLFP can describe
functions dependent on even/odd parity in a local
way—such as assigning iterative stress—but not
in an unbounded way (e.g., identify every other
vowel regardless of how many consonants inter-
vene). The subsequential functions can describe
such unbounded even/odd phenomena, which are
hypothesized to not exist in phonology. In this way
QFLFP appears to be a better fit to the typology
compared to the already restrictive subsequential
functions.

Future work will aim to identify the limits of
QFLFP and the kinds of phonological processes
and process interactions that it cannot describe.
Such cases will point to the ways the class of func-
tions can be extended and/or modified to provide
an even better fit to the range of attested phenom-
ena without including logically possible but unat-
tested patterns. For example, what is the expres-
sivity of QFLFP when two-place predicates (see
Koser et al., 2019) or embedded lfp operators are
allowed?

There are also several theoretical questions left
to be addressed. Are QFLFP functions closed
under composition? We conjecture that they are
not, as per the discussion of the OSL function in
Fig. 11 that we conjecture not to be QFLFP.
The reason is that functions in which lfp opera-
tors are embedded in other lfp operators appear
to be strictly more expressive than those which
are not. We also leave an abstract characteriza-
tion of the QFLFP functions to future work. Such
a characterization would lead to a definitive an-
swer to the conjecture that SUBSEQ is a proper
superset of QFLFP, as well as whether or not
QFLFP is closed under composition. Finally, this
paper has considered QFLFP defined over string
signatures with only a single ordering function p.
The same logic defined over string signatures de-
fined with both p and the successor function s
will almost certainly be more expressive, but how

much more expressive is an interesting question
for future work.

8 Conclusion

QFLFP graph interpretations combine the re-
strictiveness of quantifier-free first order logic
with an operator that can recursively reference
the output structure. This allows us to model
phenomena beyond the reach of the ISL func-
tions, including iterative spreading processes and
long-distance agreement. This class of functions
appears to cross-cut several subregular function
classes that have previously been applied to the
modeling of phonological processes. Because it
is still a subset of the subsequential functions,
however, it is learnable from positive data. This
combination of desirable properties incidates that
QFLFP is an important step toward the goal of
identifying and understanding the computational
nature of phonological processes.

References
Benjamin Ao. 1991. Kikongo nasal harmony and

context-sensitive underspecification. Linguistic In-
quiry, 22(2):193–196.

Jane Chandlee. 2014. Strictly Local Phonological Pro-
cesses. Ph.D. thesis, University of Delaware.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. 2015.
Output strictly local functions. In Proceedings of the
14th Meeting on the Mathematics of Language (MoL
2015), pages 112–125, Chicago, USA. Association
for Computational Linguistics.

Jane Chandlee and Jeffrey Heinz. 2012. Bounded
copying is subsequential: implications for metathe-
sis and reduplication. In Proceedings of SIGMOR-
PHON 12.

Jane Chandlee and Jeffrey Heinz. 2018. Strict locality
and phonological maps. LI, 49:23–60.

Jane Chandlee and Adam Jardine. 2019. Autosegmen-
tal strictly local functions. Transactions of the Asso-
ciation for Computational Linguistics, 7:157–168.

Jane Chandlee and Steven Lindell. in prep. A log-
ical characterization of strictly local functions. In
Jeffrey Heinz, editor, Doing Computational Phonol-
ogy. OUP.

G. N. Clements. 1985. The geometry of phonological
features. Phonology Yearbook, 2:225–252.

Joost Engelfriet and Hendrik Jan Hoogeboom. 2001.
MSO definable string transductions and two-way
finite-state transducers. ACM Transations on Com-
putational Logic, 2:216–254.

61

Emmanual Filiot. 2015. Logic-automata connections
for transformations. In Logic and Its Applications
(ICLA), pages 30–57. Springer.

Emmanuel Filiot and Pierre-Alain Reynier. 2016.
Transducers, logic, and algebra for functions of fi-
nite words. ACM SIGLOG News, 3(3):4–19.

John Goldsmith. 1976. Autosegmental Phonology.
Ph.D. thesis, Massachussets Institute of Technology.

Bruce Hayes. 1995. Metrical stress theory. Chicago:
The University of Chicago Press.

Jeffrey Heinz and Regine Lai. 2013. Vowel harmony
and subsequentiality. In Proceedings of the 13th
Meeting on the Mathematics of Language (MoL 13),
pages 52–63.

Mans Hulden. 2009. Finite-State Machine Construc-
tion Methods and Algorithms for Phonology and
Morphology. Ph.D. thesis, University of Arizona.

Adam Jardine. 2016. Locality and non-linear repre-
sentations in tonal phonology. Ph.D. thesis, Univer-
sity of Delaware.

R.M. Kaplan and M. Kay. 1994. Regular models of
phonological rule systems. Computational Linguis-
tics, (20):371–387.

Nathan Koser, Christopher Oakden, and Adam Jardine.
2019. Tone association and output locality in non-
linear structures. In Supplemental proceedings of
the 2018 Annual Meeting on Phonology. Linguistics
Society of America.

Leonid Libkin. 2004. Elements of Finite Model The-
ory. Berlin: Springer-Verlag.

Huan Luo. 2017. Long-distance consonant agreement
and subsequentiality. Glossa: A Journal of General
Linguistics, 2(1):52.

Mehryar Mohri. 1997. Finite-state transducers in lan-
guage and speech processing. Computational Lin-
guistics, 23(2):269–311.

David Odden. 1994. Adjacency parameters in phonol-
ogy. Language, 70(2):289–330.

J. Oncina, J. Garcı́a, and E. Vidal. 1993. Learning sub-
sequential transducers for pattern recognition inter-
pretation tasks. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, (15:5):448–457.

Farid M. Onn. 1980. Aspects of Malay Phonology
and Morphology: A Generative Approach. Kuala
Lumpur: Universiti Kebangsaan Malaysia.

Amanda Payne. 2017. All dissimilation is compu-
tationally subsequential. Language: Phonological
Analysis, 93(4):e353–e371.

Marcel Paul Schützenberger. 1977. Sur une variante
des fonctions séquentielles. Theoretical Computer
Science, 4:47–57.

Elisabeth Selkirk. 1984. On the major class features
and syllable theory. In Morris Halle, Mark Aronoff,
and R.T. Oehrle, editors, Language sound struc-
ture: Studies in phonology. Cambridge, Mass.: MIT
Press.

62

Some classes of sets of structures definable without quantifiers

James Rogers
Earlham College

jrogers@cs.earlham.edu

Dakotah Lambert
Earlham College

djlambe11@earlham.edu

Abstract

We derive abstract characterizations of the
Strictly Piecewise Local (SPL) and Piecewise
Locally Testable (PLT) stringsets. These gen-
eralize both the Strictly Local/Locally Testable
stringsets (SL and LT) and Strictly Piece-
wise/Piecewise Testable stringsets (SP and
PT) in that SPL constraints can be stated in
terms of both adjacency and precedence.

We do this in a fully abstract setting which ap-
plies to any class of purely relational models
that label the points in their domain with some
finite labeling alphabet. This includes, for ex-
ample, labeled trees and graphs. The actual
structure of the class of intended models only
shows up in interpreting the abstract charac-
terizations of the definable sets in terms of the
structure of the models themselves.

1 Introduction

The ultimate goal of this paper is a characteriza-
tion of the Piecewise Locally Testable and Strictly
Piecewise Local classes of sets of strings. But in
getting there we employ a very general technique
that, with the exception of a single step (the defi-
nition of realizability) applies to any class of rela-
tional structures and yields:

• a quantifier-free logic that is propositional in
the sense of “can be interpreted via truth ta-
bles as a canonical, but uninteresting, class of
models” (but not PC, as in Propositional Cal-
culus),

• an algebraic setting that, modulo the defi-
nition of realizability, provides an abstract
characterization of the sets of structures de-
finable in that logic, which may or may not
be all that useful in itself, but which is strong
enough to support more natural characteriza-
tions.

The reason that definability with respect to these
quantifier-free logics is interesting is that it identi-
fies the sets of structures that are definable purely
in terms of the explicit components of the struc-
tures themselves, without any auxiliary mecha-
nisms such as distinguishing points in terms inde-
pendent of their labels (by assigning variables to
them, for instance, or associating them with states)
or refinements of the label alphabet (by adding
features, for instance). This gives a near minimal
notion of definability and a class of constraints that
can be checked without inferring any information
beyond what is explicitly present in the structure
itself.

1.1 Overview of the paper

In Section 2 we introduce the Piecewise Local Hi-
erarchy and provide some motivation for exploring
its propositional levels. In Section 3 we introduce
relational models and their local factors. These
are ordinary mathematical models over a purely
relational signature which include unary relations
that we can interpret as labeling the points in the
domain. Beyond that, while the actual structural
properties of the models are given by a definition
of what counts as an intended model, those proper-
ties are inconsequential for nearly all of what fol-
lows. As an example we define a class of word
models, models for strings that include relations
for both successor and precedence.

In Section 4 we introduce a propositional logic
based on local factors as atoms and define the class
of Locally Definable sets of structures as those de-
finable in that logic and the class of Strictly Lo-
cally Definable sets of structures as those defin-
able by conjunctions of negative literals of that
logic. This notion of locality extends that of
McNaughton and Papert (1971) to adjacency with
respect to any of the non-unary relations of the sig-
nature.

63

In Section 5 we consider sets of factors as mod-
els of the logic rather than the relational struc-
tures themselves. The function taking a structure
to the set of its factors maps models of the first sort
(the structures themselves) to models of the sec-
ond (sets of factors). The advantage of this move is
that the space of sets of factors is a finite Boolean
Algebra. In this setting it is easy to prove that a
set of sets of factors is Strictly Local if and only if
(iff) it is a principal ideal in that space. The cost
of this move is that not all sets of factors are the
image of one of the intended relational structures.
Those that are we refer to as being realizable.

We then return, in Section 6, to the properties of
the Locally and Strictly Locally Definable sets of
structures and develop abstract characterizations
of these classes. Up until this point, everything we
have done applies to any class of relational struc-
tures, regardless of the actual structural properties
of the intended models (strings, for example, or
trees). The characterization of the Local sets is
valid for all classes of relational structures, but the
last step of the characterization of the Strictly Lo-
cally Definable sets depends critically on the no-
tion of realizability. The section ends by complet-
ing the characterization for models of strings.

These characterizations can be hard to apply in
their fully abstract form. In Section 7 we fix the
notion of realizability for models of strings over a
signature that includes both successor and prece-
dence, and derive closure properties that are gen-
eralizations of the well-known characterizations
of the Strictly Local (successor only) and Strictly
Piecewise (precedence only) sets of strings.

In Section 8 we consider the learnability of the
definable sets of structures. Following that we
give both an example of a phonotactic constraint
not that is SPL definable and one that separates
SPL from both SF and the Tier-based Strictly Lo-
cal stringset (defined there). We then close with
some concluding remarks.

2 The Piecewise-Local Hierarchy

The Piecewise-Local Hierachy (Figure 1) or-
ganizes the Local and Piecewise classes of
stringsets, introduced in McNaughton and Papert
(1971) and extended by Brzozowski and Simon
(1973), Simon (1975), Straubing (1985),
Thérien and Weiss (1985), Beauquier and Pin
(1991) and others, on the basis of model-theoretic
definability with respect to word models (see

Example 1) along two dimensions: signature
(successor alone, less-than alone, or both) and
strength of the logical machinery, from the
propositional logic discussed below (Section 4) to
Monadic Second-Order.

The characterization of Regular stringsets by
MSO definability is due to Medvedev (1964),
Büchi (1960) and Elgot (1961). This work es-
tablished the relationship between model-theory
of ordered structures and computational structures
that spawned the study of Descriptive and Struc-
tural Complexity, Finite Model-Theory and other
areas of Graph Theory, Abstract Algebra, Theo-
rem Proving and Discrete Math. The character-
ization of the Star-Free stringsets (SF—definable
by regular expressions with complement but not
Kleene-closure) by FO(<), First-Order definabil-
ity with less-than (or both less-than and succes-
sor, since successor is FO definable from less-
than) is due to McNaughton and Papert (1971),
which spawned the work of Brzozowski, Simon,
Beauquier and Pin cited above. Thomas (1978)
established the characterization of the Locally
Threshold Testable (LTT) stringsets by FO defin-
ability with successor alone, FO(+1).

Our exploration of the Piecewise-Local hier-
archy was motivated by Heinz’s exploration of
learnability of phonotactic stress patterns (Heinz,
2007). Our research group at Earlham College,
over the course of several years, constructed com-
putational tools to classify the patterns in the
StressTyp2 (Goedemans et al., 2015) collection of
stress patterns that have automata-theoretic se-
mantics, about two-thirds of the 750 lects in the
collection, covering a broad range of human lan-
guages. These fall into 106 distinct patterns.

Initially, we identified the 82 that are Strictly-
Local. In exploring the remainder, we started
working with constraints expressed in the propo-
sitional logic introduced here in Section 4. Con-
straints definable using just successor are Locally
Testable (LT); Strictly Local (SL) constraints are
those that are definable by conjunctions of neg-
ative literals. Some constraints, the requirement
that every word assigns primary stress to some syl-
lable (obligatoriness) or the requirement that pri-
mary stress either falls on a heavy syllable or on
the final syllable, while not SL, are clearly the
complement of SL constraints (co-SL), disjunc-
tions of positive literals, which share the explicit
nature of SL constraints.

64

LT

co
(S

L
+S

P)

SP
SL

co
SL

co
SP

LT
T

SP
L

co
SP

L

SL
+S

P

Pr
op

St
ri

ct

FOM
SO

SFR
eg

T
SL

PL
T

LT
+P

T

PT

<
⊳

,
<

⊳

Figure 1: The Piecewise Local Hierarchy

65

D
ot

 D
ep

th
Q

ua
nt

 R
an

k
Q

ua
nt

 A
lt

β

β
2
=

B
((

Fi
n

∪
C

oF
in
)2
)

SF

B
0

LT

D
E

F
R

D
E

F

G
D

E
F

Fi
n

∪
C

oF
in

(=
B
(F

in
∪

C
oF

in
))

Fi
n

C
oF

in

LT
T

β
2i
+
1
=
β
2(
i+

1)
=

B
((

Fi
n

∪
C

oF
in
)2

i)

B
(Σ

1
)

de
f =
(B

((
∃~x

)[
Π
0
])

B
(Σ

i)
de

f =
(B

((
∃~x

)[
Π
i−

1
])

FO
(<

)

B
(Σ

1
)

B
(Σ

1,
1
)

B
(Σ

1,
i)

⋃ i∈
N

[B
((

Fi
n

∪
C

oF
in
)i
)]

B
(M

(G
D

E
F)
)

B
1

de
f =
B
(M

(B
0
)

B
i
=
B
(M

(B
i−

1
)

LT
O
=

⋃ i∈
N

[B
i]

β
1

SL

β
3
=
β
4
=

B
((

Fi
n

∪
C

oF
in
)3
)

B
(Σ

1,
0
)

Σ
0
=
Π
0

R
eg

Figure 2: Some Other Local Hierarchies

66

Some constraints, the requirement that if pri-
mary stress falls on a heavy syllable it must be the
first heavy syllable, for example, are not even de-
finable in FO(+1). These are examples of long-
distance phonotactics which are amenable to be-
ing defined in terms of subsequences (sequences
of symbols that occur in order but not necessarily
adjacently). These are definable using less-than
without the aid of successor; they are Piecewise
Testable (PT) constraints. The Piecewise Testable
stringsets were introduced by Simon (1975) and
are the analog of the LT stringsets based on subse-
quences rather than substrings. Some, the require-
ment that primary stress does not fall on more than
one syllable (culmanitivity), for example, can be
expressed as conjunctions of negative piecewise
literals, in SP (Rogers et al., 2010). Obligatori-
ness, since the only factor involved is a single sym-
bol, can be expressed as the complement of an SP
stringset, it is co-SP, as well as co-SL.

Conjunctions of SL, co-SL and SP constraints
(SL + co-SL + SP) cover 98 of the 106 patterns
in the database. Of the remaining eight, two are
properly regular, involving covert alternation. The
rest are all of the form: if stress falls on a final syl-
lable that is heavy, then a syllable of some other
type (an unstressed heavy, for example) does not
occur. While LT they are not expressible as SL or
SP constraints or their complement. They are, on
the other hand expressible as a negative literal that
uses both adjacency (for the identification of the
final syllable) and less-than (for the long-distance
aspect). This, in addition to the obvious theoreti-
cal interest, is what led us to explore the Piecewise
Locally (PLT) Testable and Strictly Piecewise Lo-
cal (SPL) stringsets. Except for those two properly
regular patterns, all of the automata-theoretic pat-
terns in StressTyp2 are definable in SPL + co-SL.

2.1 Some Other Sub-Regular Hierarchies

An alternative way of partitioning the Star-
Free stringsets is via the dot-depth and β hi-
erarchies (Figure 2). The former is due to
Schützenberger (1965) and Brzozowski and Knast
(1978). McNaughton and Papert (1971) had al-
ready established that the Star-Free stringsets
are equal to closure of the Locally Testable
stringsets under mixed concatenation and Boolean
operations (Locally Testable with Order, LTO).
Brzozowski and Knast (1978) establishes an in-
finite hierarchy, building from the class of fi-

nite and co-finite stringsets via concatenation clo-
sure (M in the figure) followed by Boolean
closure (B), alternately, which partitions LTO.
Brzozowski and Simon (1973) refines the dot-
depth 1 level into an infinite hierarchy built on
concatenation of successively more factors, closed
under Boolean operations. The second level (β2)
is equivalent to the class of Generalized Definite
stringsets (GDEF, stringsets determined by their
initial and final substrings); The third, equivalently
fourth, level is equivalent to the LT stringsets.

Thomas (1982), using a somewhat different no-
tion of word model, characterizes these with re-
spect to FO definability. The dot-depth hierar-
chy (albeit starting at GDEF for Σ0/Π0) corre-
sponds to the standard notion of quantifier alterna-
tion. The β hierarchy corresponds to Σ1 stratified
by quantifier rank.

The citations given here are a very sparse (and
idiosyncratic) sample of the incredibly broad and
deep body of work over the last 60 years that has
its foundations in those initial results, a testament
to the fundamental nature of the results. Perhaps
the best route into the theories of word models
is the books by McNaughton and Papert and by
Straubing (1994).

3 Some definitions

3.1 Relational Models
To be precise about terminology, a relational sig-
nature, R, is a ranked alphabet of relation symbols
{Ri | i ∈ N}, where the symbols in Ri represent
i-ary relations. Let R∗ be the union of the symbols
in Ri for all i. We assume that R is finite.

An R-structure is a tuple A = 〈A,RA
1 , RA

2 , . . .〉
where A is the domain and the RA

i are interpreta-
tions of the appropriate arity of symbols chosen
from R∗.

Example 1 (Word Models). Let w be a string over
the alphabet Σ. Let |w| be the length of w. A Word
Model for w is a structure:

M⊳,<
Σ (w)

def
= 〈Dw,⊳w, <w, ⋊w, ⋉w, Pw

σ 〉σ∈Σ

where:

Dw—is isomorphic to an initial segment
〈0, 1, . . . , |w| + 1〉 of N (the Natural num-
bers).

⊳w—is the successor relation on Dw.

<w—is the proper precedence relation on Dw.

67

⋊w—is the singleton set containing the minimum
position in Dw.

⋉w—is the singleton containing the maximum
position in Dw.

Pw
σ —is the set of positions in w at which the sym-

bol σ occurs.

The sets ⋊w, ⋉w and Pw
σ , for each σ ∈ Σ parti-

tion Dw (they are pairwise disjoint and their
union is Dw).

Let M⊳,<
Σ denote the class of all word models over

Σ.

This definition of a word model differs in cer-
tain respects from definitions that may be famil-
iar from prior work. In particular, the endmarkers
⋊, ⋉ are explicit in the structure and mark points
that are adjoined to the ends of the set of positions
in the string. Thus, if w = 〈σ1, σ2, . . . , σ|w|〉, then
card(Dw) = |w| + 2 and i ∈ Pw

σ iff σi = σ. Also
this type of word model includes both the succes-
sor and precedence relations. When we look at
specific classes in the Piecewise Local sub-regular
hierarchy we have, heretofore, employed reducts
of this signature including one or the other of the
ordering relations, but not both. Here we can ob-
tain the same restrictions by varying parameters
restricting their usefulness.

It is important to note that a structure is not nec-
essarily a word model simply because it shares the
same signature as these word models. In particu-
lar, the interpretations of ‘Dw’, ‘⊳w’, ‘<w’, ‘⋊w’
and ‘⋉w’ are not arbitrary, but required to satisfy
the axioms of finite discrete linear orders under
the usual interpretation of the symbols. We re-
fer to these as the structural relations—they form
the ‘bones’ of the intended class of structures—
and we refer to those structures that satisfy the ax-
ioms as the intended models. These notions gen-
eralize to other classes of labeled relational struc-
tures which exhibit particular structural properties.
Word models corresponding to distinct strings dif-
fer only in the size of the domain and in the inter-
pretations of the Pσ.1

In the core of this paper we temporarily turn
to sets of factors (defined in Section 3.3) as mod-

1Although in this case, the interpretations of the Pσ is
not entirely free, either, in that we require those interpreta-
tions, along with those of the end markers, to partition the
domain. Relaxing that actually leads to a more flexible notion
of string-like structures that are useful in many applications.

els, which characterize the freely generated struc-
tures over the given signature, and encapsulate the
theory of the intended structures in the notion of
“realizability” (Section 5.3) which picks out the
sets of factors that actually correspond to a par-
ticular well-formed structure. The core results are
valid independent of the definition of realizabil-
ity, which puts the focus squarely on the defin-
ing power of the quantifier-free logic, abstracting
away from properties that distinguish a class of in-
tended models from another with the same signa-
ture.

Henceforth, when we refer R-structures, we
will mean the class of intended structures, how-
ever that definition may be restricted. When we
discuss the freely generated structures over the
signature R, including those that may not be well-
formed, we will explicitly say so.

3.2 Homomorphisms and Embeddings
Suppose A and B are R-structures. The following
definitions are from (Hodges, 1993).

A homomorphism from A to B is a (total) func-
tion h : A → B such that:

R ∈ Ri and ~a ∈ RA ⇒ h(~a) ∈ RB.

Note that this only requires that the images of the
~a that are in the interpretation of R in A are in-
cluded in the interpretation of R in B. It says noth-
ing about other h(~a) that might also be included in
RB.

An embedding (or strong homomorphism) from
A to B is a (total) function h : A → B such that h
is a homomorphism that is is strengthened to

R ∈ Ri and ~a ∈ RA ⇔ h(~a) ∈ RB

We note the difference because “homomor-
phism” is often taken in the stronger sense, but we
necessarily need the weak sense. Otherwise if the
image of A in B includes any tuple h(~a) in the
domain of the interpretation of a relation R in B,
then A must include the pre-image of RB(h(~a)) in
RA as well. In this way the interpretation of R in
B would restrict the structure of A.

3.3 Neighborhoods and factors
The next few definitions are based on those in
Libkin (2004). The first two are ubiquitous in the
Theory of Finite Models.

Definition 1. Let A be a relational structure as
above and a ∈ A. The (domain of the) r-Ball

68

around a in A (denoted BA
r) is defined inductively

as follows:

BA
0 (a) = {a}

BA
i+1(a) = BA

i (a) ∪
{a′ | (∃R ∈ R,

~a ∈ RA, a′′ ∈ BA
i (a))

[a′, a′′ both occur in ~a]}

The members of BA
i (a) are all the members of

A that are within distance i of a in the Gaifmann
graph of A.

Definition 2 (Connectivity). Let A be an R struc-
ture.

A is k-connected iff for all a ∈ A, BA
k−1(a) =

A.

Note that every k-connected domain is also j-
connected for all j > k.

Definition 3 (k-Factor). Let A and B be R struc-
tures.

A is a k-factor of B iff2

1 : card(A) ≤ k
2 : A is card(A)-connected
3 : ∃h : A → B, a homomorphism

N.B. In this definition the set of k-factors of a
structure includes all of its j-factors for j ≤ k.

In general there will be many such h. Each one
picks out an occurrence of the factor A in B.

Let Fk(B) be the set of isomorphism classes of
the set of all k-factors of B. We will ignore the
difference between an isomorphism class and a
canonical representative of that class, so we can
consider this to be a set of structures over an
anonymous domain of cardinality k.

Proposition 1. If card(B) is finite then there are
only finitely many distinct (up to isomorphism) k-
factors of B.

Lemma 1. If R is relational and finite then the
cardinality of

Fk(R)
def
=

⋃

B
[Fk(B)], B an R-structure.

is finite.
2The term “factor” comes from the well known interpre-

tation of strings in a monoid over concatenation, where the
definition is immediate. We adopt this fully general defini-
tion in order to extend it to arbitrary relational structures, in-
dependent of their specific properties.

Proof Sketch. If R is relational and finite then
there are, up to isomorphism, only finitely many
R-structures of cardinality k. This is Exercise 6
(Pg. 10) of Hodges, an easy exercise.

We extend Fk to sets of structures in the stan-
dard way, as the union of the sets of k-factors of
the structures in the set.

3.4 Supposing k < n

Suppose A is an R-structure, card(A) = k and
R ∈ Rn ⊆ R, as above, and k < n. Then, by the
pigeon-hole-principle,

(∀~a ∈ RA)[(∃a ∈ A)[
a occurs in at least two places in ~a]].

Let’s say that an n-ary relation is anti-reflexive if
no individual occurs more than once in any of its
tuples. If all R ∈ R are anti-reflexive then, for all
R ∈ Rn>k, RA = ∅.

This is not deep. It just says that in the anti-
reflexive case (which will be common) k-factors
have nothing to say about relations of arity greater
than k.

3.5 Aspects of partial orders

The following is taken, primarily, from
MacLane and Birkhoff (1967, 1970). A par-
tial order is a set equipped with a partial ordering
relation ⊑ that is reflexive, transitive and antisym-
metric. If ⊑ is not antisymmetric, then it defines a
quasiorder.3

A lattice is a partial order that is closed with
respect to two binary operators: a greatest lower
bound (meet, ∧) and least upper bound (join, ∨).
Meets and joins are idempotent, associative and
commutative and satisfy the absorption law (x ∧
(x∨ y) = x = x∨ (x∧ y)). If they distribute over
each other, then the lattice is distributive.

All finite lattices have a unique minimum ele-
ment (⊥) and a unique maximum element (⊤). If
a lattice has a maximum and minimum element
and every element has a complement with respect
to these (x ∧ x = ⊥) and (x ∨ x = ⊤) then it is a
complemented lattice. If it is complemented and
distributive it is a Boolean lattice, equivalently,
Boolean algebra. If the lattice is Boolean then ev-
ery element x has a unique complement x.

3In our usage, the relationship between quasiorders and
partial orders is analogous to that between preorders and total
orders.

69

An element a of a Boolean algebra is an atom
iff a > ⊥ and there is no b such that a > b > ⊥.

If a set S is partially ordered by ⊑ and I is a
non-empty subset of S that is downward closed
(x ∈ I and y ⊑ x implies y ∈ I) and each pair
of elements in I has at least one upper bound in I ,
then I is an ideal. If the ideal includes a unique
maximum element a then it is the principal ideal
generated by a, which we will denote I(a). S and
⊑ will always be clear from the context.

(Principal) filters are defined dually: upward
closed and with lower bounds. We will denote the
principal filter generated by a as F(a).

4 Local and Strictly Local Sets of
Structures

Definition 4. Let R be a relational signature and
G be a subset of Fk(R).

Let L(G)
def
= {A | Fk(A) ⊆ G}.

Then L(G) is a strictly local set of R-structures.
A set S of R-structures is a locally definable set

of R-structures iff it is a Boolean combination of
strictly local sets.4

4.1 Local Logics
4.1.1 Well-Formed Formulae
Let wffk(R) be the set of Boolean formulae in
which the atomic formulae are the factors in
Fk(R). Usually we can be ambiguous about k, let-
ting it be determined by the formula itself.

4.1.2 Satisfaction with respect to
R-structures

Each R-structure provides a valuation of the for-
mulae in wffk(R) based on its set of factors: if
f ∈ Fk(R) and A is an R-structure then

A |= f
def⇐⇒ f ∈ Fk(A).

Let Φ be a set of wff(R) formulae and A a R-
structure. Then

A |= Φ
def⇐⇒ (∀ϕ ∈ Φ)[A |= ϕ]

4Note that Locally Definable sets of strings form the
classes that are usually referred to as Locally or Piecewise
Testable. In McNaughton and Papert (1971), these are spec-
ified by sets of permitted initial and final strings of length k,
usually k − 1 in later work, along with sets of permitted in-
ternal strings of length k. In this particular model-theoretic
setting the endmarkers obviate the need for three sets of per-
mitted factors, moreover “Testable” is more or less implied
and we have, for the most part, replaced it with “Definable”.
On the other hand, we have not been completely consistent
in doing so. This inconsistency should not prove to be overly
confusing.

and the models of Φ is the set

Mod(Φ)
def
= {A, a R-structure | A |= Φ}.

Φ is consistent iff Mod(Φ) 6= ∅.
Let Φ and Ψ be sets of wff(R) formulae. Φ

entails (logically implies) Ψ (Φ |= Ψ) iff, by
definition, Mod(Φ) ⊆ Mod(Ψ) (i.e., for all R-
structures A, A |= Φ ⇒ A |= Ψ). Φ and Ψ
are logically equivalent (Φ ≡ Ψ) iff, by definition,
Φ |= Ψ and Ψ |= Φ.

4.2 Local and Strictly Local Definitions
Let L = L(G) for some G ⊆ Fk(R) be a k-strictly
local set of R-structures. G is the set of permitted
factors; the structures in L(G) may not include any
factors but these. Let G = Fk(R) − G, the set
of forbidden factors of L. Since Fk(R) is finite,
G is as well. Then L includes all and only those
structures that do not include any of the factors in
G. Formally:

L = Mod(
∧

f∈G
[¬f]).

Lemma 2. A set of R-structures is strictly k-local
iff it is the set of models of a conjunction of nega-
tive literals of wffk(R).

As usual, we interpret sets of formulae conjunc-
tively, thus a set of R-structures is strictly k-local
iff it is Mod(Φ) where Φ ⊆ {¬f | f ∈ Fk(R)}.

Lemma 3. Since a set of structures is local iff it is
a Boolean combination of Strictly Locally Defin-
able structures, a set of R-structures is k-Locally
Definable if it is Mod(Φ) for any Φ ⊆ wffk(R).

5 Definable sets of subsets of Fk(R)

Consider the space of subsets of Fk(R), partially
ordered by subset (this is the powerset algebra of
Fk(R)). It is a Boolean algebra in which ⊤ is
Fk(R), ⊥ is ∅ and the atoms are the singleton sets
of individual factors in Fk(R). We will refer to this
space of subsets as Bk(R). Since Fk(R) is finite,
Bk(R) is as well.

Note that Fk maps R-structures to elements
of Bk(R); it is many-one and generally not
onto. While we have restricted our attention
to R-structures that are well-formed, those well-
formedness properties show up in Bk(R) only in
the structure of the sets of factors. Bk(R) is the
freely generated powerset of the set of k-factors
that occur in any well-formed R-structure; those
subsets may or may not be in the range of Fk.

70

Let A ⊑k B def⇐⇒ Fk(A) ⊆ Fk(B). This in-
duces a quasiorder on R-structures, in which two
R-structures A and B are equivalent with respect
to ⊑k iff they are logically equivalent with respect
to wffk(R).

N.B. We denote the order relation of the pow-
erset algebra of Bk(R) by ‘⊆’ and from this point
on reserve ‘⊑’ for the quasiorder it induces in the
space of R-structures.

We are ultimately interested in the properties
of the definable sets in that space of R-structures,
but will derive them from the properties of the de-
finable subsets of Bk(R). One of the advantages
of Bk(R) is that it is finite, while the set of R-
structures is infinite. More importantly, it has a
simple and regular structure that is independent
of the details of the properties of well-formed R-
structures.

5.1 Satisfaction with respect to Sets of
k-factors

To that end, extend ‘|=’ to sets of k-factors in the
natural way: S ⊆ Fk(R) satisfies f ∈ Fk(R) iff
f ∈ S, with the semantics of the Boolean con-
nectives being defined in the usual way. In order
to distinguish definable sets of sets of factors from
definable sets of R-structures, we will refer to the
sets of sets of k-factors that satisfy a given ϕ ∈
wffk(R) as Mod∗(ϕ) = {S ∈ Bk(R) | S |= ϕ}.

The semantics of the logical connectives ‘∧’,
‘∨’ and ‘¬’ correspond directly to the order-
theoretic operations ‘∧’, ‘∨’ and ‘·’. This is, of
course, no coincidence.

5.2 Strictly Local Sets of k-factors
Following Lemma 2, a subset of Bk(R) is strictly
local iff it is Mod∗(

∧
f∈Φ[¬f]), for some Φ ⊆

Fk(R).
Note that if f ∈ Fk(R) then Mod∗(f) is the

principal filter F(f) in Bk(R). Thus:

Lemma 4. A subset of Bk(R) is strictly local iff it
is the intersection of the complements of a (finite)
set of principal filters in Bk(R).

Let S be a strictly local subset of Bk(R). Since
filters are upward-closed, their complements are
downward-closed, as is S, the intersection of their
complements. The elements of S are necessarily
subsets of Φ (i.e., Fk(R) − Φ) and Φ ∈ S. Thus
S = I(Φ), the principal ideal generated by Φ.

Lemma 5. If S is a strictly local subset of Bk(R)
then S is a principal ideal in Bk(R).

Let S be any principal ideal in Bk(R). Since
ideals are downward closed, complements of ide-
als are necessarily upward closed. Let Υ(S) be
the set of minimal elements in S. Since Bk(R)
is finite, such minimal elements exist. Since it is
a Boolean algebra, each of those elements gen-
erates a principal filter in Bk(R). Then S =⋃

υ∈Υ(S)[F(υ)]. Thus, S =
⋂

υ∈Υ(S)[F(υ)].
Since Bk(R) is finite, so is Υ, thus S is strictly
local.

Theorem 1. A subset of Bk(R) is Strictly Locally
Definable iff it is a principal ideal.

5.3 Realizability

So properties of the strictly local subsets of Bk(R)
are, as promised, extremely simple. What we need
now is an abstract characterization of the sets of
strictly local sets of R-structures based on these
properties.

Some caution is required here, since Fk, as a
map between the space of structures and the space
of sets of factors, is not onto. The fact that an
arbitrary set of factors is a subset of the set of
factors of an R-structure A of the intended type
does not necessarily mean that it is the set of fac-
tors of a well-formed R-structure—for the word
models of Example 1 the factors will need to in-
clude both ‘⋊’ and ‘⋉’, at least. That type of re-
quirement is not, in general, Strictly-Locally De-
finable. We have incorporated the properties of the
intended models implicitly by considering only
well-formed structures in our space of structures.
The complexity of defining what it means to be
well-formed is a meta-logical issue.

We do know that if L is a k-strictly local set of
R-structures then Fk(L) is a subset of a principal
ideal in Bk(R). Moreover, every R-structure that
maps into that ideal is in L. But not every ele-
ment of that ideal is the image of a well-formed
R-structure. Those that are, we refer to as realiz-
able.

Definition 5. A subset S of Fk(R) is realizable
iff there is some set of well-formed R-structures A
such that Fk(A) = S.

Every strictly local set of R-structures is the pre-
image, under Fk, of the set of realizable elements
in a principal ideal in Bk(R).

71

6 Structure of the Definable Sets of
R-structures

Recall that ⊑k is the quasiordering of R-structures
that corresponds to ⊆ in Bk(R).

6.1 A Closure Property of Strictly k-Locally
Definable Sets

Since Fk maps every strictly k-local set of R-
structures into an downward closed set in Bk(R)
if A ∈ L, a strictly k-local set of R-structures, and
B ⊑k A then B ∈ L as well. So k-strictly local
sets are all downward closed under ⊑k.

But we know much more about Fk(L) than it is
downward closed. It is, in fact, a subset of a princi-
pal ideal that is generated by some set of k-factors,
in particular the G of Definition 4, and that every
realizable subset of G is the image of some struc-
ture in L. So, k-strictly local sets will be closed
under any operation that does not increase the set
of k-factors of its operands and which preserves
realizability.

Lemma 6. If ⊕ is an operation on R-structures
such that the set of k-factors of the result is a
subset of the union of the sets of k-factors of the
operands and which preserves realizability, then
every strictly k-local set of R-structures is closed
under ⊕.

We will refer to such operations as being con-
servative.

This is a closure condition on strictly k-local
sets but not a characterization. The other direc-
tion of the characterization depends on the theory
of the well-formed R-structures, i.e., on the notion
of realizability.

6.2 Characterization of the Local and
Strictly Local Sets of Structures

6.2.1 Local Sets
Since ⊑k also corresponds to entailment with re-
spect to wffk(R), two R-structures are equivalent
with respect to ⊑k iff they are logically equiva-
lent with respect to wffk(R). Thus sets of k-local
R-structures cannot break the equivalence classes
with respect to ⊑k.

Even stronger, every such equivalence class is
determined by the set of factors of the structures
in the class.

Lemma 7. Let ≡k denote equivalence with re-
spect to ⊑k and [A]k

def
= {B | A ≡k B}. Then

[A]k = Mod(
∧

f∈Fk(A)[f]∧∧
f∈Fk(R)−Fk(A)[¬f])

Theorem 2. A set of R-structures L is k-local iff
whenever B ≡k A then either both A,B ∈ L or
both A,B 6∈ L.

This is a completely general characterization.
Every k-local set of R-structures, regardless of the
theory of the structures, is the union of a set of
equivalence classes with respect to ≡k.

6.2.2 Strictly Local Sets
Note that, in the space of R-models, the inverse
of ⊑k is conservative, that is, if L is k-Strictly
Piecewise Locally Definable (SPLk), w ∈ L and
v ⊑k w then v ∈ L. By definition it does not
increase the set of k-factors, and v is trivially real-
izable. This is very close to a characterization of
SPLk, but not quite fully general.

For f ∈ Fk(R), with mild abuse of notation, let
F⊑

k (f)
def
= {A ∈ R | f ∈ Fk(A)}. This is the

set of R-models, upper-closed with respect to ⊑,
that is generated by f . Similarly, let F⊑

k (S), for
S ⊆ Fk(R) be the union of F⊑

k (f) for f ∈ S.

Lemma 8. Each of the following is a consequence
of the preceding statements:

1. L ∈ SPLk.

2. L =
⋂

f∈S

[
F⊑

k (f)
]
, S ⊆ Fk(R), finite.

3. w ∈ L and v ⊑k w ⇒ v ∈ L. (L is down-
ward closed with respect to ⊑k.)

4. L = F⊑
k (S), for some S ⊆ Fk(R).

Proof. Each step is nearly immediate. By
Lemma 2, L ∈ SPLk ⇔ L = Mod(

∧
f∈G [¬f]),

where G is finite, and each of the f ∈ G generates
an upper-closed set F⊑

k (f). Since these are upper-
closed, their complements are downward closed
with respect to ⊑k, as is their intersection.

To see that 3 implies 4, the complement of
L is upper-closed with respect to ⊑. Then S,
the set of minimal points in L witnesses state-
ment 4. That such a set of minimal points exists
is a consequence of the fact that there are no infi-
nite properly descending sequences with respect to
⊑, which itself is a consequence of the finiteness
of Bk(R).

The only difference between statements 4 and 2
is the requirement that S be finite. This is where
the theory of the well-formed structures comes in.
For word models, it is a consequence of Higman’s
Lemma (Higman, 1952) which says that there are

72

no infinite sequences of strings that are pairwise
unrelated by ⊑. For certain classes of tree mod-
els, it is a consequence of Kruskal’s Tree Theo-
rem (Kruskal, 1960), which is similar.

Theorem 3 (Characterization of Strictly Local
Sets of Word Models). A set of word models is
SPLk iff it is downward closed with respect to ⊑k.

7 Strictly Piecewise Local Stringsets

SPL is the class of stringsets corresponding to
the class of strictly local word models of Exam-
ple 1. Since these models are linear, factors can
be resolved into blocks of positions connected by
‘⊳’ which are, themselves, connected by ‘<’. In
the terminology of the Piecewise Local hierarchy,
these are subsequences of substrings. Rather than
a single parameter to indicate the size of a factor
we use j to denote the maximum number of sub-
strings and k to denote the maximum size of the
substrings: SPLj,k.

Note that SPL1,k coincides with the well known
class of SLk stringsets, which are all and only
those strictly definable in the reduct of our word
models that eliminates the precedence relation.
And SPLj,1 coincides with the SPj stringsets
which are all and only those strictly definable in
the reduct of our word models that eliminates suc-
cessor and the end markers.5

In what follows we use Fj,k and ⊑j,k rather than
the less precise Fjk+j−1 and ⊑jk+j−1.

We know, already that SPLj,k sets are closed un-
der ⊑j,k, and that M⊳,<

Σ (v) ⊑j,k M⊳,<
Σ (w) iff

Fj,k(M⊳,<
Σ (v)) ⊆ Fj,k(M⊳,<

Σ (w)) (modulo real-
izability), and that, more generally, they are closed
under every operation that is conservative in the
sense of Lemma 6. What we need is a natural oper-
ation on strings that is conservative. That depends
on realizability.

7.1 Realizability of sets of Fj,k factors

Definition 6 (Minimally Realizable). A set of fac-
tors S ⊆ Fj,k(M⊳,<

Σ) is minimally realizable iff
there is a sequence of subsets of S: q0 (q1 (
· · · (qn (qn+1 such that:6

5Since the contiguous blocks of a (j, 1)-factor are all sin-
gle symbols the presence of ‘⊳’ is inconsequential for the
definable sets. Since ⋊ < x < ⋉ for all positions x in the
string, their presence is inconsequential as well.

6We denote these subsets as qi to suggest the connection
to a finite state automaton, but we have no need to actually
construct such an automaton.

q0 = {⋊}
qi+1 = Fj,k(wi · σi+1),

for some wi ∈ {⋊}Σ∗, σi+1 ∈ Σ
such that Fj,k(wi) = qi

qn+1 = Fj,k(wn · ⋉),
for some wn ∈ {⋊}Σ∗

such that Fj,k(wn) = qn

qn+1 = S.

In this case the S is the set of Fj,k-factors of
M⊳,<

Σ (w), where w = σ1σ2 · · · σn, and w is
a minimal witness that such a well-formed word
model exists.

Note that every word model that is equivalent
to w with respect to ⊑j,k and also a witness of the
realizability of S but only those that have the same
length as w are minimal witnesses.

Every w ∈ Σ∗ is a witness of the realizability of
Fj,k(M⊳,<

Σ (w)). If |w| ≤ |v| for every v ∈ [w]j,k
then it is a minimal witness.

Proposition 2. A subset of Fj,k(M⊳,<
Σ) is realiz-

able iff it is the union of a finite set of minimally
realizable subsets of Fj,k(M⊳,<

Σ).

7.2 Some closure properties of SPLj,k sets

Using the characterization of Theorem 3 to prove
non-definability in SPLj,k can be cumbersome.
The following closure conditions, extensions of
the characterizations in earlier work on SLk and
SPj , may be somewhat easier to apply.

Theorem 4 (Generalized Suffix-Substitution Clo-
sure). Suppose L is SPLj,k.
Then if

• u1 · x · v1 ∈ L and u2 · x · v2 ∈ L, where
|x| = k − 1,

• and either Fj−1,k(u1) ⊆ Fj−1,k(u2) or
Fj−1,k(v2) ⊆ Fj−1,k(v1)

then u1 · x · v2 ∈ L.

Proof. From Lemma 6 we know that if substi-
tution of suffixes under these conditions is con-
servative then SPLj,k is closed with respect to
it. To see that it does not increase the set of
Fj,k(M⊳,<

Σ) note, to begin with, that every F1,k

factor in u1 ·x ·v2 is also in either u1 ·x or in x ·v2,
thus in F1,k(u1 ·x · v1)∪ F1,k(u2 ·x · v2). Suppose
f1 · f2 is a (j, k)-factor of u1 · x · v2, and that f1

is a (i, k)-factor of u1 and f2 a (j − i, k)-factor of
x ·v2 for some i > 1 (otherwise it is necessarily in
either u1 ·x·v1 or u2 ·x·v2). Since, by Definition 3,

73

Fj−1,k(w) includes Fj−i,k(w) for all strings w and
i > 1, f1 ∈ Fj−1,k(u1), f2 ∈ Fj−1,k(v1) and
f1 · f2 ∈ Fj,k(u1 · x · v1).

To see that realizability is maintained, note that
u1 · x · v2 is a minimal witness in which the initial
segment (up through x) of the sequence of subsets
of factors is from the minimal witness for u1x ·
v1 and the final segment (from x on) is from the
minimal witness for u2 · xv2.

Theorem 5 (Generalized Subsequence Closure).
Suppose w ∈ L ∈ SPLj,k.
Then if

• w = u1x1vx2u2, where either |x1| = |x2| =
k−1 or u1 = ε and |x1| < k−1 or u2 = ε
and |x2| < k − 1

• and F1,k(x1x2) ⊆ F1,k(x1vx2)

then u1x1x2u2 ∈ L.

Proof. First of all, note that whenever f is in
F1,k(u1x1x2u2) then either f ∈ F1,k(u1x1) or
f ∈ F1,k(x1x2) or f ∈ F1,k(x2u2). In each
case f is also in ∈ F1,k(u1x1vx2u2). Thus the
blocks of k consecutive factors in u1x1x2u2 oc-
cur in the same order in u1x1vx2u2. Consequently
Fj,k(u1x1x2u2) ⊆ Fj,k(u1x1vx2u2).

That this preserves realizability follows from
the same reasoning as for Generalized Suffix Sub-
stitution Closure.

8 Learnability

Strictly Local, Strictly Piecewise and Strictly
Piecewise Local Stringsets were studied in a
somewhat different form in Heinz (2007), where
they were shown to be learnable in the limit from
positive data in the sense of Gold (1967). In Heinz
(2010b) he generalizes the learning algorithm to a
broad class of stringsets on the based on the notion
of string extension.

Let A be a class of objects (factors, for exam-
ple). A string extension function is a total function
f , mapping Σ∗ to finite subsets of A. Each finite
subset of A can be interpreted as a grammar G by
letting L(G) = {w ∈ Σ∗ | f(w) ⊆ G}. Each
string extension function f determines a class of
stringsets Lf , the class of all stringsets licensed
by subsets of A in the range of f .

Clearly Fj,k for word models is a string exten-
sion function, with A being the set of all factors
of word models, and LFj,k

is the class of Strictly

Local, Strictly Piecewise or Strictly Piecewise Lo-
cal stringsets, depending on j and k. If we take
A to be the powerset of the set of all factors of
word models then f(w)

def
= {Fj,k(w)} is one, as

well, and Lf is the class of Locally, Piecewise and
Piecewise Locally Definable sets.

A text for a stringset L is an enumeration of
L ∪ {#} in arbitrary order, possibly with repeats.
If t is a text, then t[i] denotes the initial segment
t(0) . . . t(i). The learning function φ for a string
extension function f maps initial segments of a
text to finite subsets of A:

φf (t[i]) =





∅ if i = −1
φf (t[i − 1]) if t(i) = #
φf (t[i − 1]) ∪ f(t(i)) otherwise.

For sets of word models, this provides a practical
learning algorithm.

More generally, Fk for arbitrary R structures is
an extension function for that class of structures.
The issue in those cases is where the the enumer-
ation of members of the set comes from. For non-
phonotactic linguistic applications, it essentially
requires an annotated sample. If the sample is less
than fully characteristic, the learned grammar will
undergenerate. On the other hand, in all cases it is
useful even if the set is non-PLT. It will learn a set
of constraints that define the minimal PLT approx-
imation of that set. For an example of the useful-
ness of these constraints see Rogers and Lambert
(2017, to appear).

9 Some Examples from Phonology

In Section 2 we discussed the automata-theoretic
patterns in the StressTyp2 database. The six that
are Star-Free and require something more than
SL+co-SL+SP can each be shown to include just
one additional LT constraint of the form if stress
falls on a final syllable that is heavy, then a syllable
of some other type (an unstressed heavy, for ex-
ample) does not occur. Formally these constraints
can be expressed as H́⋉→¬X, which is logically
equivalent to ¬(X ∧ H́⋉). Since if this fails the X
must precede the ultimate H́, we can capture this
in SPL2,2 with the constraint¬(X < H́⋉).

Since both SL and SP constraints are express-
ible as SPL constraints all of these stress patterns,
other than the two lects of Arabic, are definable in
SPL + co-SL. This is significant from a cognitive
perspective because in order to check constraints
of these forms a mechanism needs only to attend

74

to factors that actually are present, in isolation, in
the input string. (See Rogers et al. (2012) for more
on this notion of cognitive complexity.)

9.1 Separating PLT from SF and TSL
In their simplest form (Heinz et al., 2011), Tier-
based Strictly Local (TSL) constraints are based
on a subset of the input alphabet (the tier al-
phabet) along with strictly local constraints in
terms of that alphabet. Operationally, the in-
put string is subjected to an alphabetic homo-
morphism which erases all symbols except for
those in the tier alphabet and the remaining string
is checked against the SL constraint. The TSL
stringsets are all Star-free, properly include the
SL stringsets but are incomparable with the LT,
PT and SP stringsets, although the intersection
of TSL and SP includes long distance phonotac-
tic patterns derived from asymmetric assimilation
processes (Heinz, 2010a).

The canonical separation between TSL and
these classes is long distance phonotactic dissim-
ulation patterns. As an example of the application
of the closure conditions in Section 7.2, we can
show that these patterns are not SPL or even PLT.

Latin liquid dissimulation (LLD): every pair
of ‘l’s is separated by at least one ‘r’ and every
pair of ‘r’s is separated by at least one ‘l’:

(∀x, y)[(x < y ∧ l(x) ∧ l(y))
→(∃z)[x < z ∧ z < y ∧ r(z)]]

∧
(∀x, y)[(x < y ∧ r(x) ∧ r(y))

→(∃z)[x < z ∧ z < y ∧ l(z)]]

This definition demonstrates that LLD is SF. It is
also TSL based on the tier alphabet {l, r} and the
constraint ¬(rr) ∧ ¬(ll).

We can demonstrate that it is not SPLj,k for any
j and k using either Generalized Suffix Substitu-
tion Closure (GSSC) or Generalized Subsequence
Closure (GSSeqC),

9.1.1 Using GSSC
Let

w1 = ⋊(sjklsjkr)jk · sjk · lsjkr(sjklsjkr)⋉

and
w2 = ⋊(sjklsjkr)jksjkl · sjk · r(sjklsjkr)⋉.

Both w1, w2 ∈ L, but
⋊(sjklsjkr)jk · sjk · r(sjklsjkr)⋉ 6∈ L.

Therefore, LLD is not SPLj,k for any j and k.

9.1.2 Using GSSeqC
Let w3 ∈ L be a similar string, divided into
u1x1vx2u2 as follows:
w3 =
⋊(sjklsjkr)jk · sk−1 · sklsk · sk−1 · r(sjklsjkr)⋉

Then |x1| = |x2| = k − 1 and F1,k(x1x2) ⊆
F1,k(x1vx2), but
w4 = u1x1x2u2

= ⋊(sjklsjkr)jk · sk−1 · sk−1 · r(sjklsjkr)⋉
is not in L.

9.1.3 Using ≡(j,k).
It is not hard to see that [W3](j,k) = [W4](j,k)

(equivalently Fj,k(W3) = Fj,k(W4)), where W3

and W4 are word models of w3 and w4 equiva-
lently. But w3 satisfies LLD, while w4 does not.

10 Conclusion

We have explored the model theory of a type of
propositional logic based on factors (connected
fragments) of structures defined as labeled purely
relational models and given characterizations of
the Locally and Strictly Locally Definable sets of
these structures. Using those tools, we have de-
rived a characterization of the SPL and PLT de-
finable stringsets, which completes the character-
ization of the propositional levels of the main se-
quence of the Piecewise Local hierarchy (See Fig-
ure 1).

SPL extends SL and SP by adding, on the one
hand, precedence constraints and, on the other, ad-
jacency constraints. The interplay of constraints
of these types motivated the original definition of
TSL and continues to motivate extensions of the
class. But TSL remains incomparable with the
sub-Star-Free part of the hierarchy. Ultimately, we
hope to find a class of structures that will allow us
to incorporate TSL in a natural way.

More importantly, we expect that these model-
theoretic tools, when applied to trees and other
types of labeled graphs will provide insight into lo-
cal accounts of autosegmental structures (Jardine,
2017) and other multi-tiered structures as well
as model-theoretic accounts of syntactic con-
straints (e.g. Rogers (1998); Graf (2018)).

Acknowledgments

The authors are indebted to Jeff Heinz, Larry Moss
and the anonymous referees for detailed and ex-
tremely helpful comments.

75

References
D. Beauquier and Jean-Eric Pin. 1991. Languages and

scanners. Theoretical Computer Science, 84:3–21.

J.A. Brzozowski and R. Knast. 1978. The dot-depth
hierarchy of star-free languages is infinite. Journal
of Computer and System Sciences, 16(1):37 – 55.

J.A. Brzozowski and I. Simon. 1973. Characterization
of locally testable events. Discrete Math, 4:243–
271.

J. R. Büchi. 1960. Weak second-order arithmetic and
finite automata. Zeitschrift für mathematische Logik
und Grundlagen der Mathematik, 6:66–92.

Calvin C. Elgot. 1961. Decision problems of finite au-
tomata design and related arithmetics. Transactions
of the American Mathematical Society, 98:21–51.

R. W. Goedemans, Jeffrey Heinz,
and Harry van der Hulst. 2015.
http://st2.ullet.net/files/files/
st2-v1-archive-0415.tar.gz. Retrieved
24 Jun 2015.

E.M. Gold. 1967. Language identification in the limit.
Information and Control, 10:447–474.

Thomas Graf. 2018. Why movement comes for free
once you have adjunction. In Proceedings of CLS
53, pages 117–137.

Jeffrey Heinz. 2007. The Inductive Learning of Phono-
tactic Patterns. Ph.D. thesis, University of Califor-
nia, Los Angeles.

Jeffrey Heinz. 2010a. Learning long-distance phono-
tactics. Linguistic Inquiry, 41(4):623–661.

Jeffrey Heinz. 2010b. String extension learning. In
Proceedings of the 48th Annual Meeting of the As-
sociation for Computational Linguistics, pages 897–
906, Uppsala, Sweden. Association for Computa-
tional Linguistics.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tan-
ner. 2011. Tier-based strictly local constraints for
phonology. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 58–64, Portland, Oregon, USA. Associa-
tion for Computational Linguistics.

Graham Higman. 1952. Ordering by divisibility in ab-
stract algebras. Proceedings of the London Mathe-
matical Society, s3-2(1):326–336.

Wilfird Hodges. 1993. Model Theory. Cambridge Uni-
versity Press, Cambridge, UK.

Adam Jardine. 2017. The local nature of tone-
association patterns. Phonology, 34:385–405.

J. B. Kruskal. 1960. Well-quasi-ordering, the tree theo-
rem, and Vazsonyi’s conjecture. Transactions of the
American Mathematical Society, 95:210–225.

Leonid Libkin. 2004. Elements of Finite Model
Theory. Texts in Theoretical Computer Science.
Springer, Berlin and New York.

Saunders MacLane and Garrett Birkhoff. 1967, 1970.
Algebra. Macmillan, New York.

Robert McNaughton and Seymour Papert. 1971.
Counter-Free Automata. MIT Press.

Yu. T. Medvedev. 1964. On the class of events repre-
sentable in a finite automaton. In Edward F. Moore,
editor, Sequential Machines; Selected Papers, pages
215–227. Addison-Wesley. Originally published in
Russian in Avtomaty, 1956, 385–401.

James Rogers. 1998. A Descriptive Approach to
Language-Theoretic Complexity. CSLI Publica-
tions, Stanford, CA.

James Rogers, Jeff Heinz, Margaret Fero, Jeremy
Hurst, Dakotah Lambert, and Sean Wibel. 2012.
Cognitive and sub-regular complexity. In Glyn Mor-
rill and Mark-Jan Nederhof, editors, Formal Gram-
mar 2012, volume 8036 of Lecture Notes in Com-
puter Science, pages 90–108. Springer.

James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlef-
sen, Molly Visscher, David Wellcome, and Sean
Wibel. 2010. On languages piecewise testable in the
strict sense. In Christian Ebert, Gerhard Jäger, and
Jens Michaelis, editors, The Mathematics of Lan-
guage: 10th and 11th Biennial Conference, MOL
10, Los Angeles, CA, USA, July 28-30, 2007, and
MOL 11, Bielefeld, Germany, August 20-21, 2009,
Revised Selected Papers, pages 255–265. Springer
Berlin Heidelberg, Berlin, Heidelberg.

James Rogers and Dakotah Lambert. 2017. Extracting
forbidden factors from regular stringsets. In Pro-
ceedings of the 15th Meeting on the Mathematics of
Language, pages 36–46. Association for Computa-
tional Linguistics.

James Rogers and Dakotah Lambert. to appear.
Extracting subregular constraints from regular
stringsets. In press.

M.P. Schützenberger. 1965. On finite monoids hav-
ing only trivial subgroups. Information and Control,
8(2):190 – 194.

Imre Simon. 1975. Piecewise testable events. In
Automata Theory and Formal Languages: 2nd
Grammatical Inference conference, pages 214–222,
Berlin. Springer-Verlag.

Howard Straubing. 1985. Finite semigroup varieties of
the form v∗d. Journal of Pure and Applied Algebra,
36:53–94.

Howard Straubing. 1994. Finte Automata, Formal
Logic, and Circuit Complexity. "Birkhäuser".

Wolfgang Thomas. 1978. The theory of successor
with and extra predicate. Mathematische Annalen,
237:121–232.

76

Wolfgang Thomas. 1982. Classifying regular events in
symbolic logic. Journal of Computer and Systems
Sciences, 25:360–376.

Denis Thérien and Alex Weiss. 1985. Graph congru-
ences and wreath products. Journal of Pure and Ap-
plied Algebra, 36:205 – 215.

77

Efficient Learning of Output Tier-Based Strictly 2-Local Functions

Phillip Burness
University of Ottawa

pburn036@uottawa.ca

Kevin McMullin
University of Ottawa

kevin.mcmullin@uottawa.ca

Abstract

This paper characterizes the Output Tier-based
Strictly k-Local (OTSLk) class of string-to-
string functions, which are relevant for mod-
eling long-distance phonological processes as
input-output maps. After showing that any
OTSLk function can be learned when k and the
tier are given, we present a new algorithm that
induces the tier itself when k = 2 and provably
learns any total OTSL2 function in polynomial
time and data—the first such learner for any
class of tier-based functions.

1 Introduction

In this paper, we investigate the class of Output
Tier-based Strictly k-Local (OTSLk) functions. In
terms of finite state transducers, OTSLk functions
are those for which the output symbol(s) to be
written at each timestep depends on the k−1 most
recent symbols on the output tape that belong to
the relevant ‘tier’ (a subset of the output alphabet;
Heinz et al., 2011), without regard for any non-
tier symbols that might have been written between
them or after them. We show that they are learn-
able when the contents of the tier are provided as
input to the learner, and introduce an algorithm
that provably and efficiently learns any total OTSL
function when k = 2.

Recent research investigating the computational
properties of phonological patterns observed in
natural language has shown that many attested
processes can be characterized as Strictly Local
(SL) functions (Chandlee, 2014; Chandlee et al.,
2014, 2015). That is, the output at any given
timestep is dependent on the previous k − 1 sym-
bols from either the input string (Input Strictly k-
Local; ISLk) or the output string (Output Strictly
k-Local; OSLk). Multiple characterizations of
these classes exist and their properties are well-
understood. One important distinction between

the two is that non-iterative processes are ISL,
whereas processes that apply iteratively to multi-
ple targets are OSL. Moreover, efficient learning
algorithms exist for both the ISL and OSL func-
tions. The OSL Function Inference Algorithm
(OSLFIA; Chandlee et al., 2015) is of particular
importance to this paper, as we will show that
many of their theoretical results can be general-
ized to OTSL functions in a natural way.

Long-distance phonological processes, for
which a potentially unbounded number of seg-
ments may intervene between the trigger and tar-
get without being affected in any way, are nei-
ther ISL nor OSL for any value of k. For exam-
ple, Samala has a long-distance process of sibi-
lant harmony in which an underlying /s/ surfaces
as [S] if another [S] appears anywhere later in the
word. This is seen when, e.g., the perfective suffix
/-waS/ is added to a root containing /s/, as in /ha-
s-xintila-waS/→[haSxintilawaS] ‘his former gentile
name’ (Applegate, 1972). This process can be un-
derstood as applying iteratively to multiple targets,
as in /s-lu-sisin-waS/→[SluSiSinwaS] ‘It is all grown
awry’. Indeed, it seems that the vast majority of
attested long-distance processes are enforced iter-
atively (Kaplan, 2008; Hansson, 2010). As such,
we focus this paper on OTSLk functions in partic-
ular, which generalize the OSLk class in a way that
allows us to model these kinds of long-distance
processes. We note that ITSLk functions can be
characterized in a similar way and that the learning
strategy outlined below could likely be extended to
total ITSL2 functions.

While the notion of a tier has long been incor-
porated into phonological theory (e.g., Clements,
1980; Goldsmith, 1990; Odden, 1994; Heinz et al.,
2011; McMullin, 2016), the range of possible tiers
is typically assumed to be available to the learner
a priori. Each possible tier could, for example,
be defined in terms of feature specifications or

78

natural classes of segments (e.g., Hayes and Wil-
son, 2008). Though algorithms have been de-
veloped for inducing a relevant tier from a sam-
ple of positive training, their success is limited
to phonotactic co-occurrence restrictions. This
is true both for constraint-based maximum en-
tropy learners (Gouskova and Gallagher, 2019) as
well as for algorithms that learn grammars for
Tier-based Strictly Local formal languages (Jar-
dine and Heinz, 2016; Jardine and McMullin,
2017). To our knowledge, the algorithm pre-
sented below, which we call the Output Tier-based
Strictly 2-Local Function Inference Algorithm
(OTSL2FIA), is the first algorithm which learns
the relevant tier for transformations of underlying
representations (strings of input segments) to sur-
face forms (strings of output segments).

The remainder of this paper is organized as fol-
lows. Notation and relevant concepts are pre-
sented in Section 2. In Section 3, we define the
OTSL functions and characterize them in terms
of finite state transducers. In Section 4, we high-
light several important properties of OTSL2 func-
tions in particular that can be taken advantage of
during learning. All aspects of the learning algo-
rithm, along with the theoretical learning results,
are described in Section 5. Section 6 discusses
how OTSL2 functions can model various phono-
logical processes and identifies several avenues for
future research. Section 7 concludes.

2 Preliminaries

2.1 Strings and sets

Given a set S, we write card(S) to denote its car-
dinality. For a string w made of symbols from
some alphabet Σ, |w| denotes the length of the
string. We write Σ∗ to denote all possible strings
made from the alphabet Σ, while Σn denotes all
possible strings made from that alphabet with a
length of n, and Σ≤n denotes all such strings with
a length up to n. The unique string of length 0 (the
empty string) is written as λ. Given two strings u
and v, we write u ·v to denote their concatenation,
but often shorten this to uv when context permits.
We write fack(w) to denote all the contiguous
substrings of length k (the k-factors) contained in
a string w.

We assume a fixed but arbitrary total order ≺
over the letters of Σ, an order which we ex-
tend to all strings in Σ∗ by defining the length-
lexicographical order (Oncina et al., 1993; Chan-

dlee et al., 2015) as follows. String w1 oc-
curs length-lexicographically before w2 (written
as w1 / w2) when |w1| < |w2| or, if |w1| =
|w2|, when ai ≺ bi where ai is the ith letter in
w1, bi is the ith letter in w2, and i is the first
position on which w1 and w2 differ. For exam-
ple, given Σ = {a, b} where a ≺ b, we have
λ / a / b / aa / ab / ba / bb / aaa and so on.

A prefix of some string w is any string u such
that w = ux and x ∈ Σ∗. Similarly, a suffix of
some stringw is any string u such thatw = xu and
x ∈ Σ∗. Note that any string is a prefix and suffix
of itself, and that λ is a prefix and suffix of every
string. When |w| ≥ n, Prefn(w) and Suffn(w)
denote the unique prefix and suffix of w with a
length of n; when |w| < n, they simply denote w
itself. We write Pref∗(w) to denote the set of all
prefixes of w. Also, Suffn(Suffn(w1)w2)) =
Suffn(w1w2). Given a string w, one of its pre-
fixes p, and one of its prefixes s, we write p−1 · w
to represent the string w without that prefix p and
write w · s−1 to represent the string w without
that suffix s. For example, a−1 · aba = ba and
aba · a−1 = ab. Finally, given a set of strings S,
we write lcp(S) to denote the longest common
prefix of S, which is the string u such that u is a
prefix of every w ∈ S, and there exists no other
string v such that |v| > |u| and v is also a prefix of
every w ∈ S.

2.2 Functions and transducers

This paper deals exclusively with string-to-string
functions, relations that pair every w ∈ Σ∗ with at
most one y ∈ ∆∗, where Σ and ∆ are the input al-
phabet and output alphabet respectively. The input
language and output language of such a function
are pre image(f) = {x | (∃y)[x 7→f y]} and
image(f) = {y | (∃x)[x 7→f y]}, respectively.
An important concept is that of the tails of an in-
put string w with respect to a function f .

Definition 1. (Tails) Given a function f and an
input w ∈ Σ∗, tailsf (w) = {(y, v) | f(wy) =
uv ∧ u = lcp(f(wΣ∗))}.

In words, tailsf (w) pairs every possible
string y ∈ Σ∗ with the portion of f(wy) that is
directly attributable to y. That is, it describes the
effect that w has on the output of any subsequent
string of input symbols. When tailsf (w1) =
tailsf (w2) we say that w1 and w2 are tail-
equivalent with respect to f .

A related concept to tails and tail-equivalency

79

is the contribution of a symbol a ∈ Σ relative to a
string w ∈ Σ∗ with respect to a function f .

Definition 2. (Contribution) Given a function f ,
some a ∈ Σ, and some w ∈ Σ∗, contf (a,w) =
lcp(f(wΣ∗))−1 · lcp(f(waΣ∗)).

In words, for an input string x that has the prefix
wa, the contribution of the a in wa is the portion
of f(x) that is uniquely and directly attributable to
that instance of a.

The Output Tier-based Strictly Local functions
that will be introduced below are a proper subclass
of the subsequential functions. Oncina and Garcı́a
(1991) show that when a function is subsequen-
tial, tail-equivalency will partition Σ∗ into finitely
many blocks, allowing us to construct a finite-
state transducer that computes f . In this paper we
use delimited subsequential finite state transducers
(DSFSTs; see Jardine et al., 2014), to character-
ize the class of Output Strictly Local (OSL) func-
tions. The following definition is drawn directly
from Chandlee et al. (2015).

Definition 3. A delimited subsequential fi-
nite state trasnducer (DSFST) is a 6-tuple
〈Q, q0, qf ,Σ,∆, δ〉whereQ is a finite set of states,
q0 ∈ Q is the unique initial state, qf ∈ Q is
the unique final state, Σ is the finite input al-
phabet, ∆ is the finite output alphabet, and δ ⊆
Q× (Σ∪{o,n})×∆∗×Q is the transition func-
tion (where o /∈ Σ indicates the start of the input
and n /∈ Σ indicates the end of the input), and the
following hold:

1. if (q, a, u, q′) ∈ δ then q 6= qf and q′ 6= q0

2. if (q, a, u, qf) ∈ δ then a = n and q 6= q0

3. if (q0, a, u, q
′) ∈ δ then a = o and if

(q,o, u, q′) ∈ δ then q = q0

4. if (q, a, u, q′), (q, a, u′, q′′) ∈ δ then q′ = q′′

and u = u′

Each transition (q, a, u, q′) ∈ δ can be seen
as an instruction to append u to the end of the
output tape and to move to state q′ upon read-
ing a while in state q. This transition func-
tion may be partial, and its recursive exten-
sion δ∗ is the smallest set containing δ closed
under the following conditions: (q, λ, λ, q) ∈
δ∗, and (q, w, u, q′), (q′, a, v, q′′) ∈ δ∗ ⇒
(q, wa, uv, q′′) ∈ δ∗. The initial state of a DS-
FST has no incoming transitions and has exactly

one outgoing transition, which will be for the in-
put o and does not land in the final state. Further-
more, the final state of a DSFST has no outgoing
transitions, and every transition into the final state
is for the input n. DSFSTs are also deterministic
on the input, such that each state has at most one
outgoing transition per input symbol.

The size of a DSFST T = 〈Q, q0, qf ,Σ,∆, δ〉
is |T | = card(Q) +card(δ) +

∑
(q,a,u,q′)∈δ |u|,

and the relation defined by a DSFST is R(T) =
{(x, y) ∈ Σ∗ ×∆∗ | (q0,oxn, y, qf) ∈ δ∗}.

The DSFSTs we will use below have a special
property known as onwardness, which informally
means that the writing of the output is never de-
layed. The following formal definition of onward-
ness and a related lemma are borrowed from Chan-
dlee et al. (2015).

Definition 4. (Onwardness) A DSFST is onward if
for every w ∈ Σ∗ and u ∈ ∆∗, (q0,ow, u, q) ∈
δ∗⇐⇒u = lcp(f(wΣ∗)).

Lemma 1. Let the outputs of the edges out
of state q be Outputs(q) = {u | (∃a ∈
Σ ∪ {o,n}) (∃q′ ∈ Q) [(q, a, u, q′) ∈ δ]}.
If T is an onward DSFST and recognizes f ,
then ∀q 6= q0, lcp(Outputs(q)) = λ and
lcp(Outputs(q0)) = lcp(f(Σ∗)).

Below we will frequently make reference to the
length-lexicographically earliest input string that
can lead to a state q in a given transducer T , which
we will denote as wq. A formal definition is pro-
vided here for reference.

Definition 5. (Earliest string) Given a transducer
T = 〈Q, q0, qf ,Σ,∆, δ〉, the earliest string that
leads to q ∈ Q is wq = min/{w ∈ Σ∗ |
∃u, (q0,ow, u, q) ∈ δ∗}.

A distinction that will be important throughout
the rest of this paper is that between the writing
that occurs in a DSFST as it is reading letters
from Σ, and the writing that occurs at the very
end (when the DSFST reads n). To make this dis-
tinction, Chandlee et al. (2015) defined the prefix
function fp associated with a subsequential func-
tion f as follows.

Definition 6. (Prefix function) Given a subse-
quential function f , its associated prefix function
fp is such that fp(w) = lcp(f(wΣ∗)).

Remark 1. Given a subsequential function f ,
some a ∈ Σ, and some input string w ∈
Σ∗, contf (a,w) = fp(w)−1 · fp(wa) and
contf (n, w) = fp(w)−1 · f(w).

80

2.3 Strict locality and tiers

Chandlee (2014) and Chandlee et al. (2014) orig-
inally introduced the Input Strictly Local (ISL)
and Output Strictly Local (OSL) functions, both
of which generalize Strictly Local (SL) stringsets
to functions based on one of the defining proper-
ties of SL languages, the Suffix Substitution Clo-
sure (Rogers and Pullum, 2011). The definitions
of the ISL and OSL functions exploit a corollary
of this defining property, which Chandlee et al.
(2015) call Suffix-defined Residuals. For reasons
of space, we only discuss the OSL functions be-
low.

Theorem 1. (Suffix Substitution Closure) A lan-
guage L is SL if for all strings u1, v1, u2, v2 there
exists a natural number k such that for any string
x of length k − 1, if u1xv1, u2xv2 ∈ L, then
u1xv2 ∈ L.

Corollary 1. (Suffix-defined Residuals) A lan-
guage L is SL if for all w1, w2 ∈ Σ∗, there ex-
ists a natural number k such that if Suffk−1(w1)
= Suffk−1(w2) then {v | w1v ∈ L} = {v |
w2v ∈ L}, that is w1 and w2 have the same resid-
uals (tails) with respect to L.

Definition 7. (Output Strictly Local functions)
A function f is OSLk if for all w1, w2 ∈
Σ∗, Suffk−1(fp(w1)) = Suffk−1(fp(w2)) ⇒
tailsf (w1) = tailsf (w2).

Chandlee (2014) and Chandlee et al. (2014,
2015) show that most iterative phonological pro-
cesses can be modelled with an OSL function,
with an important exception being long-distance
iterative processes like consonant harmony. This
is parallel to the fact that long-distance phonotac-
tics cannot be represented with an SL stringset,
which motivated Heinz et al. (2011) to define
the Tier-based Strictly Local (TSL) languages—
stringsets that are SL after an erasure function has
applied, masking all symbols that are irrelevant
to the restrictions that the language places on its
strings.

Definition 8. (Erasure function) Given an alpha-
bet Σ, a tier Θ ⊆ Σ, and a string w = a1...an,
EraseΘ(w) = b1...bn where for all i ≤ n,
bi = ai if ai ∈ Θ, else bi = λ.

Informally, EraseΘ(w) returns the string w
with all non-tier elements removed. For con-
venience, we will write SuffnΘ(w) to mean
Suffn(EraseΘ(w)) in what follows.

Definition 9. (Tier-based Strictly Local lan-
guages) A language L is Tier-based Strictly k-
Local (TSLk) if there is a tier Θ ⊆ Σ and a subset
S ⊆ fack(oΘ∗n) such that:
L = {w ∈ Σ∗ | fack(oEraseΘ(w)n) ⊆ S}

3 Output Tier-based Strictly Local
functions and transducers

In this section, we define the OTSL functions,
which generalize the TSL stringsets to functions
in the same way that the OSL functions general-
ize SL stringsets to functions (see Chandlee, 2014;
Chandlee et al., 2015).

Definition 10. (Output Tier-based Strictly Lo-
cal functions) A function f is OTSLk if there
is a tier Θ ⊆ ∆ such that for all w1, w2 ∈
Σ∗, Suffk−1

Θ (fp(w1)) = Suffk−1
Θ (fp(w2)) ⇒

tailsf (w1) = tailsf (w2).

The OTSL class properly contains the OSL
functions, since every OSLk function can be de-
scribed as an OTSLk function whose tier is equal
to the entire output alphabet. Note that it is pos-
sible for a single OTSL function to be described
with more than one tier. For example, the identity
function (where Σ = ∆ and f(w) = w) can be
described with any subset of ∆ as its tier. We use
the term k-tier to describe a tier Θ for which f is
OTSLk.

Like the OSLk functions, the OTSLk functions
can be characterized in automata-theoretic terms.
First, we define OTSLk finite state transducers as
follows.

Definition 11. An onward DSFST T =
〈Q, q0, qf ,Σ,∆, δ〉 is OTSLk for the tier Θ ⊆ ∆
if:

1. Q = S ∪ {q0, qf} with S ⊆ Θ≤k−1

2. (∀u ∈ ∆∗)
[(q0,o, u, q′) ∈ δ ⇒ q′ = Suffk−1

Θ (u)]

3. (∀q ∈ Q− {q0},∀a ∈ Σ, ∀u ∈ ∆∗)
[(q, a, u, q′) ∈ δ ⇒ q′ = Suffk−1

Θ (qu)].

Lemmas 2 and 3, together with Theorem 2,
show that the OTSLk functions and the functions
represented by OTSLk transducers exactly corre-
spond.

Lemma 2. Let T = 〈Q, q0, qf ,Σ,∆, δ〉 be an
OTSLk transducer for the tier Θ. The following
holds: (q0,ow, u, q) ∈ δ∗ ⇒ q = Suffk−1

Θ (u).

81

Lemma 3. Any OTSLk transducer corresponds to
an OTSLk function.

Theorem 2. Given an OTSLk function f and
one of its k-tiers Θ, the DSFST T =
〈Q, q0, qf ,Σ,∆, δ〉 defined as follows computes f :

1. Q = S ∪ {q0, qf} with S ⊆ Θ≤k−1

2. (q0,o, u,Suffk−1
Θ (u)) ∈ δ⇐⇒u = fp(λ)

3. a ∈ Σ, (q, a, u,Suff1
Θ(qu)) ∈ δ⇐⇒

(∃w) [fp(w) = vr ∧ Suffk−1
Θ (vr) = q ∧

fp(wa) = vru]
where r = t1x1t2x2...tk−1xk−1,
ti ∈ Θ, xi ∈ (∆−Θ)∗ and v = fp(w) · r−1

4. (q,n, u, qf) ∈ δ⇐⇒u = fp(wq)
−1 · f(wq)

We note that these are trivial extensions of Lem-
mas 3, 4, and Theorem 2 in Chandlee et al.
(2015). Indeed, only two minor changes are
necessary for this generalization to OTSLk func-
tions. First, each instance of Suffk−1 must be
replaced with Suffk−1

Θ . Second, in order to ac-
count for the fact that non-tier elements may come
between relevant tier elements, certain references
to a string q = t1t2...tk−1 must be rewritten as
r = t1x1t2x2...tk−1xk−1, where ti ∈ Θ and
xi ∈ (∆−Θ)∗. As the proofs are otherwise iden-
tical in structure to those found in Chandlee et al.
(2015), we do not provide them here.

It is therefore the case that any OTSLk function
can be represented by an OTSLk transducer. Infor-
mally, this will be an onward DSFST in which the
non-initial and non-final states represent the most
recent k−1 tier symbols written thus far, meaning
that this is the only information that will dictate
what the DSFST writes upon reading the next in-
put symbol.

As an example, Figure 1 presents an OTSL2

transducer that models the unbounded sibilant har-
mony in Samala from Section 1. Note that in order
to achieve the regressive directionality of the pro-
cess, we assume that this transducer reads input
strings from right-to-left (following, e.g., Heinz
and Lai, 2013; Chandlee et al., 2015). Direction-
ality will be further discussed in Section 6.

4 Useful properties of OTSL2 functions

The main goal of this paper is to demonstrate how
OTSL functions can be learned from positive data,
even without prior knowledge of the tier itself. We
note that the tier-induction strategy adopted below

q0

λ

Ss

qf

o:λ

?:?
S:Ss:s

S:S

s:S

?:?

s:s

S:s

?:? n:λ
n:λ

n:λ

Figure 1: An OTSL2 transducer that models un-
bounded sibilant harmony, where ? represents any
symbol that is not s or S

relies on certain properties that hold when k = 2,
but not necessarily for greater values of k. These
are outlined below.

First, when an OTSL2 function f can be de-
scribed with more than one 2-tier, the union of any
two or more such 2-tiers is also a 2-tier for f .

Lemma 4. Given an OTSL2 function f , if Θ1 ⊆ ∆
and Θ2 ⊆ ∆ are both 2-tiers for f , then Ω =
Θ1 ∪Θ2 is also a 2-tier for f .

Proof. If Suff1
Ω(fp(w1)) = Suff1

Ω(fp(w2)) =
t, then t ∈ Θ1 or t ∈ Θ2. If t ∈ Θ1,
then Suff1

Θ1
(fp(w1)) = Suff1

Θ1
(fp(w2)) =

t ⇒ tailsf (w1) = tailsf (w2). If t ∈
Θ2, then Suff1

Θ2
(fp(w1)) = Suff1

Θ2
(fp(w2))

= t ⇒ tailsf (w1) = tailsf (w2). There-
fore, Suff1

Ω(fp(w1)) = Suff1
Ω(fp(w2)) = t ⇒

tailsf (w1) = tailsf (w2)

It is this property that allows us to identify a
unique target tier for an OTSL2 function, which
the algorithm can find by flagging and removing
elements of ∆ from its hypothesis when evidence
is found that they cannot be on a relevant tier. We
define this canonical 2-tier as follows.

Definition 12. (Canonical 2-tier) Given an OTSL2

function f , Θ is the canonical 2-tier for f iff
there is no other 2-tier Ω ⊆ ∆ for f such that
card(Ω) ≥ card(Θ).

Remark 2. Given an OTSL2 function f , its canon-
ical 2-tier Θ is a superset of any 2-tier for f . (This
follows immediately from Lemma 4.)

There is therefore a unique canonical 2-tier (i.e.,
the largest one) for each OTSL2 function. Inter-
estingly, this can be exploited during the learning

82

process, since it leads to the following useful prop-
erty of OTSL2 functions.

Lemma 5. Let f : Σ∗ → ∆∗ be an OTSL2 func-
tion, let Θ be its canonical 2-tier, and let Ω be
such that Θ ⊂ Ω ⊆ ∆. We have ∃a ∈ (Ω − Θ),
∃w1, w2 ∈ Σ∗, and ∃x ∈ Σ ∪ {n} such that
Suff1

Ω(fp(w1)) = Suff1
Ω(fp(w2)) = a and

contf (x,w1) 6= contf (x,w2).

Proof. By contradiction. Suppose that the lemma
is false. This means that ∀a ∈ (Ω−Θ), ∀w1, w2 ∈
Σ∗, and ∀x ∈ Σ ∪ {n}, we have Suff1

Ω(fp(w1))
= Suff1

Ω(fp(w2)) = a ⇒ contf (x,w1) =
contf (x,w2). Now, since Θ is a 2-tier for f ,
it is also the case that ∀b ∈ Θ, ∀w1, w2 ∈ Σ∗,
and ∀x ∈ Σ ∪ {n}, we have Suff1

Ω(fp(w1))
= Suff1

Ω(fp(w2)) = b ⇒ contf (x,w1) =
contf (x,w2). Together these imply that ∀c ∈
Ω, ∀w1, w2 ∈ Σ∗, and ∀x ∈ Σ ∪ {n}, we
have Suff1

Ω(fp(w1)) = Suff1
Ω(fp(w2)) = c⇒

contf (x,w1) = contf (x,w2).
Since [Suff1

Ω(fp(w1)) = Suff1
Ω(fp(w2))

and contf (x,w1) = contf (x,w2)] ⇒
Suff1

Ω(fp(w1x)) = Suff1
Ω(fp(w2x)), we

also have contf (y, w1x) = contf (y, w2x)
for all y ∈ Σ ∪ {n}. This applies recursively,
giving us Suff1

Ω(fp(w1)) = Suff1
Ω(fp(w2))

⇒ tailsf (w1) = tailsf (w2), which means
that Ω is a 2-tier for f . However, card(Ω) >
card(Θ), contradicting the fact that Θ is the
canonical 2-tier for f .

Importantly, it follows from Lemma 5 that for
any set Ω which is a strict superset of Θ (the
canonical 2-tier), we will always be able to find
evidence that some member of Ω could not be a
member of any 2-tier for f . It is this property
of OTSL2 functions that our algorithm makes use
of to determine which output symbols are in Θ.
Once again, when k > 2, this property does not
necessarily hold.1 Accordingly, we restrict our-
selves to k = 2 when discussing the learning of
OTSL functions without prior knowledge of the
tier. While OTSL2 functions seem sufficient for
modelling a wide range of long-distance phono-
logical processes, we discuss certain exceptions in
Section 6.

1For example, if ∆ = {a, b, c}, there could be an OTSL3

function for which Θ1 = {a, b} and Θ2 = {a, c} are both
3-tiers, but Ω = {a, b, c} is not.

5 Learning OTSL functions

5.1 Learning paradigm

We adopt the criterion for successful learning that
requires exact identification in the limit from pos-
itive data (Gold, 1967), with polynomial bounds
on time and data (de la Higuera, 1997). We first
define what it means for a class of functions to be
represented by a class of representations.

Definition 13. A class T of functions is repre-
sented by a class R of representations if every r ∈
R is of finite size and there is a total and surjective
naming function L : R→ T such that L(r) = t if
and only if for all w ∈ pre image(t), r(w) =
t(w), where r(w) is the output produced by r
given the input w.

The notions of a sample and a learning algo-
rithm are defined as follows.

Definition 14. (Sample) A sample S for a function
t ∈ T is a finite set of data consistent with t, that
is to say (w, u) ∈ S iff t(w) = v. The size of a
sample is the sum of the length of the strings it is
composed of: |S| = ∑(w,u)∈S |w|+ |u|.
Definition 15. (Learning algorithm) A (T,R)-
learning algorithm A is a program that takes as
input a sample for a function t ∈ T and outputs a
representation from R.

The paradigm relies on the notion of a charac-
teristic sample, adapted here for functions as in
Chandlee et al. (2015).

Definition 16. (Characteristic sample) For a
(T,R)-learning algorithm A, a sample CS is a
characteristic sample of a function t ∈ T if for
all samples S ⊇ CS, A returns a representation r
such that L(r) = t.

The learning paradigm can now be defined as
follows.

Definition 17. (Identification in polynomial time
and data) A class T of functions is identifiable in
polynomial time and data if there exists a (T,R)-
learning algorithm A and two polynomial equa-
tions p() and q() such that:

1. For any sample S of size m for t ∈ T, A
returns a hypothesis r ∈ R in O(p(m)) time.

2. For each representation r ∈ R of size n, with
t = L(r), there exists a characteristic sample
of t for A of size at most O(q(n)).

83

5.2 Learning when the tier is given

Prior to describing the approach we take to induc-
ing the contents of a tier when k = 2, we note that
learning any OTSLk function from positive data
is relatively straightforward if the value of k and
the tier Θ are known beforehand. In particular, al-
though the OSLFIA presented in Chandlee et al.
(2015) was designed only to learn OSL functions,
it turns out that a minor modification allows us to
extend their result to OTSL functions, so long as k
and Θ are known beforehand. We summarize how
this can be done below.

In its original form, the OSLFIA inevitably fails
to learn any OTSL function that is not itself OSL
(i.e., where Θ 6= ∆). Specifically, since the al-
gorithm labels each landing state of a transition
with the k − 1 suffix of its associated output, it
will always incorrectly determine the landing state
of one of more transitions when there is a long-
distance dependency. Moreover, the exact way in
which the resulting OSL transducer differs from
the target OTSL transducer is somewhat unpre-
dictable. As such, there does not seem to be a
general approach for transforming the OSLFIA’s
output into an appropriate OTSLk transducer.

In cases where Θ is known beforehand, how-
ever, we can circumvent this issue by simply spec-
ifying that non-tier elements should be skipped
over when labelling a state. In doing so, the algo-
rithm will be able to find all of the necessary states
as well as the correct landing state for each tran-
sition in the target OTSLk transducer. This mod-
ification of the OSLFIA is incorporated into the
function build fst, which is detailed in Algo-
rithm 1. While this constitutes one important as-
pect of learning OTSLk functions, it is nonetheless
a major challenge to determine the actual contents
of Θ without a priori knowledge. Although induc-
ing a k-tier for any value of k remains as an open
problem, in the following section we describe how
his can be done when k = 2.

5.3 Learning the contents of a 2-tier

Having shown that the OSLFIA can be modified
to learn an OTSLk function f once Θ (the tier) is
known, we now describe our approach to inducing
Θ itself when k = 2. After this is done, Θ can sim-
ply be fed into the build fst function in order
to produce an OTSL2 transducer that represents f .

The first step toward learning the contents of a
2-tier is to gain as much information as possible

Function build fst(S, Θ, k):
C ← {q0, qf} with q0, qf /∈ Θ≤k−1;
s← lcp({y|(x, y) ∈ S});
q ← Suffk−1

Θ (s);
Earliest(q)← o;
Out(q)← s;
δ ← {(q0,o, s, q)};
R← {q};
while R 6= ∅ do

q ← First(R);
s← Earliest(q);
for all a ∈ Σ in alphabetical order do

if ∃(w, u) ∈ S, x ∈ Σ∗ s.t.
w = sax then
v ← lcp({y|∃x, (sax, y) ∈
S});
r ← Suffk−1

Θ (v);
δ ←
δ ∪ {(q, a,Out(q)−1 · v, r)};

if r /∈ R ∪ C then
R← R ∪ {r};
Earliest(r)← sa;
Out(r)← v;

if ∃u s.t. (s, u) ∈ S then
δ ← δ∪{(q,n,Out(q)−1 ·u, qf)}

R← R− {q};
C ← C ∪ {q};

return 〈C, q0, qf ,Σ,∆, δ〉
Algorithm 1: Building an OTSLk transducer
when given Θ

about the prefix function fp corresponding to f ,
based only on the evidence provided in the training
sample. To do this, the function estimate fp,
shown in Algorithm 2, goes through every string
x that is the prefix of at least one input string in
the training data, and for every a ∈ Σ, it checks
whether xa is also a prefix of some input string.
If this is the case, there is enough information to
determine fp(x). The function estimate fp
will then add the pair (x, z) to the set P , where
z is the longest common prefix of f(w) for all
(w, f(w)) ∈ S such that x is a prefix of w. We
note that this z will be equal to fp(x) provided
that the training data come from a subsequential
function, and so this technique may be useful for
learning other types of functions as well.

We further note, however, that by using
this strategy, estimate fp is only guaran-
teed to produce all the pairs (x, fp(x)) nec-
essary to discover the tier for total functions.

84

Function estimate fp(S):
P ← ∅;
X ← {x | x ∈ Pref∗(w), where
(w, u) ∈ S};
Y ← {x ∈ X | (∀a ∈ Σ)[xa ∈ X]};
for each y ∈ Y do

z ← lcp({u | (w, u) ∈ S, where
y ∈ Pref∗(w)});
P ← P ∪ {(y, z)}

return P ;
Algorithm 2: Prefix function estimation

This is because, when there is no pair with
the shape (opaxn, f(pax)) in the training data,
estimate fp does not know whether this is ac-
cidental (i.e., due to the finite nature of the training
data) or because the function is undefined for all
inputs of the shape opaxn. While the ability to
accommodate partial functions would have practi-
cal applications for learning from natural language
data, at present we leave the task of extending
estimate fp in this way to future research.

The full learning algorithm, which we call
the OTSL2 Function Inference Algorithm
(OTSL2FIA) is shown in Algorithm 3. We
assume that Σ and ∆ are fixed and not part of the
input to the learning problem (and that k = 2).
Given a finite sample of training data, it first
estimates the relevant prefix function with the set
P , as described above, and begins with the hy-
pothesis that Θ = ∆ (i.e., that all members of the
output alphabet are on the target tier). Then, for
each a ∈ Θ, it looks through P for any evidence
that a needs to be removed from Θ. To do this,
it builds an auxiliary set Match that contains
every (p, fp) ∈ P for which Suff1

Θ(fp(p)) = a
under the current hypothesis for Θ. For each
x ∈ Σ∪{n}, it then checks whether contf (x, p)
is the same for all (p, q) ∈ Match. If this is the
case, a is added to the set Keep. However, if there
is more than one value found for the contribution
of some x ∈ Σ ∪ {n}, it will instead remove a
from Θ, since it cannot possibly be a member of
the target 2-tier. If at any point some symbol gets
removed from Θ, the set Keep is immediately
emptied. This portion of the algorithm will run
until every a in the current hypothesis for Θ gets
added to the set Keep, in which case it knows
it has found the canonical 2-tier of the target
function.

Once the OTSL2FIA converges on the canon-

Data: Sample S ⊂ {o}Σ∗{n} ×∆∗

Result: An OTSL2 transducer
T = 〈C, q0, qf ,Σ,∆, δ〉

P ← estimate fp(S);
Θ← ∆;
Keep← ∅;
while Keep 6= Θ do

for each a ∈ Θ do
Match← {(p, q) ∈ P |
Suff1

Θ(q) = a};
for each σ ∈ Σ do

Cσ,a ← {q−1 · y |
(p, q) ∈ Match ∧ (pσ, y) ∈ P};

if card(Cσ,a) > 1 then
Θ← Θ− {a};
Keep← ∅;

Cn,a ← {q−1 · y |
(p, q) ∈ Match ∧ (p, y) ∈ S};

if card(Cn,a) > 1 then
Θ← Θ− {a};
Keep← ∅;

if a ∈ Θ then
Keep← Keep ∪ {a}

T ← build fst(S, Θ, 2);
return T

Algorithm 3: OTSL2FIA

ical 2-tier Θ, the final step is simply to feed Θ
and the sample S into the function build fst
shown above in Algorithm 1 (further specifying
that k = 2). Under the assumption that the train-
ing sample contains the appropriate evidence, as
described in the following section, this will pro-
duce an OTSL2 transducer which represents the
target OTSL2 function.

5.4 Theoretical results

Here we establish several theoretical results,
which culminate in the theorem that the
OTSL2FIA identifies the class of total OTSL2

functions in polynomial time and data.
In what follows, we let f be the target OTSL2

function, Θ� be its canonical 2-tier, and T � =
〈Q�, q0, qf ,Σ,∆, δ�〉 be its target transducer as
defined by Theorem 2. We furthermore let Θ be
the OTSL2FIA’s final tier hypothesis, and T =
〈Q, q0, qf ,Σ,∆, δ〉 be the transducer that is con-
structed on the input.

Lemma 6. (Polynomial time) For any input sam-
ple S, the OTSL2FIA produces T in time polyno-
mial in the size of S.

85

Proof. Let n =
∑

(w,u)∈S |w|, m = max{|u| :
(w, u) ∈ S}, p = max{|w| : (w, u) ∈ S}, and
s = card(S). We note that these are all linear in
the size of the sample.

The OTSL2FIA starts by calling
estimate fp. This function first deter-
mines all of the input prefixes present in S,
which takes n steps. Then estimate fp
checks, for each prefix x and all a ∈ Σ, whether
xa is also an input prefix in S. There are at
most sm prefixes in S, so this takes at most
card(Σ) · (sm)n steps. Finally, for a subset of
the input prefixes, estimate fp determines
lcp({u | (w, u) s.t. x ∈ Pref∗(w)}), which
with an appropriate data structure (for instance a
prefix tree) can be done in nm steps. The overall
computation time of estimate fp is thus
O(n + (sm)n + (sm)(nm)), which is quartic in
the size of the learning sample.

The portion of the OTSL2FIA that determines
the tier is now run. After i elements have been re-
moved from Θ, the combined while/for loop can
run up to |∆| − i times, and can only remove up
to |∆| items, so the loop will be used fewer than
|∆|2 times, which is a constant. This main loop
first gathers all (w, u) ∈ P that meet a certain cri-
terion into the set Match, which can be done in
card(P)m = (sm)m = sm2 steps. Next, the
main loop enters a for loop that is used card(Σ)
times (a constant) and which attempts to calculate
the contribution of σ ∈ Σ using each (w, u) ∈
Match if it can find (wσ, v) ∈ P . We note that
card(Match) will be at most sm, that finding
(wσ, v) ∈ P takes at most smp steps, and that
calculating the contribution takes at most m steps.
The main loop then attempts to calculate the con-
tribution of n using each (w, u) ∈ Match if it can
find (w, v) ∈ S. We note that finding (w, v) ∈ S
takes at most n steps, and that calculating the con-
tribution takes at most m steps. The overall com-
putation time of this portion of the algorithm is
thusO(sm2+sm(smp+m)+sm(n+m)), which
is quintic in the size of the learning sample.

Finally, the OTSL2FIA feeds Θ and S to the
function build fst. As noted above, this fuc-
tion incorporates a simple modification to the
state-labelling process in Chandlee et al.’s (2015)
OSLFIA. While this change allows it to build an
OTSL transducer once the tier is known, it does
not affect computation time. This final step of
the OTSL2FIA therefore runs in time quadratic

in the size of the learning sample (for OSLFIA
time complexity proofs, see Chandlee et al., 2015).
Since each portion of the OTSL2FIA runs in time
polynomial in the size of the sample, with the
highest complexity being quintic, the overall com-
putation time of the algorithm is therefore polyno-
mial in the size of the learning sample.

The remaining lemmas of this section will show
that for each total OTSL2 function f , there is a fi-
nite kernel of data consistent with f that is a char-
acteristic sample for OTSL2FIA, which we call an
OTSL2FIA seed.

Definition 18. (Seed) Given T �, a sample S con-
tains a seed if:

1. For all q ∈ Q�, (owqn, f(wq)) ∈ S.

2. For all (q, a, u, q′) ∈ δ� such that q′ 6= qf
and a ∈ {o} ∪ Σ, and for all pairs b, c ∈ Σ:

(a) (owqan, f(wqa)) ∈ S
(b) (owqabn, f(wqab)) ∈ S
(c) (owqabcxn, f(wqabcx)) ∈ S, where

x ∈ Σ∗

Lemma 7. If a learning sample S contains a seed,
then the OTSL2FIA can determine contf (x,w)
for all w ∈ Σ∗ and all x ∈ Σ ∪ {n}.
Proof. Let us start with some string owbyn such
that b ∈ Σ and w, y ∈ Σ∗. Since T � is
OTSL2, it will be in the state corresponding to
Suff1

Θ�(f
p(w)) immediately prior to reading b

when processing owbyn. Let us call this state
q′. The most recent transition that T � will
have traversed is (q, a, u, q′). The target func-
tion is OTSL2, and so it is the case that either
w = wqa or else can be replaced thereby since
Suff1

Θ�(f
p(w)) = Suff1

Θ�(f
p(wqa)) and there-

fore contf (b, w) = contf (b, wqa).
Now let us start with some string own such

that w ∈ Σ∗. When T � reads own, it will be
in the state corresponding to Suff1

Θ�(f
p(w)) im-

mediately prior to reading n. Let us call this
state q′. The most recent transition that T � will
have traversed is (q, a, u, q′). The target func-
tion is OTSL2, and so it is the case that either
w = wqa or else can be replaced thereby since
Suff1

Θ�(f
p(w)) = Suff1

Θ�(f
p(wqa)) and there-

fore contf (n, w) = contf (n, wqa).
Now recall that fp(w) = lcp({u | u =

f(wx) ∧ x ∈ Σ∗}). We do not actually need the

86

entirety of this infinite set to determine fp(w), it
is sufficient to use a set containing f(w) and one
f(wax) for each a ∈ Σ where x ∈ Σ∗ because ev-
ery x ∈ Σ∗ is either λ or begins with some a ∈ Σ.
Let us call such a set a support for determining
fp(w). The function estimate fp takes every
prefix p present in S and checks whether a sup-
port for determining fp(p) exists in S. Then, if a
support exists, estimate fp adds (p, q) to the
set P , where q = lcp({u | (w, u) ∈ S ∧ p ∈
Pref∗}), that is q = fp(p).

By the definition of the seed, for every transition
(q, a, u, q′) ∈ δ� such that q′ 6= qf , the learner
will see owqan, owqabn for all b ∈ Σ, and
at least one input string owqabcxn for all pairs
b, c ∈ Σ. We therefore know that for any pair of
input strings own and owbyn in the domain of
f such that b ∈ Σ and x ∈ Σ∗, the seed will con-
tain all the input strings necessary to build sup-
ports for determining fp(wqa) and fp(wqab) such
that tailsf (wqa) = tailsf (w).

By Remark 1, we know that contf (b, w) =
fp(w)−1 · fp(wb) for all b ∈ Σ and w ∈ Σ∗.
It is therefore the case that for every owbyn,
the algorithm can determine contf (b, wqa) =
fp(wqa)−1 · fp(wqab) = contf (b, w). Also
by Remark 1, we know that contf (n, w) =
fp(w)−1 · f(w) for all w ∈ Σ∗. It is therefore the
case that for every own, the algorithm can deter-
mine contf (n, wqa) = fp(wqa)−1 · f(wqa) =
contf (n, w).

Lemma 8. (Tier convergence) If a learning sam-
ple S contains a seed, then Θ = Θ�.

Proof. The OTSL2FIA starts with Θ = ∆, and so
either Θ = Θ� already, or else Θ ⊃ Θ�.

We know from Lemma 5 that if Θ ⊃ Θ�,
there will exist a pair of input strings w1 and w2

in the domain of f such that Suff1
Θ(fp(w1)) =

Suff1
Θ(fp(w2)) = a for some a ∈ (Θ − Θ�)

and contf (x,w1) 6= contf (x,w2) for some x ∈
Σ ∪ {n}. We know from Lemma 7 that every
own in the domain of f has at least one corre-
sponding (w′, fp(w′)) ∈ P and at least one cor-
responding (w′a, fp(w′a)) ∈ P for each a ∈ Σ,
where Suff1

Θ(fp(w)) = Suff1
Θ(fp(w′)) and so

contf (x,w) = contf (x,w′) for all x ∈ Σ ∪
{n}.The algorithm will thus be able to calculate
and check all the relevant contributions necessary
to flag and remove at least one a ∈ (Θ−Θ�) when
Θ ⊃ Θ�.

Conversely, there will be no pair of input
strings w3 and w4 in the domain of f such that
contf (x,w3) 6= contf (x,w4) for some x ∈ Σ∪
{n} when Suff1

Θ(fp(w3)) = Suff1
Θ(fp(w3))

= c for some c ∈ Θ�. When Θ = Θ�, then,
the algorithm will add all a ∈ Θ to Keep and
pass Keep = Θ = Θ� to the build fst func-
tion.

Lemma 9. (Transducer convergence) If a learn-
ing sample S contains a seed then (q0,ow, u, r) ∈
δ∗⇐⇒(q0,ow, u, r) ∈ δ∗� .
Lemma 10. (Characteristic Sample) Any learning
sample containing a seed is a characteristic sam-
ple for the OTSL2FIA.

We do not include the proofs of Lemmas 9 and
10 here, as they are a trivial extension of analogous
proofs in Chandlee et al. (2015, Lemmas 7 and 8).
Again, the generalization requires only that each
instance of Suffk−1 be replaced by Suffk−1

Θ in
order for the proofs hold for any OTSLk trans-
ducer, provided that the target tier is passed to
build fst. We further note that when the tar-
get transducer is one that computes a total OTSL2

function with its canonical tier, a seed (as defined
in Definition 18 above) is a superset of that re-
quired by Chandlee et al. (2015, Definition 11).

Lemma 11. (Polynomial data) Given an OTSL2

transducer T �, there exists a seed for the
OTSL2FIA that is of size polynomial in the size
of T �.
Proof. Let T � = 〈Q�, q0, qf ,Σ,∆, δ�〉. For item
1 in Definition 18 there are card(Q�) corre-
sponding input-output pairs (wq, f(wq)) in a seed.
For each of these pairs, it is the case that | o
wq n | ≤ card(Q�) and it is the case that
|f(wq)| ≤

∑
(q,a,u,q′)∈δ� |u|. We denote the lat-

ter quantity with x� =
∑

(q,a,u,q′)∈δ� |u| and note
that x� = O(|T �|). The overall length of the in-
puts in the portion of the seed contributed by item
1 is thus in O(card(Q�)2). The overall length of
the outputs in the portion of the seed contributed
by item 1 is thus in O(card(Q�) · x�). We note
that both of these are quadratic in the size of T �.

For items 2a, 2b, and 2c in Definition 18,
there are respectively 1, card(Σ), and card(Σ)2

corresponding input-output pairs per transition
(q, a, u, q′) ∈ δ�. Factoring out the constant
card(Σ) gives us 3 · card(δ�) pairs. For the
pairs contributed by item 2c, we can restrict our-
selves to pairs (owqabcn, f(wqabc)), since f is a

87

total function. For each pair, we have |o w n | ≤
card(Q�) + 3 and |f(w)| ≤ ∑(q,a,u,q′)∈δ� |u| +
3m, where m = max{|u| : (q, a, u, q′) ∈ δ�}.
With this last quantity denoted y�, we note that
y� = O(|T �|). The overall length of the inputs
in the portion of the seed contributed by item 2 is
therefore in O((3 · card(δ�))(card(Q�) + 3) =
O(card(δ�) · card(Q�) + card(δ�)), and the
overall length of the outputs in the portion of the
seed contributed by item 2 is in O(3 · card(δ�) ·
y�). Both of these are quadratic in the size of T �.

Altogether, then, the size of the seed is quadratic
in the size of the target transducer.

Theorem 3. The OTSL2FIA identifies the OTSL2

functions in polynomial time and data.

Proof. Immediate from Lemmas 6, 8, 9, 10, and
11.

6 Discussion

The OTSL functions introduced in this paper
are capable of modelling many of the attested
long-distance phonological processes. These pro-
cesses can be assimilatory like sibilant harmony
in Samala (see Section 1), but can also be dis-
similatory. For example, Georgian exhibits a pat-
tern of liquid dissimilation, in which /r/ surfaces
as [l] when preceded at any distance by another [r]
(e.g., /aprik’-uri/ → [aprik’uli] ‘African’; Odden,
1994). Interestingly, the dissimilation does not oc-
cur if there is an intervening [l] (e.g., /kartl-uri/
→ [kartluri] ‘Kartvelian’). The OTSL functions
are fully capable of representing such blocking ef-
fects, as shown in Figure 2. To avoid cluttering the
figure, we omit the final state and all of its incom-
ing transitions (which would be labelled n:λ).

It is worth pointing out that the processes in
Samala and Georgian apply in opposite directions.
In Samala, the trigger is the rightmost sibilant,
whereas in Georgian it is the leftmost liquid. This
distinction can be captured by assuming that input
strings are read from left-to-right in the Georgian
case (i.e., the process is progressive), but from
right-to-left in the Samala case (i.e., the process is
regressive). The direction of reading, then, divides
the OTSL functions into two overlapping but dis-
tinct classes which we call L-OTSL (which read
from the left) and R-OTSL (which read from the
right), following Heinz and Lai (2013) and Chan-
dlee et al. (2015) who make the same distinction

q0

λ

lr

o:λ

?:?

l:lr:r l:l

r:r
?:?

r:l
l:l?:?

Figure 2: An OTSL2 transducer that models un-
bounded liquid dissimilation with blocking, where ?
represents any symbol that is not [l] or [r].

for the subsequential and OSL functions, respec-
tively.

As mentioned above, the OTSL2FIA outlined
in Section 5 only succeeds in learning total func-
tions and is designed specifically to learn OTSL2

functions. The algorithm exploits the fact that
the largest possible 2-tier for an OTSL2 function
f is a superset of every other 2-tier for f , and
will accordingly never run the risk of removing
an element that would need to be subsequently re-
added to the tier. However, it is not clear that this
strategy will succeed for higher values k, which
may be needed to model certain types of patterns.
For example, a reviewer raises the complex case
of retroflexion harmony targetting /n/ in Sanskrit
(also known as nati) as one such pattern. A formal
analysis provided by Graf and Mayer (2018) uses
a class of stringsets that they call Input-Output
Tier-based Strictly Local (IO-TSL). IO-TSL for-
mal languages are like TSL languages except that
input symbols are projected onto the tier based on
(i) the surrounding context of input symbols and
(ii) the symbols that precede it on the tier that has
been projected so far. Under this analysis, Sanskrit
n-retroflexion requires k = 3 on the projected tier.

Finally, while the OTSL class can model long-
distance processes, it can only do so when no more
than a single tier is required. That is, a language
that simultaneously exhibits patterns of, e.g., sibi-
lant harmony and liquid dissimilation would not
be OTSL for any value of k. Further exploration of
these issues will allow us to better understand the
computational properties of phonological transfor-
mations and to establish a boundary of complexity
that is both necessary and sufficient for capturing

88

the full range of possible phonological systems.

7 Conclusion

This paper has provided both a language-theoretic
and an automata-theoretic characterization of the
OTSL class of functions, which is relevant for
modelling long-distance phonological processes
as string-to-string transformations. We further
demonstrated that by generalizing previous re-
search on OSL functions to the OTSL class, any
OTSLk function can be learned once the tier is
known. Finally, we introduced an algorithm for
efficiently learning any total OTSL2 function from
positive data, even when a relevant tier is not given
a priori. To our knowledge, this is the first al-
gorithm to accomplish this for input-output map-
pings rather than phonotactics. In future research,
we aim to extend this result in multiple ways: to
partial functions, to any value of k, and to pro-
cesses requiring multiple tiers.

Acknowledgements

Special thanks to Jane Chandlee, participants of
the Third Subregular Workshop at Stony Brook
University, and three anonymous reviewers. This
research was supported by the Social Sciences and
Humanities Research Council of Canada.

References
Richard B. Applegate. 1972. Ineseño Chumash gram-

mar. Doctoral dissertation, University of California,
Berkeley.

Jane Chandlee. 2014. Strictly Local phonological pro-
cesses. Ph.D. thesis, University of Delaware.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz.
2014. Learning strictly local subsequential func-
tions. Transactions of the Association for Compu-
tational Linguistics, 2:491–503.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. 2015.
Output strictly local functions. In Proceedings of the
14th Meeting on the Mathematics of Language.

George N. Clements. 1980. Vowel harmony in nonlin-
ear generative phonology: an autosegmental model.
Indiana University Linguistics Club, Bloomington,
IN.

Colin de la Higuera. 1997. Characteristic sets for poly-
nomial grammatical inference. Machine Learning,
27(2):125–138.

E. Mark Gold. 1967. Language identification in the
limit. Information and Control, 10:447–474.

John A. Goldsmith. 1990. Autosegmental and metrical
phonology. Blackwell, Oxford.

Maria Gouskova and Gillian Gallagher. 2019. Induc-
ing nonlocal constraints from baseline phonotactics.
Natural Language and Linguistic Theory.

Thomas Graf and Connor Mayer. 2018. Sanskrit n-
retroflexion is input-output tier-based strictly local.
In Proceedings of SIGMORPHON 2018, pages 151–
160.

Gunnar Ólafur Hansson. 2010. Consonant harmony:
long-distance interaction in phonology. University
of California Press, Berkeley, CA.

Bruce Hayes and Colin Wilson. 2008. A maximum en-
tropy model of phonotactics and phonotactic learn-
ing. Linguistic Inquiry, 39:379–440.

Jeffrey Heinz and Regine Lai. 2013. Vowel harmony
and subsequentiality. In Proceedings of the 13th
Meeting on the Mathematics of Language, pages 52–
63, Sofia, Bulgaria.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tan-
ner. 2011. Tier-based strictly local constraints for
phonology. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 58–64, Portland, OR. Association for
Computational Linguistics.

Adam Jardine, Jane Chandlee, Rémi Eyraud, and Jef-
frey Heinz. 2014. Very efficient learning of struc-
tured classes of subsequential functions from pos-
itive data. In Proceedings of the Twelfth Interna-
tional Conference on Grammatical Inference, vol-
ume 34, pages 94–108.

Adam Jardine and Jeffrey Heinz. 2016. Learning tier-
based strictly 2-local languages. Transactions of the
Association for Computational Linguistics, 4:87–98.

Adam Jardine and Kevin McMullin. 2017. Efficient
learning of Tier-based Strictly k-Local languages. In
Proceedings of Language and Automata Theory and
Applications, 11th International Conference, Lec-
ture Notes in Computer Science. Springer.

Aaron Kaplan. 2008. Noniterativity is an emergent
property of grammar. Ph.D. thesis, University of
California Santa Cruz.

Kevin McMullin. 2016. Tier-based locality in long-
distance phonotactics: learnability and typology.
Ph.D. thesis, University of British Columbia.

David Odden. 1994. Adjacency parameters in phonol-
ogy. Language, 70:289–330.

José Oncina and Pedro Garcı́a. 1991. Inductive learn-
ing of subsequential functions. Techical Report
DSIC II-34, University Politećnia de Valencia.

89

José Oncina, Pedro Garcı́a, and Enrique Vidal.
1993. Learning subsequential transducers for pat-
tern recognition tasks. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 15:448–
458.

James Rogers and Geoffrey K. Pullum. 2011. Aural
pattern recognition experiments and the subregular
hierarchy. Journal of Logic, Language and Infor-
mation, 20(3):329–342.

90

Learning with Partially Ordered Representations

Jane Chandlee
Tri-Co Department of Linguistics

Haverford College
jchandlee@haverford.edu

Rémi Eyraud
QARMA team, LIS

Aix-Marseille University
remi.eyraud@lis-lab.fr

Jeffrey Heinz
Department of Linguistics

Institute for Advanced Computational Science
Stony Brook University

jeffrey.heinz@stonybrook.edu

Adam Jardine
Department of Linguistics

Rutgers University
adam.jardine@rutgers.edu

Jonathan Rawski
Department of Linguistics

Institute for Advanced Computational Science
Stony Brook University

jonathan.rawski@stonybrook.edu

Abstract

This paper examines the characterization and
learning of grammars defined with enriched
representational models. Model-theoretic ap-
proaches to formal language theory tradition-
ally assume that each position in a string be-
longs to exactly one unary relation. We con-
sider unconventional string models where po-
sitions can have multiple, shared properties,
which are arguably useful in many applica-
tions. We show the structures given by these
models are partially ordered, and present a
learning algorithm that exploits this order-
ing relation to effectively prune the hypothe-
sis space. We prove this learning algorithm,
which takes positive examples as input, finds
the most general grammar which covers the
data.

1 Introduction

Foundational connections between formal lan-
guages, finite-state automata, and logic have been
known for decades (Büchi, 1960; Thomas, 1997).
Logical approaches are advantageous since they
flexibly admit different representations. In many
domains, such as biological sequencing or linguis-
tics, shared properties of symbols in sequences
provide information currently ignored by string-
based inference algorithms, which largely focus
on learning automata (de la Higuera, 2010). Here
we explore the idea that domain-specific knowl-
edge can be encoded representationally via model

theory (Libkin, 2004), and shows how these repre-
sentations can facilitate pattern learning.

This paper synthesizes results in grammatical
inference and model theory to present a novel al-
gorithm which learns classes of formal languages
using enriched representations of strings. In fact,
our model-theoretic approach immediately gen-
eralizes these results to arbitrary data structures.
Here we are concerned with the learning of those
formal languages which can be defined via a set
of structural constraints, such as the Strictly k-
Local and Strictly k-Piecewise languages (Rogers
and Pullum, 2011; Rogers et al., 2010). Models
of strings in the languages must not contain these
forbidden structures (Rogers et al., 2013). Specif-
ically, we define a learner whose hypothesis space
is structured as a partial order by the relational sig-
nature of the particular model theory. We show
how to traverse this space bottom-up from posi-
tive data to find a grammar which covers the data
with the most general constraints.

The paper is structured as follows: Section
2 provides mathematical preliminaries in model
theory. Section 3 characterizes ordering rela-
tions over these structures. Section 4 generalizes
the grammars employed in string extension and
lattice-based learning (Heinz, 2010; Heinz et al.,
2012) to show how these model theoretic struc-
tures can define classes of formal languages. Sec-
tion 5 discusses some entailments our learning al-

91

1

a

2

b

3

b

4

a
/ / /

1

a

2

b

3

b

4

a
< < <

<
<

<

Figure 1: Visualizations of the successor (left) and precedence (right) models of abba.

gorithm takes advantage of. Section 6 defines a
learning problem and criteria for selecting ade-
quate solutions. Section 7 presents a general-to-
specific, bottom-up algorithm which provably sat-
isfies the learning criteria. Section 8 concludes the
paper.

2 Preliminaries

2.1 Elements of Language Theory
The set of all possible finite strings of symbols
from a finite alphabet Σ and the set of strings of
length ≤ n are Σ∗ and Σ≤n, respectively. The
unique empty string is represented with λ . The
length of a string w is |w|, so |λ |= 0. If u and v
are two strings then we denote their concatenation
with uv. If w is a string and σ is the ith symbol in
w then wi = σ , so abcd2 = b.

The set of prefixes of w, Pref(w), is
{p ∈ Σ∗ | (∃s ∈ Σ∗)[w = ps]}, the set of suffixes
of w, Suff(w), is {s ∈ Σ∗ | (∃p ∈ Σ∗)[w = ps]},
the set of substrings, Substr(w), is
{u ∈ Σ∗ | (∃l,r ∈ Σ∗)[w = lur]}, and
the set of subsequences, Subseq(w) =
u1u2 · · ·un|∃v0 · v1 · · ·vn ∈ Σ∗[w = v0u1v1 · · ·unvn]

2.2 Elements of Finite Model Theory
Model theory, combined with logic, provides a
powerful way to study and understand mathemat-
ical objects with structures (Enderton, 2001). In
this paper we only consider finite relational mod-
els (Libkin, 2004) of strings in Σ∗.
Definition 1 (Models). A model signature is a tu-
ple S = 〈D;R1,R2, . . . ,Rm〉 where the domain D is
a finite set, and each Ri is a ni-ary relation over
the domain. A model for a set of objects Ω is
a total, one-to-one function from Ω to structures
whose type is given by a model signature.

For example, a conventional model for
strings in Σ∗ is given by the signature

Γ� de f
= 〈D;�, [Rσ]σ∈Σ〉 and the function M� :

Σ∗ → Γ� such that M�(w)
de f
= 〈Dw;�, [Rw

σ]σ∈Σ〉
where Dw de f

= {1, . . . , |w|} is the domain,

�
de f
= {(i, i + 1) ∈ D × D} is the successor

relation which orders the elements of the domain,
and [Rw

σ]σ∈Σ is a set of |Σ| unary relations such

that for each σ ∈ Σ, Rw
σ

de f
= {i ∈ Dw | wi = σ}. We

will usually omit the superscript w since it will be
clear from the context.

For example, with Σ = {a,b,c} and the
model above for strings, we have M�(abba) =
〈D = {1,2,3,4};� = {(1,2),(2,3),(3,4)},Ra =
{1,4},Rb = {2,3},Rc = /0〉 .

Figure 1 illustrates M�(abba) on the left.
Another conventional model is the precedence

model, with the signature Γ< de f
= 〈D;<, [Rσ]σ∈Σ〉.

It differs from the successor model only in that the
order relation is defined with general precedence

<
de f
= {(i, j) ∈ D×D | i < j} (Büchi, 1960; Mc-

Naughton and Papert, 1971; Rogers et al., 2013).
Under this signature, the string abba has the fol-
lowing model.

M<(abba) = 〈D = {1,2,3,4};<=
{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},Ra =
{1,4},Rb = {2,3},Rc = /0〉.

Figure 1 illustrates M<(abba) on the right.
The model-theoretic framework is not unique to

strings. It extends to arbitrary data structures by
expanding parts of the model signature. For ex-
ample, Rogers (2003) describes a model-theoretic
characterization of trees of arbitrary dimension-
ality where the domain D is a Gorn tree domain
(Gorn, 1967). This is a hereditarily prefix closed
set D of node addresses, that is to say, for every
d ∈ D with d = αi, where i ∈ N, α ∈ N∗ it holds
that α ∈D, and for every d ∈D with d = αi 6= α0,
then α(i−1) ∈ D.

In this view, a string may be called a one-
dimensional or unary-branching tree, since it has
one axis along which its nodes are ordered. In
a standard tree mdoel signature, the set of nodes
is ordered by two binary relations, “dominance”
and “immediate left-of”. Suppose s is the mother
of two nodes t and u in some standard tree, and
also assume that t precedes u. Then we might
say that s dominates the string tu. Standard or

92

two-dimensional trees, then, relate nodes to one-
dimensional trees (strings) by immediate domi-
nance. A three-dimensional tree relates nodes to
two-dimensional, i.e. standard trees, correspond-
ing to Tree-Adjoining Grammar derivations. In
general, a d-dimensional tree is a set of nodes
ordered by d dominance relations such that the
n-th dominance relation relates nodes to (n− 1)-
dimensional trees (for d = 1, single nodes are
zero-dimensional trees).

While a Gorn tree domain as written encodes
these dominance and precedence relations implic-
itly, we may explicitly write them out model-
theoretically so that a signature for a Σ-labeled 2-
d tree is Γ�≺ = 〈D;�,≺, [Rσ]σ∈Σ〉 where � is the
“immediate dominance” relation and≺ is the “im-
mediate left-of” relation. Model signatures that in-
clude transitive closure relations of each of these
have also been studied.

ε

0

00 01

010 011

1

10 11

110 111

1110

112

Figure 2: 2-dimensional tree model. Dominance and
precedence relations shown with solid/dashed and dot-
ted lines, respectively

2.3 Unconventional Word Models

Whereas Rogers (2003) generalized conventional
word models to trees, here we generalize word
models in a different way. Conventional string
models are the successor and precedence models
introduced previously. What makes these mod-
els conventional is the unary relations which es-
sentially label each domain element with a single,
mutually exclusive, property: the property of be-
ing some σ ∈ Σ.

In contrast, unconventional models for strings
recognize that distinct alphabetic symbols may
share properties, and expands the model signa-
ture by including these properties as unary re-
lations (Strother-Garcia et al., 2016; Vu et al.,
2018). For example, a conventional model of

Σ = {a, . . . ,z,A, . . . ,Z}would include 52 unary re-
lations, one for each lowercase and capital letter.
On the other hand, an unconventional model might
only include 27: 26 for the letters, and one unary
relation Capital. Then, letters A and a share the
‘A’ property and A additionally has the property of
being Capital.

In linguistics, speech sounds are commonly
decomposed into binary features based on their
phonetic properties. So the set of segments
{z,Z,d,b,g,. . .} all share the property +Voice,
meaning the vocal cords are activated, while
the segments {s,S,t,p,k,. . .} share the property
-Voice, meaning the vocal cords are not acti-
vated. Thus unconventional models may refer to
individual features in defining grammatical con-
straints, rather than each individual segment.

Different representations of strings and trees
provide a unified perspective on well-known sub-
classes of the regular languages from a model-
theoretic and logical perspective (Thomas, 1997;
Rogers et al., 2013). However, they also open up
new doors for grammatical inference by allowing
one to consider other models for strings (Strother-
Garcia et al., 2016; Vu et al., 2018).

3 Subfactors, Superfactors, Ideals and
Filters

We sometimes refer to the model of a string w as a
structure. However, structures are more general in
that they correspond to any mathematical structure
conforming to the model signature. As such, while
a model of a string w will always be a structure, a
structure will not always be a model of a string
w. The size of a structure S, denoted |S|, coincides
with the cardinality of its domain.

We next wish to introduce a partial ordering
over structures. To do so, we must define the terms
connected, restriction, and factor. For each struc-
ture S = 〈D;�,R1, . . .Rn〉 let the binary “connect-
edness” relation C be defined as follows.

C
de f
= {(x,y) ∈ D × D | ∃i ∈

{1 . . .n},∃(x1 . . .xm) ∈ Ri,∃s, t ∈ {1 . . .m},x =
xs,y = xt}

Informally, domain elements x and y belong to
C provided they belong to some non-unary rela-
tion. Let C∗ denote the symmetric transitive clo-
sure of C.

Definition 2 (Connected structure). A structure
S = 〈D;�,R1,R2, . . . ,Rn〉 is connected iff for all
x,y ∈ D, (x,y) ∈C∗.

93

For example, M�(abba) above is a connected
structure. However, the structure Sab, ba shown
below which is identical to M�(abba) except it
omits the pair (2,3) from the order relation is
not connected since none of (1,3),(1,4), (2,3) nor
(2,4) belong to C∗. Sab, ba = 〈D = {1,2,3,4};�=
{(1,2),(3,4)},Ra = {1,4},Rb = {2,3},Rc = /0〉

1

a

2

b

3

b

4

a
/ /

Note that no string in Σ∗ has structure Sab, ba as
its model.

Definition 3. A = 〈DA;�,RA
1 , . . . ,R

A
n 〉 is a re-

striction of B = 〈DB;�,RB
1 , . . . ,R

B
n 〉 iff DA ⊆ DB

and for each m-ary relation Ri, we have RA
i =

{(x1 . . .xm) ∈ RB
i | x1, . . . ,xm ∈ DA}.

Informally, one identifies a subset A of the do-
main of B and strips B of all elements and relations
which are not wholly within A. What is left is a re-
striction of B to A.

Definition 4. Structure A is a subfactor of struc-
ture B (Av B) if A is connected, there exists a re-
striction of B denoted B′, and there exists h : A→
B′ such that for all a1, . . .am ∈ A and for all Ri in
the model signature: if h(a1), . . .h(am) ∈ B′ and
Ri(a1, . . .am) holds in A then Ri(h(a1), . . .h(am))
holds in B′. If Av B we also say that B is a super-
factor of A.

In other words, properties that hold of the con-
nected structure A also hold in a related way within
B.

If A v B and |A|= k then we say A is a
k-subfactor of B. For all w ∈ Σ∗, and for
any model M of Σ∗, let the subfactors of
w be Subfact(M,w) = {A | A v M(w)} and
the k-subfactors of w be Subfactk(M,w) =
{A | A v M(w), |A|≤ k}. We also define
Subfact(M,Σ∗) to be

⋃
w∈Σ∗ Subfact(M,w) and

Subfactk(M,Σ∗) to be
⋃

w∈Σ∗ Subfactk(M,w).
When M is understood from context, we write
Subfact(w) instead of Subfact(M,w). We de-
fine the sets of superfactors Supfact(M,w) and
Supfact(M,Σ∗) similarly.

Observe that (Subfact(M,w),v) is a partially
ordered set (poset). The next definition and lemma
establishes that models of strings are principal el-
ements of ideals and filters.

Definition 5 (Ideals). A subset I of a poset is an
Ideal if

• I is non-empty

• for every x in I, y≤ x implies that y is in I

• for every x,y in I, there exists some element z
in I, such that x≤ z and y≤ z.

The dual of an ideal is a filter.

Definition 6 (Filters). A subset F of a poset is a
filter iff

• F is non-empty

• for every x in F, x≤ y implies that y is in F

• for every x,y in F, there exist some element z
in F, such that z≤ x and z≤ y.

Definition 7 (Principal Ideals, Filters and Ele-
ments). For any poset 〈X ,≤〉, the smallest filter
containing x ∈ X is a principal filter and x is the
principal element of this filter. Similarly, the small-
est ideal containing x ∈ X is a principal ideal and
x is the principal element of this ideal.

Remark 1. Given a model M of Σ∗ and
k > 0, Subfactk(M,w) is a principal ideal
in Subfact(M,Σ∗) whose principal element is
M(w). Supfactk(M,w) is a principal filter
in Supfact(M,Σ∗) whose principal element is
M(w). The empty structure 〈 /0; /0, . . . /0〉 is a sub-
factor of every structure in Subfact(M,Σ∗).

The next two propositions show how this rep-
resentational perspective unifies the treatment of
substrings and subsequences. They are subfactors
under the successor and precedence models, re-
spectively. A string x = x1 · · ·xn is a substring of y
iff there exists l,r such that y = lxr. String x is a
subsequence of y iff there exists v0,v1, . . .vn such
that w = v0x1v1 · · ·xnvn.

Proposition 1 (Substrings are subfactors under
M�). For all strings x,y ∈ Σ∗, x is a substring of y
iff M�(x)vM�(y).

Proof. Note that the result trivially holds for x =
λ : we restrict ourselves to the case x 6= λ . Let
M�(x) = 〈Dx;�, [Rx

σ]〉 and M�(y) = 〈Dy;�, [Ry
σ]〉

(⇒). Suppose x is a substring of
y: it exists l,r such that y = lxr =
σ1 . . .σ|l|σ|l|+1 . . .σ|l|+|x|σ|l|+|x|+1 . . .σ|l|+|x|+|r|.
This implies that, for all i, 1 ≤ i ≤ |x|, d ∈ Ry

σ|l|+i

iff d ∈ Rx
σi

. Thus, if we set the isomorphism φ
to be such that φ(i) = |l|+i for 1 ≤ i ≤ |x|, we
have φ(M�(x)) that is a restriction of M�(y), and
therefore M�(x)vM�(y) by definition.

94

(⇐). Let y be the sequence of letters σ1 . . .σ|y|
and suppose M�(x) v M�(y): there exists a iso-
morphism φ : {1, . . . , |x|} → {1, . . . , |y|} such that
φ(M�(x)) is a restriction of M�(y). This means
that φ(Dx) ⊆ Dy and for all σ : φ(Rx

σ) = {φ(i) ∈
Ry

σ | φ(i) ∈ φ(Dx)} (Definition 3). This implies
that x = σφ(1) . . .σφ(|x|). Given that � = {(i, i +
1) ∈ D×D}, we have φ(i + 1) = φ(i) + 1 and
thus there exist l and r in Σ∗ such that y =
lσφ(1) . . .σφ(|x|)r = lxr.

Proposition 2 (Subsequences are subfactors under
M<). For all strings x,y ∈ Σ∗, x is a subsequence
of y iff M<(x)vM<(y).

Proof. We leave this proof to the Reader since it
is of similar nature to the previous one.

4 Grammars, Languages, and Language
Classes

Factors can define grammars, formal languages,
and classes of formal languages. Usually a model
signature provides the vocabulary for some logi-
cal language. Sentences in this logical language
define sets of strings as follows. The language of
a sentence φ is all and only those strings whose
models satisfy φ . Within the regular languages,
many well-known subregular classes can be char-
acterized logically in this way (McNaughton and
Papert, 1971; Rogers and Pullum, 2011; Rogers
et al., 2013; Thomas, 1997).

Intuitively, the grammars we are interested in
consist of a finite list of forbidden subfactors,
whose largest size is bounded by k. Strings in
the language of this grammar are those which do
not contain any forbidden subfactors. In this way
these grammars are like logical expressions which
are ”conjunctions of negative literals” (Rogers
et al., 2013) where the negative literals are played
by the the forbidden factors.

Each forbidden subfactor is a principal element
of a filter and the language is all strings whose
models are not in any of these filters. For each
k, there is a class of languages including all and
only those languages that can be defined in this
way. For example, the Strictly k-Local (SLk)
and Strictly k-Piecewise languages can be de-
fined in this way; they are languages which forbid
finitely many substrings or subsequences, respec-
tively (Garcia et al., 1990; Rogers et al., 2010).
Formally:

Definition 8. Let k be some positive integer, and
M a model of Σ∗ with signature Γ. A grammar
G is a subset of Subfactk(M,Σ∗). The language
of G is L(G) = {w ∈ Σ∗ | Subfactk(M,w)∩G =
/0}. The class of languages L (M,k) = {L | ∃G ⊆
Subfactk(M,Σ∗),L(G) = L}.

The elements of G are principal elements of fil-
ters, and are called forbidden subfactors.

As an example, let Σ = {a,b,c} and consider
G = {M�(aa),M�(bb),M�(c)}. L(G) includes
the strings (ab)+ and (ba)+ and no other strings,
because the substrings aa, bb, and c are all forbid-
den. This language belongs to L (M�,2).

Proposition 3. For each w ∈ L(G) and each g ∈
G, Subfact(M,w) has a zero intersection with
Supfact(g).

Proof. Suppose there exists A ∈ Subfactk(Σ∗)
such that A vM(w) and g v A. This implies that
g vM(w) and thus that Subfactk(M,w)∩G 6= /0
which contradicts Definition 8.

In other words, the principal ideal of M(w) is
disjoint from the principal filters of the elements
of G.

5 Grammatical Entailments

Given a grammar G, we call a subfactor s in
Subfact(Σ∗) ungrammatical if it belongs to a
principal filter of any element of G. Subfactors
that are not ungrammatical are called grammat-
ical. Lemma 14 ensures that grammaticality is
downward entailing, in the sense that if a model
of the word M(w) is not contained in the principal
filters of the elements of the grammar, then neither
are the subfactors of M(w). But it also ensures that
ungrammaticality is upward entailing: if a model
of the word M(w) belongs to the principal filters
of the elements of the grammar, then all of the su-
perfactors of M(w) in that filter are likewise con-
tained.

In this way, the ideals and filters within a a par-
ticular model noted above give rise to these en-
tailment properties of grammaticality with respect
to the hypothesis space. If the learner constructs
filters, then the grammar G will allow structures
such that language membership is downward en-
tailing with respect to the grammar G, and lan-
guage non-membership is upward entailing with
respect to the grammar G.

95

[]

[capital] [a] [b] . . .

[capital, a] [a][]

[capital, a][] [a][capital, a] [a][a]

.

XX

X

X

X

X

XX X

X X X

Figure 3: The Structure ideals(blue) and filters(red) for a capitalized letter model.

5.1 Example: Text Capitalization

As an example, consider capitalized letters as dis-
cussed above. In an unconventional word model,
each capital letter at some position x is rep-
resented as satisfying one of the relations R ∈
{a(x),b(x), . . . ,z(x)} as well as the unary rela-
tion capital(x). Thus the relation a(x) is true
of both lowercase a and uppercase A, but a(x)∧
capital(x) is only true of uppercase A. Note also
that in this model no position x of a structure can
satisfy both predicates a(x) and b(x). We return to
this point in §7.

Figure 2 showcases the relationship among
these structures under a model M. The struc-
ture for A, [capital,a], contains as subfactors
[capital], [a], [], and the empty structure (not
shown). The empty structure is a subfactor of
[], and [] in turn is a subfactor of [capital] and
[a]. The subfactor [a] contains the subfactor [],
the domain element with no relations, but has su-
perfactors [capital,a], which has one domain
element and two relations, and [a][], which has
two domain elements, and the first satisfying the
property a. Subfactors and superfactors are listed
above and below each other, respectively, with
lines between them. Members of one ideal are
noted with a blue checkmark, and members of a
filter are noted by a red asterisk.

Applying this to the example in Figure 3, if the
structure [capital,a] is grammatical, then all of
its subfactors, such as [capital] and [a], and
[] are grammatical. Since those are grammatical,
each of their subfactors is also grammatical, which
in this case is just [/0], shown in blue in Figure 3.
Conversely, if the structure [a][] is known to be

ungrammatical, then any structure which has it as
a subfactor is also ungrammatical (in this exam-
ple, [capital,a][], shown in Red in Figure 3.
To see the importance, consider a string with only
lowercase letters. In a connected model, the gram-
mar would ban 26 forbidden factors (A,B,C,...),
but the “capital” model bans just one, [capital].

5.2 Example: Long Distance Linguistic
Dependencies

As another example, sequences of speech sounds
as mentioned earlier may be decomposed into
binary features based on their phonetic proper-
ties like anteriority (±ant — whether it oc-
curs in the anterior of the vocal tract), stri-
dency (±str — whether it produces a high-
intensity fricative noise), or voicing (±voi —
whether it activates the vocal chords), among oth-
ers (Hayes, 2009). Each sound at some posi-
tion x is represented as satisfying relations R ∈
{±voi(x),±str(x), . . . ,±ant(x)}. Thus the re-
lation +str(x) is true of both the sound s as in
the first sound of “sue” and S, as in “shoe”, but
+str(x)∧−ant(x) is only true of S.

Note also that in this model no position x of a
structure can satisfy both predicates +str(x) and
−str(x). We return to this point in §7 below. We
again use square brackets to delimit the domain el-
ements and write the unary features within them,
so a model representation like

[
+str
+ant

][
+str
-ant

]

has the following visual representation:

+str
+ant

+str
-ant

<

96

[]

.

. . .

[
+str
+ant

]
[+str]

. . .

[
+str
+ant

][
+str
+ant

] [
+str
+ant

][
+str
-ant

]

[
+voi
+str
+ant

][
+str
+ant

] [
+str
+ant

][+voi
+str
-ant

] [+voi
+str
+ant

][
+str
-ant
]

.

. . .

X X

X

X

X

X

X

X X

X X

X

Figure 4: Structure ideals(blue) and filters(red) for a phonological precedence model.

To ease the exposition, we will use square
brackets to delimit the domain elements and write
the unary relations within them instead of specify-
ing the model in mathematical detail. In an uncon-
ventional subsequence word model, then, one pos-
sible structure of the subsequence s...S is writ-
ten
[
+str
+ant

][
+str
-ant

]
.

In many languages, the presence of certain seg-
ments is dependent on the presence of another
segment. In Samala, subsequences like s...s
are allowed but s...S are not, so words like
hasxintilawas are allowed but words like
hasxintilawaS are not (Hansson, 2010). In
an unconventional model, banning structures of
the form [+str][+str] is insufficient, since
all these segments share that stridency property,
while a structure like

[
+str
+ant

][
+str
-ant

]
will dis-

tinguish them, since they disallow stridents which
disagree on the ±ant(x) relations. The struc-
ture [+ant][-ant] however, is insufficient,
since consonants like p,b,m have that feature,
and would incorrectly ban acceptable strings. To
see the importance, a conventional string model
must ban multiple sibilant factors sS,zS,sZ,zZ, while
an unconventional model must just ban one,[
+str
+ant

][
+str
-ant

]

Figure 4 showcases the relationship among
these structures under a precedence model M<.
The structure for

[
+str
+ant

]
[+str] contains as sub-

factors (among others) [+str] [+str], [+str] [],
[], and the empty structure (not shown). The
empty structure is a subfactor of [], and [] in turn
is a subfactor of [+ant] and [-str], and so on.

If the structure
[
+str
+ant

][
+str
+ant

]
is grammatical,

then all of its subfactors, are grammatical, and
so are their subfactors, in turn. Conversely, if
the structure

[
+str
+ant

][
+str
-ant

]
is known to be un-

grammatical, then any structure which has it as
a subfactor is also ungrammatical (for example,[
+voi
+str
+ant

][
+str
-ant

]
, where the first segment is also

voiced +voi), shown in Red in Figure 4.

The structure filters give the learner an advan-
tage when confronting hypothesis spaces under
a particular model. In particular, it allows the
learner to prune vast swathes of the hypothesis
space as it reaches for principal elements of fea-
tures. If a learner identifies one structure as being
grammatical, the learner may infer that all of its
subfactors are also grammatical and not have to
consider them. Alternatively, if the learner knows
a structure is ungrammatical, it may infer that the
ideals above it are also ungrammatical.

Generally, these reductions can be exponential:
an alphabet of size 2n can be represented with
n unary relations in the model signature. How-
ever, this exponential reduction does not neces-
sarily make learning any easier. The reason for
this is that the size of Subfactk(M,Σ∗) equals
∑k

i=1(2
n)i where n is the number of unary re-

lations. Since a grammar is defined as a sub-
set of Subfactk(M,Σ∗), the number of consid-
ered grammars is thus very large. Therefore, the
problem of how to search this space effectively is
paramount.

97

6 The Learning Problem

For some M,k, is L (M,k) learnable from posi-
tive data? The short answer is Yes (Heinz, 2010;
Heinz et al., 2012). The solution presented in these
papers can be thought of as using the function
Subfactk(M,w) to identify permissible k-factors
in words w in the positive data. The k-factors that
are not permissible are forbidden. With sufficient
positive data, such a learning algorithm will con-
verge to a grammar that generates any target lan-
guage in the class. While this solution is sound in
theory, when the space of k-factors is very large, it
is not practical. Here, we make clear the problem
the learning algorithm solves.

We state the learning problem not in terms of
converging to a correct grammar in the limit as
previously studied, but instead of returning an ‘ad-
equate’ grammar given a finite positive sample.
Determining what counts as an adequate grammar
is what (De Raedt, 2008) calls a Quality Criterion.
Definition 9 (The Learning Problem). Fix Σ,
model M, and positive integer k. For any language
L ∈ L (M,k) and for any finite D ⊆ L, return a
grammar G such that

1. G is consistent, that is, it covers the data: D⊆
L(G);

2. L(G) is a smallest language in L which cov-
ers the data: so for all L ∈L where D ⊆ L,
we have L(G)⊆ L; and

3. G includes structures S that are restrictions of
structures S′ included in other grammars G′

that also satisfy (1) and (2): for all G′ satisfy-
ing the first two criteria for all S′ ∈ G′, there
exists S ∈ G such that Sv S′.

The first criterion is self-explanatory. The sec-
ond criterion is motivated by Angluin’s (1980)
analysis of identification in the limit. The third cri-
terion requires that the grammar contain the most
“general” subfactors. An example will help illus-
trate this criterion.

Consider again the grammar G =
{M�(aa),M�(bb),M�(c)} with Σ = {a,b,c}.
L(G) is the same as L(H) where H =
{M�(aa),M�(bb),M�(ac),M�(bc),M�(cc),
M�(ca),M�(cb)}. In H all the forbidden subfac-
tors are of size 2, whereas G encapsulates all of
the 2-factors in H which include c with a single
1-factor M�(c). Both grammars G and H may
satisfy criteria (1) and (2) but H would not satisfy
criterion (3) because of G.

7 A Bottom-Up Learning Algorithm

(De Raedt, 2008) identifies two directions of in-
ference: specific-to-general (i.e., ‘top-down’) and
general-to-specific (i.e., ‘bottom-up’). Since we
are trying to find the most general subfactors, top-
down inference has the potential to consider expo-
nentially many more subfactors than bottom-up in-
ference. It makes mores sense to traverse bottom-
up, that is, from the most general subfactors possi-
ble to the most specific. Additionally, once a sub-
factor is identified as an element of the grammar,
none of its superfactors (elements of its principal
filter) need to be considered further.

A bottom-up learner is shown in Algorithm 1.
Its input is a positive data sample D and an integer
k that identifies the upper bound on the size of the
subfactors.

Data: positive sample D, empty structure s0,
max constraint size k
Result: G, a set of constraints
Q←{s0};
G← /0;
V ← /0;
while Q 6= /0 do

s← Q.dequeue();
V ←V ∪{s};
if ∃x ∈ D such that sv x then

S← NextSupFact(s);
S′←{s ∈ S | |s|≤ k∧ (¬∃g ∈ G)[gv s]∧ s 6∈

V};
Q.enqueue(S′);

end
else

G← G∪{s};
end

end
return G;

Algorithm 1: Bottom-up learning algorithm for
lattice-structured constraints

Figure 5: Pruning the hypothesis space

The algorithm makes use of a queue Q, which
is initialized to contain just the empty structure s0.
It also initializes two empty sets: G, the grammar
that will ultimately be returned, and V , the set of
‘visited subfactors’. The subfactors in Q are con-

98

sidered one at a time, in order, and as each subfac-
tor s is considered it is added to V . If s is not a
subfactor of the model of any word in the positive
sample D (i.e., not contained by any data point in
D), then it is added to the grammar G.

If s is a subfactor of the sample, it is sent
to the function NextSupFact, which returns a
set of least superfactors for s. For concreteness,
NextSupFact(s) may be defined formally as fol-
lows:
NextSupFact(s) = {S ∈ Subfactk(Σ∗) | s v

S,¬∃S′[sv S′ v S]}.
Practically NextSupFact will be defined con-

structively so that each subfactor in Subfactk(Σ∗)
is constructed only once as needed. Thus, not
only will it not be needed to store the whole set
Subfactk(Σ∗) in memory, but the set V may be
excluded from the algorithm as well.

This set of superfactors is then filtered by the
following criteria: they must be smaller than k+1,
they must contain no element of G as a subfactor,
and they must not have been previously considered
(i.e., they cannot be in V). Those structures that
survive this filter are added to Q. This procedure
continues until there are no more structures left to
consider in Q.

Theorem 1. For any L ∈L (M,k), and any finite
set P ⊆ L provided as input to Algorithm 1, it re-
turns a grammar G satisfying Definition 9.

Proof. Consider any x ∈ D. Algorithm 1 only
adds elements to G that are not subfactors of x, so
x 6∈ Supfact(G). Thus x ∈ L(G) and D ⊆ L(G),
satisfying Condition (1).

Consider any L′ ∈ L with D ⊆ L′. To show
L = L(G) ⊆ L′, consider any w ∈ L. Then
Subfact(w) ⊆ Subfact(D) and Subfact(D) ⊆
Subfact(L′) since D ⊆ L. Then Subfact(w) ⊆
Subfact(L′). Hence, w ∈ L′, and so L⊆ L′, satis-
fying Condition (2).

For condition (3), we use the fact that elements
in the grammar G were in Q at some point. Sup-
pose s,s′ are subfactors such that s∈G, s′ v s, and
(¬∃x ∈ D)[s′ vM(x)]. Since s ∈ G, then at some
point s ∈ Q.

If s′ v s then s′ will be added to Q before s
is generated by NextSupFact. Because Q is a
queue, s′ will also be removed from Q before s
is generated by NextSupFact. Since s′ is not con-
tained by any M(x) with x ∈ D, it will be added to
G. When s is generated by NextSupFact, it will

not pass the filter because it fails the second crite-
rion since s′ v s and s′ ∈ G. Then s is never added
to Q, and therefore s /∈ G, contra our original as-
sumption. Thus Condition (3) is satisfied.

One aspect of the algorithm to highlight is that
when a subfactor g is added to G, it is not added to
Q. Consequently, NextSupFact(g) is never added
to Q. In this way, finding elements of G prunes
the remainder of the space to be searched (see fig-
ure 5). In general, it is not the case that every el-
ement in the principal filter of g will not be gen-
erated by NextSupFact since some of these ele-
ments may belong to NextSupFact(x) for other
subfactors x on the Q. We expect subfactors on
the ‘border’ of Supfact(g) to be generated in this
way (and then they are filtered out). This pruning,
especially when the subfactors are quite general,
can significantly reduce the remaining space to be
traversed.

In regard to efficiency, in the worst case, the el-
ements of G are all very specific subfactors and
are greatest elements of Subfactk(Σ∗). In this
case, every subfactor Subfactk(Σ∗) will be added
to Q and the time complexity is thus exponen-
tial. However, we are primarily interested in the
case when Subfactk(D) are a small proportion
of Subfactk(Σ∗). This constitutes an example
of data sparsity. In this case, we believe the ele-
ments of the target grammar will be much ‘lower’
in the partial order and thus will be found much
more quickly. Determining what conditions on
Subfactk(D) and Subfactk(Σ∗) result in a poly-
nomial time run in the size of D is a focus of cur-
rent research activity.

Another area of active research is developing
a recipe for the NextSupFact function for mod-
els with a successor or precedence order relation
and arbitary unary relations. The basic idea un-
derlying the bottom-up algorithm is to develop a
spanning tree for the poset Subfact(Σ∗) and to
traverse this tree in a breadth-first manner. The
function NextSupFact helps control this search.
Ideally, NextSupFact would only generate each
subfactor once, which obviates the need to store
visited subfactors in V . This can be accomplished
to some extent in different ways. For incompatible
unary relations, like a and b in our capitalization
example, NextSupFact can be defined to prevent
adding property a to a position that already satis-
fies property b.

For compatible unary relations, like a and

99

capital in our capitalization example, an or-
dering over the unary relations such as a < b <
capital can help eliminate generating the same
subfactor in different ways. For example, if
NextSupFact is defined to only add ‘lesser’ unary
relations to positions that already have them then
it would only output [capital,a] given the sub-
factor [a] as input. On the other hand, when given
as input the subfactor [capital], it could not add
any unary relation to this position.

8 Conclusion

In this paper, we considered the problem of learn-
ing formal languages defined as the complement
of the union of finitely many principal filters,
whose principal elements make up the grammar.
This is one way to characterize the Strictly k-Local
and Strictly k-Piecewise languages, but the gen-
eralization here lets us consider enriched repre-
sentations of strings where different elements in a
string can be said to share properties. it also lets us
learn the shortest forbidden substrings in SLk (Ron
et al., 1996) This is useful in many applications
where domain-specific knowledge is available and
should be taken advantage of. Such enriched rep-
resentations, however, have a drawback. The num-
ber of subfactors is large which makes identifying
the principal elements of the filters difficult. This
paper showed that the partial ordering of the sub-
factors motivates a bottom-up learning algorithm
which finds the least subfactors whose filters do
not include the positive data.

Acknowledgments

We would like to thank James Rogers for very
helpful discussion on the notion of subfac-
tor. This work was supported by NIH grant
#R01HD87133-01 to JH.

References
Dana Angluin. 1980. Inductive inference of formal

languages from positive data. Information Control,
45:117–135.

J. Richard Büchi. 1960. Weak second-order arithmetic
and finite automata. Mathematical Logic Quarterly,
6(1-6):66–92.

Luc De Raedt. 2008. Logical and Relational Learning.
Springer-Verlag Berlin Heidelberg.

Herbert B. Enderton. 2001. A Mathematical Introduc-
tion to Logic, 2nd edition. Academic Press.

Pedro Garcia, Enrique Vidal, and José Oncina. 1990.
Learning locally testable languages in the strict
sense. In Proceedings of the Workshop on Algorith-
mic Learning Theory, pages 325–338.

Saul Gorn. 1967. Explicit definitions and linguistic
dominoes. In Systems and Computer Science, pages
77–115, Toronto. University of Toronto Press.

Gunnar Hansson. 2010. Consonant Harmony: Long-
Distance Interaction in Phonology. Number 145 in
University of California Publications in Linguistics.
University of California Press, Berkeley, CA. Avail-
able on-line (free) at eScholarship.org.

Bruce Hayes. 2009. Introductory Phonology. Wiley-
Blackwell.

Jeffrey Heinz. 2010. String extension learning. In Pro-
ceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 897–
906, Uppsala, Sweden. Association for Computa-
tional Linguistics.

Jeffrey Heinz, Anna Kasprzik, and Timo Kötzing.
2012. Learning with lattice-structured hypothesis
spaces. Theoretical Computer Science, 457:111–
127.

Colin de la Higuera. 2010. Grammatical Inference:
Learning Automata and Grammars. Cambridge
University Press.

Leonid Libkin. 2004. Elements of Finite Model The-
ory. Springer.

Robert McNaughton and Seymour Papert. 1971.
Counter-Free Automata. MIT Press.

James Rogers. 2003. Syntactic structures as multi-
dimensional trees. Research on Language and Com-
putation, 1(3-4):265–305.

James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlef-
sen, Molly Visscher, David Wellcome, and Sean
Wibel. 2010. On languages piecewise testable in the
strict sense. In The Mathematics of Language, vol-
ume 6149 of Lecture Notes in Artifical Intelligence,
pages 255–265. Springer.

James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy
Hurst, Dakotah Lambert, and Sean Wibel. 2013.
Cognitive and sub-regular complexity. In Formal
Grammar, volume 8036 of Lecture Notes in Com-
puter Science, pages 90–108. Springer.

James Rogers and Geoffrey K. Pullum. 2011. Aural
pattern recognition experiments and the subregular
hierarchy. Journal of Logic, Language and Infor-
mation, 20:329–342.

Dana Ron, Yoram Singer, and Naftali Tishby. 1996.
The power of amnesia: Learning probabilistic au-
tomata with variable memory length. Machine
Learning, 25(2-3):117–149.

100

Kristina Strother-Garcia, Jeffrey Heinz, and Hyun Jin
Hwangbo. 2016. Using model theory for grammati-
cal inference: a case study from phonology. In Pro-
ceedings of The 13th International Conference on
Grammatical Inference, volume 57 of JMLR: Work-
shop and Conference Proceedings, pages 66–78.

Wolfgang Thomas. 1997. Languages, automata, and
logic. In Handbook of Formal Languages, volume 3,
chapter 7. Springer.

Mai Ha Vu, Ashkan Zehfroosh, Kristina Strother-
Garcia1, Michael Sebok, Jeffrey Heinz, and Her-
bert G. Tanner. 2018. Statistical relational learn-
ing with unconventional string models. Frontiers in
Robotics and AI.

101

Maximum Likelihood Estimation of Factored Regular Deterministic
Stochastic Languages

Chihiro Shibata
School of

Computer Science
Tokyo University of Technology

shibatachh@stf.teu.ac.jp

Jeffrey Heinz
Department of Linguistics &

Institute for Advanced Computational Science
Stony Brook University

jeffrey.heinz@stonybrook.edu

Abstract

This paper proves that for every class C
of stochastic languages defined with the co-
emission product of finitely many proba-
bilistic, deterministic finite-state acceptors
(PDFA) and for every data sequence D of
finitely many strings drawn i.i.d. from some
stochastic language, the Maximum Likelihood
Estimate of D with respect to C can be found
efficiently by locally optimizing the parame-
ter values. We show that a consequence of
the co-emission product is that each PDFA be-
haves like an independent factor in a joint dis-
tribution. Thus, the likelihood function de-
composes in a natural way. We also show
that the negative log likelihood function is con-
vex. These results are motivated by the study
of Strictly k-Piecewise (SPk) Stochastic Lan-
guages, which form a class of stochastic lan-
guages which is both linguistically motivated
and naturally understood in terms of the co-
emission product of certain PDFAs.

1 Introduction

Stochastic languages are probability distributions
over all possible strings of finite length. A class
C of stochastic languages is often defined para-
metrically: an assignment of values to the parame-
ters uniquely determines some stochastic language
L in C and thus the probabilities that L assigns
to strings. An important learning criterion for a
class of stochastic languages C is whether there is
an algorithm which reliably returns a Maximum-
Likelihood Estimate (MLE) of an observed data
sample D. The MLE is the parameter values
which maximize the probability of D with respect
to C.

This paper focuses on regular deterministic
stochastic languages. These are stochastic lan-
guages that can be defined with a probabilistic, de-
terministic, finite-state acceptors (PDFA).

The problem of finding the MLE, however, is
not only about some single stochastic language L,
but also about the class of stochastic languages
that L belong to. It is well-understood that each
PDFA M naturally defines a class of stochastic
languages CM because the transitional probabil-
ities in the PDFA provide a range of possible pa-
rameter values, as we explain in detail in section 2.
In this case, it is well-understood how to find the
MLE of a sequence of strings drawn i.i.d. from L
with respect to CM (Vidal et al., 2005a,b). This
paper is concerned with finding the MLE for dif-
ferent classes of stochastic languages.

In particular, we consider the case where C is
defined by the range of parametric values over
finitely many PDFA A = {M1 . . .MK}, whose
co-emission product determines the probabilities
each L ∈ C assigns to strings. Essentially, the co-
emission product of these PDFAs factor the prob-
abilities each L ∈ C assigns to strings. Each L is
a complex joint distribution, and each PDFAMj

represents a ‘more basic’ regular stochastic lan-
guage whose parameter values independently con-
tribute to L. At a high level, the problem we are
considering is like those addressed with Bayesian
networks and Markov random fields, where com-
plex probability distributions decompose into sim-
pler factors (Bishop, 2006; Koller and Friedman,
2009). We refer to the classes C we study in this
paper as factored, regular, probabilistic, and deter-
ministic (FRPD).

The main result is to show how the parameters
of a FRPD class C can be efficiently updated to
find those parameter values which maximize the
likelihood of the observed sequences (Theorem 2).
We also show directly that each negative log likeli-
hood associated with each FRPD classC is convex
(Theorem 3). Together these results imply that the
efficient method we present for updating the pa-
rameter values will yield the MLE.

102

There are several reasons for being interested
in such factored classes C. Perhaps the most
important from our perspective is expressed by
Koller and Friedman (p. 1134) “The ability to
exploit structure in the distribution is the basis
for providing a compact representation of high-
dimensional . . . probability spaces.” In our case,
the size of the representation of the class given
by A = {M1 . . .MK} is simply the sum of the
size of each Mj . In contrast, the representation
of the class given by the co-emission product is
in the worst case the product of the sizes of each
Mj . One direct benefit of this is that the number
of parameters is reduced, which makes it possible
to more accurately estimate them with less data.
Other advantages discussed by Koller and Fried-
man, such as modularity, we return to in the dis-
cussion in the conclusion.

There are also linguistic reasons to be interested
in FRPD classes. The Strictly Piecewise (SP) class
of languages encode certain types of long-distance
dependencies found in natural languages. For ex-
ample, SP languages can express generalizations
like “at most one b per string” and “no b may fol-
low an a” (Rogers et al., 2010). Generalizations
with this formal character are known to occur in
the phonologies of the world’s languages (Heinz,
2010a; Rogers et al., 2013; Heinz, 2014, 2018).
As Rogers et al. (2010) explain, Strictly Piecewise
languages are characterized by the intersection
product of finitely many deterministic finite-state
acceptors (DFA). Heinz and Rogers (2010) used
this characterization and the co-emission product
to define the class of Strictly Piecewise stochas-
tic languages because they were interested in the
learnability of long-distance dependencies in nat-
ural languages probabilistically. They presented
a learning algorithm for a class of SP stochastic
languages and claimed (p. 894) that it returns the
MLE.

This results in this paper can be seen as pro-
viding a more generalized, more meaningful, and
more rigorous proof of their basic claim. Theo-
rem 2 establishes how to update the parametric
values which locally optimize the model of any
FRPD class. Theorem 3 shows the negative log
likelihood function of any FRPD class is convex,
so there is in fact only one set of optimal para-
metric values for any sequence of data. Further-
more, we prove these results in terms of the stan-
dard definition of co-emission product, and not the

variant used in Heinz and Rogers (2010). (While
the results here work for both, we only prove
the standard case.) These general results make it
possible to explore not only the learning of SPk
stochastic languages, but also any finite combina-
tion of PDFAs that characterize different kinds of
local and non-local dependencies which can be ex-
pressed with regular grammars. We return to this
issue in the discussion.

To our knowledge, such results for FRPD
classes have not been previously discussed in the
literature. One reason for this is that much work
on natural language processing uses probabilis-
tic non-deterministic automata. These describe
the same class of stochastic languages as Hidden
Markov Models (HMMs) (Vidal et al., 2005a,b).
Non-determinism can make a big difference when
it comes to parsing and learning. In a determin-
istic model M, each string w can be associated
with at most one path through M, whereas in
non-deterministicM, there can be infinitely many
paths for w. This is one reason why methods used
for learning HMM are not guaranteed to return a
MLE. Since the states are ‘hidden’ one uses meth-
ods like Expectation Maximization, which may
converge to a local optimum that is not a global
optimum (Jurafsky and Martin, 2008; Heinz et al.,
2015).

On the other hand, we are showing that, by care-
fully choosing the class of stochastic languages
C—which the MLE which is to be found will be
‘with respect to’—we can exploit the structure we
assume to be present to guarantee we find a MLE.
This paper takes one step in establishing the theo-
retical soundness of this approach.

Finally, one reviewer commented that these
results may follow from fundamental theorems
in the literature on probabilistic graphical mod-
els (Koller and Friedman, 2009). Regardless of
whether this is true, the correctness of the proofs
here stand. Also, the general results of Bayesian
networks and Markov random fields say nothing
about the concrete forms of the algorithm for ob-
taining the MLE with respect to a FRPD class C
given data D, and similarly for its time complex-
ity. Malouf (2002) makes a similar point, writ-
ing “While all parameter estimation algorithms
we will consider take the same general form, the
method for computing the updates . . . differs sub-
stantially.” Nonetheless, how probabilistic graph-
ical models relate to this line of research ought to

103

be made clear.
The remainder of the paper is organized as fol-

lows. In section 2 we review languages, stochas-
tic languages, deterministic finite-state acceptors
and probabilistic versions thereof, the intersection
and co-emission products, and the statement of the
learning problem. Before presenting our main re-
sults, section 3 defines Strictly Piecewise (stochas-
tic) languages, which provide a running example
to illustrate the main results, which are presented
in section 4. The computational complexity of the
updates are analyzed in section 5 and section 6
concludes.

2 Preliminaries

2.1 Sets of Strings
Σ denotes a finite set of symbols and Σk, Σ≤k,
and Σ∗ denote all strings over this alphabet of
length k, of length less than or equal to k, and
of any finite length, respectively. λ denotes the
empty string. The length of a string w is written
|w|. The prefixes of a string w are Pref(w) =
{v | ∃u ∈ Σ∗, vu = w}. A string w = σ1 . . . σn
is a subsequence of a string v if and only if
v ∈ Σ∗σ1Σ∗ . . .Σ∗σnΣ∗, in which case we write
w v v.

A language L is a subset of Σ∗. The comple-
ment of a language L, denoted L is Σ∗/L. The
shuffle ideal ofw is the language of all strings con-
taining w as a subsequence:

SI(w) = {v | w v v}.

A stochastic language L is a probability dis-
tribution over Σ∗. The probability P of word w
with respect to L is written PL(w) = p. Thus, all
stochastic languages L satisfy

∑

w∈Σ∗
PL(w) = 1.

2.2 Probabilistic Deterministic Finite-state
Acceptors

A Deterministic Finite-state Acceptor (DFA) is
a tuple M = 〈Q,Σ, q0, δ, F 〉 where Q is the
state set, Σ is the alphabet, q0 is the start state,
δ is a deterministic transition function with do-
main Q × Σ and codomain Q, and F is the set
of accepting states. Let δ∗ : Q × Σ∗ → Q
be the (partial) path function of M. When dis-
cussing partial functions, the notation ↑ and ↓ in-
dicates that the function is not defined, respec-
tively, is defined, for particular arguments. Thus

δ∗(q, w) is the (unique) state reachable from state
q via the sequence w, if any, or δ∗(q, w)↑ other-
wise. The language recognized by a DFA M is
L(M)

def
= {w ∈ Σ∗ | δ∗(q0, w)↓ ∈ F}.

A Probabilistic Deterministic Finite-state Ac-
ceptor (PDFA) is a tupleM = 〈Q,Σ, q0, δ, F, T 〉
where Q,Σ, q0, and δ are the same as with DFA,
and F and T are partial functions representing the
final-state and transition probabilities. In particu-
lar, T : Q× Σ→ R+ and F : Q→ R+ such that

for all q ∈ Q, F (q) +
∑

σ∈Σ

T (q, σ) = 1. (1)

A PDFA M generates a stochastic language
L(M). If it exists, the unique path for a wordw =
σ0 . . . σN belonging to Σ∗ through a PDFA is a se-
quence 〈(q0, σ0), (q1, σ1), . . . , (qN , σN)〉, where
qi+1 = δ(qi, σi). The probability a PDFA assigns
tow is obtained by multiplying the transition prob-
abilities along w’s path if it exists with the final
probability, and zero otherwise. So PL(M)(w) =

(
N∏

i=0

T (qi, σi)

)
·F
(
δ(qN , σN)

)

if δ∗(q0, w)↓ and 0 otherwise (2)

A probability distribution is regular deterministic
iff there is a PDFA which generates it. We some-
times writeM(w) instead of PL(M)(w).

The structural components of a PDFA M are
its statesQ, its alphabet Σ, its transitions δ, and its
initial state q0. By structure of a PDFA, we mean
its structural components. The structure of each
PDFA M defines a class of stochastic languages
given by the possible instantiations of T and F
satisfying Equation 1. These distributions have at
most |Q|· (|Σ|+ 1) independent parameters (since
for each state there are |Σ| possible transitions plus
the possibility of finality.)

2.3 The co-emission product
The intersection product of K DFAsM1 . . .MK

is given by the standard construction over the
state space Q1 × . . . × QK (Hopcroft et al.,
2001). We write

⊗
1≤j≤KMj = M =

〈Q,Σ, q0, δ, F 〉 where Q = Q1 × . . . × QK ,
q0 = 〈q01, . . . q0K〉. For all 〈q1, . . . qK〉 ∈ Q and
σ ∈ Σ, δ(〈q1, . . . qK〉, σ) = 〈q′1, . . . q′K〉 if and
only if δ1(q1, σ) = q′1, . . . δK(qK , σ) = q′K . Fi-
nally, let F = F1× . . .×FK It is well-known that
L(
⊗

1≤j≤KMj) =
⋂

1≤j≤K L(Mj).

104

The co-emission product of K PDFAs
M1 . . .MK is also given by a construction over
the state space Q1 × . . . × QK . The probabil-
ity that σ is co-emitted from 〈q1, . . . , qK〉 in
Q1 × . . .] × QK is the product of the proba-
bilities of its emission at each qj ∈ Qj . Let
CoT(〈σ, q1 . . . qK〉) =

∏K
j=1 Tj(qj , σ). Simi-

larly, the probability that a word simultaneously
ends at q1 ∈ Q1, . . . qK ∈ QK is

CoF(〈q1 . . . qK〉) =
K∏

j=1

Fj(qj).

Finally, for q = 〈q1 . . . qK〉, let

Z(q) = CoF(q) +
∑

σ∈Σ

CoT(〈σ, q〉)

be the normalization term. Next we define the co-
emission product.
Definition 1 (Co-emission Product) For A =
{M1, . . .MK}, let

⊗A = 〈Q,Σ, q0, δ, F, T 〉
where

1. Q, q0, and δ are defined as with DFA product;
and

2. For all q ∈ Q and σ ∈ Σ:

F (q) =
CoF(q)

Z(q)

and

T (q, σ) =
CoT(σ, q)

Z(q)
.

In other words, the numerators of T and F are de-
fined to be the co-emission probabilities and divi-
sion by Z ensures that co-emission product

⊗A
defines a well-formed probability distribution over
Σ∗.

Observe that A also defines a class of stochas-
tic languages by the possible instantiations of Tj
and Fj for each Mj ∈ A. The structural compo-
nents of A are the structural components of each
Mj ∈ A. By structure of A, we mean its struc-
tural components. The structure of A defines a
class of stochastic languages given by the possible
instantiations of Tj and Fj satisfying Equation 1
for each Mj ∈ A.

If
⊗A = M then the class of stochastic lan-

guages induced by the structure ofA is a subset of
the class of stochastic languages obtained with the
structure of the PDFAM. This is another way of
saying that a factorized model may have fewer pa-
rameters and so the class of stochastic languages
it represents can become smaller.

2.4 Statement of the Learning Problem
Let D be a finite sequence of |D| i.i.d. drawn ex-
amples from a stochastic language L. It follows
that the PL(D) =

∏
w∈D PL(w).

Let A = {M1 . . .MK} be a set of PDFAs and
let CA denote the FRPD class of stochastic lan-
guages induced by the structure of A. The likeli-
hood of D w.r.t. CA is determined by the param-
eters (the Tj and Fj functions for eachMj ∈ A).
Let us group these parameters under the symbol
Θ. Each Θ identifies some stochastic language
LΘ ∈ CA. The likelihood of D w.r.t. CA is de-
fined as follows:

lhd(D | Θ) =
∏

w∈D
PLΘ

(w).

The problem of finding a Maximum Likelihood
Estimate (MLE) is to find those parameter values
Θ̂ of A that maximize the likelihood of D w.r.t.
CA. Formally,

Θ̂ = arg max
Θ

(
lhd(D | Θ)

)
(3)

where Θ under the arg max ranges over all possi-
ble parameter values of A.

When |A| = 1 the problem has a known so-
lution. As mentioned, a single PDFA M defines
a class of stochastic languages given by possible
parameter values of M. In this case, it is well-
known how to find Θ̂. Essentially, each transition
probability T (q, σ) equals the relative frequency
that symbol σ is emitted at a state q (Vidal et al.,
2005a,b). In this paper, we solve this problem
when |A| > 1.

3 Strictly k-Piecewise stochastic
languages

In this section, we introduce the Strictly k-
Piecewise stochastic languages, which serve as a
running example of a FRPD class in the remain-
der of the paper.

Rogers et al. (2010) define and provide multiple
characterizations of Strictly Piecewise (SP) lan-
guages. We review the most relevant ones for this
paper here. SP languages are exactly those formal
languages that are closed under subsequence.

SP = {L ⊆ Σ∗ | ∀w, v ∈ Σ∗

(v ∈ L,w v v ⇒ w ∈ L)}

Rogers et al. (2010, p. 260) prove that every SP
language L can be associated with a finite set of

105

strings S such thatL is the intersection of the com-
plements of the shuffle ideals of S.

Theorem 1 ∀L ∈ SP,∃S ⊆ Σ∗, n ∈ N such that
|S| < n and L =

⋂
w∈S SI(w).

The SP languages are parameterized by a value
k ∈ N. This number corresponds to the length
of the longest string in S. For each SP language
L, if there is a set S whose longest string is equal
to k, then L belongs to the SPk class of languages.

If k is known a priori then the SPk languages
are both PAC-learnable and identifiable in the limit
in polynomial time and data (Heinz, 2010b; Heinz
et al., 2012).1

Theorem 1 allows one to construct concrete
computational models for SP languages with DFA.
For any nonempty string w = σ1 . . . σn, SI(w) =
L(Mw) where Mw is defined as follows. The
states are the prefixes of w, the start state is λ, and
the final state is w. For all prefixes p of w and
σ ∈ Σ, let δ(p, σ) = pσ whenever pσ is a prefix
of w and p otherwise. Figure 1 gives an examples
of DFA forMabba.

The complement SI(w) is essentially obtained
fromMw by removing its maximal state and mak-
ing every state final. In other words, if w = va
then the SI(w) can be recognized by an automa-
ton where the states are the prefixes of v, the start
state is λ, and each state is a final state. For all
prefixes p of v and σ ∈ Σ, δ(p, σ) = pσ whenever
pσ is a prefix of v. When pσ is not a prefix of v
and σ 6= a then δ(p, σ) = p. Finally, δ(v, a) is
not defined. We denote such a DFA asMw. Fig-
ure 2 shows the DFAMabba which recognizes the
complement of SI(abba). BothMw and the DFA
recognizing its complement are minimal.

It follows that for anyL ∈ SP, one can construct
a DFA recognizing L by taking the product of the
complements of the shuffle ideals of the strings in
S.

Note the size of M1 . . .MK is
∑

1≤i≤KMj

whereas the size of M =
⊗

1≤j≤KMj is in
the worst case

∏
1≤j≤KMj . Therefore, to decide

whether a string w belongs to some SP language
L, it may be preferable to run w on eachMj in-
stead of on M to avoid the potentially large in-

1Also, SP languages suggest a different representation for
strings (Rogers et al., 2013), which inform machine learning
in other ways. The winning paper of the SPiCE competition
(Balle et al., 2016), in which machine learning models com-
peted to best predict the next symbol in a natural and artificial
sequences was won by Shibata and Heinz (2016), who inte-
grated SP-style representations into a neural network.

crease in the state space. See Heinz and Rogers
(2013) for additional discussion of this point.

Heinz and Rogers (2010) use the fact that
SP languages are the intersection of the comple-
ments of shuffle ideals to define their stochastic
counterpart. They define stochastic versions of
Mw (Figure 2), which they call w-subsequence-
distinguishing PDFA.

Definition 2 (Subsequence-distinguishing PDFA)
Let w ∈ Σk−1 and w = σ1 · · ·σk−1.
Mw = 〈Q,Σ, q0, δ, F, T 〉 is a w-subsequence-
distinguishing PDFA (w-SD-PDFA) iff F and T
satisfy Equation 1 and δ(u, σ) = uσ whenever
uσ ∈ Pref(w) and u otherwise.

Apart from the stochastic components T and F ,
the w-subsequence-distinguishing PDFA differs
from Mw in one key way. Suppose. w =
va. Then δ(v, a) = v in the w-subsequence-
distinguishing PDFA is not undefined as was the
case with Mw. This transition exists and may
have a nonzero probability.

A set A of PDFAs is a k-set of SD-PDFAs iff,
for each w ∈ Σ≤k−1, it contains exactly one w-
SD-PDFA. For example, let Σ = {a, b} and con-
sider the 2-set of SD-PDFAs shown in Figure 3.
There are three SD-PDFAs in this set correspond-
ing toMλ,Ma, andMb.

Heinz and Rogers (2010) define SPk stochastic
languages as a product of a k-set of SD-PDFAs.
Specifically, the adapt the notion of co-emission
probability (Vidal et al., 2005a). Heinz and Rogers
(2010) actually use what they call the positive co-
emission product which restricts the standard co-
emission probability to particular circumstances.

In this work, we define SP stochastic languages
with the standard definition of co-emission proba-
bility used to define products of PDFA as in Defi-
nition 1 (Vidal et al., 2005a).

Definition 3 (SP Stochastic Languages) A prob-
ability distribution P over Σ∗ is a SP stochastic
language iff there exists a k-set of SD-PDFAs A,
whose co-emission product is M =

⊗A, such
that for all w ∈ Σ∗, it is the case that P (w) =
M(w).

It follows immediately from this definition that
the class of SP stochastic languages is a FRPD
class. In this case, the parameters of such a
distribution are the T and F values on each w-
subsequence-distinguishing PDFA in the k-set. In
the example in Figure 3, there are thus 15 parame-
ters of the model, 10 of which are free. This is be-

106

λstart a ab abb abba
a

b,c

b

a,c

b

a,c

a

b,c a,b,c

Figure 1: The DFAMabba for SI(abba) (left) with Σ = {a, b, c}.

λstart a ab abb
a

b,c

b

a,c

b

a,c b,c

Figure 2: The DFAMabba for SI(abba) with Σ = {a, b, c}.

cause there are three actions associated with each
state (a, b, and finality); there are five states; but
since the probabilities must add to one only two
parameters per state are free. More generally, a
k-set of SD-PDFAs A has |Σ| · ∑j∈A |Qj | free
parameters.

4 Main Theorem for MLE of FRPD
classes

We provide our main results here, using the 2-set
of SD-PDFAs shown in Figure 3 as an illustrative
example.

4.1 The Co-emission Probability Given a
Prefix

It is useful to consider the co-emission probabil-
ity of the symbol σ given the prefix σ1 · · ·σi−1,
which we denote Coemit(σ, i). It follows from
Definitions 1 and 3 that this value is the normal-
ized product of the path through

⊗A given by
the prefix σ1 · · ·σi−1.

Formally, let M1 = 〈Q1,Σ, q01, δ1, F1, T1〉,
· · · , MK = 〈QK ,Σ, q0K , δK , FK , TK〉 be exactly
those PDFAs in A. Suppose that w = σ1 · · ·σN ,
where σi ∈ Σ for all 1 ≤ i ≤ N . Let q(j, i)
denote a state in Qj that is reached after Mj

reads the prefix σ1 · · ·σi−1. If i = 1 then q(j, i)
represents the initial state of Mj . Then it fol-
lows from Definition 1 that the probability that
a symbol σ is emitted after the product machine⊗

1≤j≤KMj reads the prefix σ1 · · ·σi−1 is the
following: Coemit(σ, i) =

∏K
j=1 Tj(q(j, i), σ)

∑
σ′∈Σ

(∏K
j=1 Tj(q(j, i), σ

′
)

+
∏K
j=1 Fj(q(j, i))

(4)

To simplify the notation and analysis, we as-
sume that there is a end marker n ∈ Σ which
uniquely occurs at the end of words. This lets us
replace Fj(q) with Tj(q,n). Then Coemit(σ, i) is
simply written as

Coemit(σ, i) =

∏K
j=1 Tj(q(j, i), σ)

∑
σ′∈Σ

∏K
j=1 Tj(q(j, i), σ

′).
(5)

The probability that the machine
⊗

1≤j≤KMj ac-
cepts w is obtained by taking the product of the
co-emission probabilities for all i:

P (wn) =
N+1∏

i=1

Coemit(σi, i), (6)

where σN+1 = n.
Since we are concerned with the co-emission

probabilities, which is a ratio, it is notewor-
thy that in fact it does not matter if the sum∑

σ′∈Σ Tj(q, σ
′) is 1. The ratio Coemit(σ, i) and

thus P (wn) are invariant with respect to the scale
of Tj(q, σ′) and the sum

∑
σ′∈Σ Tj(q, σ

′). Writ-
ing this last value as z(j, q), it can easily be con-
firmed by the fact that multiplying both the de-
nominator and the numerator by 1/z(j, q) does
not change the value of Coemit(σ, i) while nor-
malizing Tj(q, ·). Thus, we can relax the condi-
tion in Equation 1 when discussing co-emission
probabilities. The only condition that needs to
be satisfied with respect to the transitions is that
Tj(q, σ

′) ≥ 0 for all j, q, σ′. Note that relaxing
this condition does not affect the number of free
parameters. This is because the numerical values
associated with the transitions, once normalized,
will always sum to 1. In the following, we assume
this relaxed condition.

107

λstart λstart a λstart b

a,b

a

b a,b

b

a a,b

Figure 3: The 2-set of of SD-PDFAs with Σ = {a, b}.

4.2 Frequency and Empirical Mean of
Co-emission Probability

Before describing the main theorem, we define
two terms; the frequency of an emission and
the empirical mean of a co-emission probability,
which play important roles in estimating transition
probabilities for product machines.

Definition 4 (Frequency of Emission) For given
w, we define the frequency of σ at q ∈ Qj as fol-
lows. Let

• mw(Mj , q, σ) ∈ Z+ denotes how many times
σ is emitted at the state q while the machine
Mj emits w.

• nw(Mj , q) ∈ Z+ denotes how many times
the state q is visited while the machine Mj

emits w.

Then

freqw(σ|Mj , q) =
mw(Mj , q, σ)

nw(Mj , q)
, (7)

So freqw(σ|Mj , q) represents the relative fre-
quency that Mj emits σ at q during emission of
w.

These concepts can be lifted to a sequence of
strings D drawn i.i.d. from some stochastic lan-
guage. Let

mD(Mj , q, σ) =
∑

w∈D
mw(Mj , q, σ)

and
nD(Mj , q) =

∑

w∈D
nw(Mj , q) .

It follows that

freqD(σ|Mj , q) =
mD(Mj , q, σ)

nD(Mj , q)
.

So freqD(σ|Mj , q) represents the relative fre-
quency that Mj emits σ at q during emission of
D.

As an example, consider the 2-set of PDFAs
in Figure 3 and consider the sample data D =

〈abbn, aban〉. Figure 4 shows the paths of these
strings through each SD-PDFA. Figure 5 shows
some of the frequency computations.

If K = 1, i.e., the product machine consists
of one PDFA then freqw(σ|M1, q) is the MLE of
T1(q, σ) (Vidal et al., 2005a,b). Meanwhile, if
K ≥ 2, the probability of the emission, which
equals the co-emission probability, fluctuates with
states that other machines are currently at. Thus
freqw(σ|Mk, q), as a random variable, is not inde-
pendent from other machines’ states. This moti-
vates the following definition.

Definition 5 (Empirical Mean) Let

sumCoemitw(σ,Mj , q) =
∑

i s.t. q(j,i)=q

Coemit(σ, i).

The empirical mean of a co-emission probability
is defined as follows:

Coemitw(σ|Mj , q) =
sumCoemitw(σ,Mj , q)

nw(Mj , q)
,

(8)
i.e., the sample average of the co-emission proba-
bility when q ∈ Qj is visited.

When a state in Mj is visited more than once
while emittingw, it does not imply that some other
state in Mh is also visited more than once. In
other words, if there are positions i 6= ` such that
q(j, i) = q(j, `) then it does not have to follow that
q(h, i) = q(h, `) for another machine Mh. Thus,
even when Mj and the value of q(j, i) are fixed,
Coemit(σ, i) fluctuates. The empirical mean is the
average taken over such fluctuating co-emission
probabilities.

4.3 Main Theorem and Convexity

Theorems 2 and 3 are our main results. We sim-
plify the proofs by assuming that D consists of
a single sentence. That is, in both theorems, we
consider D = {wn}. We can do this with-
out loss of generality because any finite sequence
of strings D drawn i.i.d. from a stochastic lan-
guage can be converted into a single sentence

108

Mλ: λ λ λ λ λ λ λ λ
a b b n b b b n

Ma: λ a a a λ λ λ λ
a b b n b b b n

Mb: λ λ b b λ b b b
a b b n b b b n

Figure 4: The paths of {abbn,bbbn} through the 2-set of of SD-PDFAs with Σ = {a, b}.

freqD(a|Mλ, λ) = 1/8 freqD(a|Ma, λ) = 1/5 freqD(a|Ma, a) = 0/3,

freqD(b|Mλ, λ) = 5/8 freqD(b|Ma, λ) = 3/5 freqD(b|Ma, a) = 2/3,

freqD(n|Mλ, λ) = 2/8 freqD(n|Ma, λ) = 1/5 freqD(n|Ma, a) = 1/3,

freqD(a|Mb, λ) = 1/3 freqD(a|Mb, b) = 3/5,

freqD(b|Mb, λ) = 2/3 freqD(b|Mb, b) = 0/5,

freqD(n|Mb, λ) = 0/3 freqD(n|Mb, b) = 2/5,

Figure 5: Frequency computations with D={abbn,bbbn} and the 2-set of of SD-PDFAs in Figure 4.

without changing the probability of its production.
To see why, we can adjust the transition func-
tion of each PDFA Mj so that δj(q,n) = q0j

for each q ∈ Qj . In other words, once n is
emitted, the machines reset to their start states.
Then for any D = {w1n, · · · , wkn}, we have
P (D) = P (concat(D)) where concat(D) =
w1 n w2 n · · · n wkn. Thus, wn in both theo-
rems can be understood as concat(D).
Theorem 2 Suppose that P (wn) is defined as
Equation 6 for a product machine

⊗
1≤j≤KMj

and a word w. Then, ∂P (wn)/∂Tj = 0 holds for
all j if and only if the following equation is satis-
fied for all 1 ≤ j ≤ K:

freqw(σ|Mj , q) = Coemitw(σ|Mj , q) .

From Theorem 3, it will then follow that
T1, . . . TK are the MLE.

Proof By taking the log of Eq. 6 , we have

logP (wn) =
N+1∑

i=1




K∑

j=1

log Tj(q(j, i), σi)

− log
∑

σ′∈Σ

K∏

j=1

Tj(q(j, i), σ
′)




=
N+1∑

i=1

K∑

j=1

log Tj(q(j, i), σi)

−
N+1∑

i=1

log
∑

σ′∈Σ

K∏

j=1

Tj(q(j, i), σ
′).

We differentiate this by a log emission probabil-
ity log Th(q, σ) for some 1 ≤ h ≤ K. Let

A =
∂

∂ log Th(q, σ)

N+1∑

i=1

K∑

j=1

log Tj(q(j, i), σi) ,

and

B =
∂

∂ log Th(q, σ)

N+1∑

i=1

log
∑

σ′∈Σ

K∏

j=1

Tj(q(j, i), σ
′) .

Then

∂

∂ log Th(q, σ)
logP (wn) = A−B.

First, we calculate A. Since

∂Tj(q(j, i), σi)

∂ log Th(q, σ)
=





1 if 〈Mh, q, σ〉
= 〈Mj , q(j, i), σi〉 ,

0 otherwise,

we have

A =
N+1∑

i=1

K∑

j=1

I
[
〈Mh, q, σ〉 = 〈Mj , q(j, i), σi〉

]

=
N+1∑

i=1

I
[
〈q, σ〉 = 〈q(h, i), σi〉

]

= mw(Mh, q, σ) (9)

where I[·] denotes the indicator function and
mw(Mh, q, σ) is defined as in Definition 4.

109

B =
∂

∂ log Th(q, σ)

N+1∑

i=1

log


∑

a∈Σ

K∏

j=1

Tj(q(j, i), a)




=
N+1∑

i=1

∂
∂ log Th(q,σ)

∑
a∈Σ

∏K
j=1 Tj(q(j, i), a)

∑
a∈Σ

∏K
j=1 Tj(q(j, i), a)

=
N+1∑

i=1

∂
∂ log Th(q,σ)

∑
a∈Σ exp

(∑K
j=1 log Tj(q(j, i), a)

)
∑

a∈Σ

∏K
j=1 Tj(q(j, i), a)

=

N+1∑

i=1

∑
a∈Σ

(
exp

(∑K
j=1 log Tj(q(j, i), a)

)∑K
j=1

∂ log Th(q(j,i),a)
∂ log Th(q,σ)

)

∑
a∈Σ

∏K
j=1 Tj(q(j, i), a)

=
N+1∑

i=1

∑
a∈Σ

(∏K
j=1 Tj(q(j, i), a)

∑K
j=1

∂ log Tj(q(j,i),a)
∂ log Th(q,σ)

)

∑
a∈Σ

∏K
j=1 Tj(q(j, i), a)

=
N+1∑

i=1

∑

a∈Σ




∏K
j=1 Tj(q(j, i), a)

∑
b∈Σ

∏K
j=1 Tj(q(j, i), b)

K∑

j=1

∂ log Tj(q(j, i), a)

∂ log Th(q, σ)




Figure 6: Initial calculation of B in the proof of Theorem 2.

Second, we calculate B as shown in Figure 6.
There are two large terms in the large parentheses
in the last line of the calculation of B in Figure 6.
The first one is is the co-emission probability by
Equation 5. Thus B =

N+1∑

i=1

∑

a∈Σ

K∑

j=1

Coemit(a, i)
∂ log Tj(q(j, i), a)

∂ log Th(q, σ)
.

Recall that

∂ log Tj(q(j, i), a)

∂ log Th(q, σ)

equals

I[〈Mh, q, σ〉 = 〈Mj , q(j, i), a〉].

This indicator function equals I[h = j]I[q =
q(j, i)]I[σ = a]. Abbreviating I[h = j] with
I1, I[q = q(j, i)] with I2, and I[σ = a] with I3,
we see that

∑

a∈Σ

K∑

j=1

Coemit(a, i) I1I2I3

=

K∑

j=1

Coemit(σ, i) I1I2

=Coemit(σ, i) I[q = q(h, i)].

We conclude that

B =
N+1∑

i=1

Coemit(σ, i)I[q = q(h, i)]

=
∑

i s.t. q(h,i)=q

Coemit(σ, i)

= sumCoemitw(σ,Mh, q). (10)

By plugging our calculations of A (Eq. 9) and
B (Eq. 10) into A = B and dividing the both sides
by nw(Mh, q), we obtain the result

freqw(σ|Mh, q) = Coemitw(σ|Mh, q)

from the definitions of the relative frequency of
an emission (Eq. 7) and the empirical mean of a
co-emission probability (Eq. 8). This concludes
the proof of Theorem 2. ���

Next we prove that maximizing P (w) is a con-
vex optimization problem to ensure that the solu-
tion is the maximum point.

Following Boyd and Vandenberghe (2004), A
set of points C in Rn is convex if the line segment
between any two points in C also lies in C. For-
mally, C is convex provided for any x1, x2 ∈ C
and any t with 0 ≤ t ≤ 1, we have tx1 + (1 −
t)x2 ∈ C. A function f : Rn → R is convex if

110

the domain of f is a convex set and if for all x, y
in the domain of f , and t with 0 ≤ t ≤ 1, we have
f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). We say
f is concave if −f is convex.

Recall from section 2.4 that the likelihood of a
sequence of data D to a stochastic language L be-
longing to a class with parameters Θ is lhd(D |
Θ) =

∏
w∈D PL(w). The likelihood function is a

function f : Rn → R where n is the number of
parameters |Θ|.

Let τj,q,σ denote log Tj(q, σ); i.e. the log
of some parameter in Θ. There are n =
|Σ|∑K

j=1 |Qj | parameters in Θ since σ ∈ Σ,
1 ≤ j ≤ K, and q ∈ Qj . This τ can be thought of
as a vector in Rn.

The problem of maximizing P (wn) is the same
as minimizing − logP (wn) as a function of τ .
We show that logP (wn) is concave with respect
to log Tj(q, σ) (Theorem 3). If so, it is true that
the solution shown in Theorem 2 is a global max-
imum.

Theorem 3 logP (wn) is concave with respect to
τ ∈ Rn.

Proof By taking the log of Eq. 6 , we have
logP (wn) =

N+1∑

i=1




K∑

j=1

log Tj(q(j, i), σi)

− log
∑

a∈Σ

K∏

j=1

Tj(q(j, i), a)


 .

Substituting in τ , it follows that logP (wn) =

N+1∑

i=1




K∑

j=1

τj,q(j,i),σi − log
∑

a∈Σ

K∏

j=1

exp(τj,q(j,i),a)


 .

Since

K∏

j=1

exp(τj,q(j,i),a) = exp

(
K∑

k=1

τk,q(j,i),a

)
,

and by letting ga(τ) =
∑

j τj,q(j,i),a, we obtain
logP (wn) =

N+1∑

i=1

(
gσi(τ)− log

∑

a∈Σ

exp (ga(τ))

)
.

Generally speaking, a composition f(x) =
h(g1(x), · · · , gk(x)) obeys the following rule: f

is convex if h is convex, h is non-decreasing
in each argument, and gi is convex (see vector
composition in Boyd and Vandenberghe, 2004,
section 3.2.4)). Furthermore, it is known that
log
∑

exp(·) is convex (see section 3.1.5), and
log
∑

exp(·) is non-decreasing in each argument
since both exp(·) and log(·) are non-decreasing.
In addition, ga(·) is both convex and concave since
every linear function is so from the definition (see
section 3.1.1). Thus, log

∑
a exp(ga(·)) is convex,

and − log
∑

a exp(ga(·)) is concave.
Finally, from the fact that non-negative

weighted sum preserves convexity and concavity
(Boyd and Vandenberghe, 2004, section 3.2.1),
logP (wn) is concave. ���
It follows that the negative log of P (wn) is con-
vex.

It is noteworthy to point out that establishing
concavity does not mean the solution is unique. In
fact, the solutions can be a set of points. An exam-
ple FRPD class illustrating this is one which con-
tains two PDFAM1 andM2 with the same struc-
ture. For example suppose each had exactly one
state with self-loop transitions for every symbol in
Σ. The co-emission productM1

⊗M2 does not
uniquely factorize though the above theorem es-
tablishes its convexity.

Of course it is also of interest to know when the
solution is unique. In this case, we have to show
the negative log probability is strictly convex ex-
cept for multiplying the emission probability by a
constant. We leave this as an area of future re-
search.

5 Optimization and Time Complexity

In this section, we discuss the time complexity and
also how to optimize. From the proof of Theo-
rem 2, we have the following fact immediately.

Corollary 1 The update equation for max-
imization of logP (wn) is represented as:
log Tj(q, σ) :=

log Tj(q, σ) + η (freqw(σ|Mj , q)

− Coemitw(σ|Mj , q)
)

(11)

if the simplest gradient method is applied, and
where η is the step size. The time complexity for
each update is O(NK|Σ|).

The time complexity for freqw(σ|Mj , q) and
Coemitw(σ|Mj , q) are shown in Lemma 1
and Lemma 2. The time complexity for

111

Coemitw(σ|Mj , q) is a little higher than that of
freqw(σ|Mj , q).

Lemma 1 For all Mj and q ∈ Qj ,
freqw(σ|Mj , q) are computed in the time
O(NK).

Proof We trace all machines while they are
emitting σ1, · · · , σN . Suppose that machines
are at q(1, i), · · · , q(K, i) after σ1, · · · , σi−1

are emitted sequentially. For each step i, for all
machines Mj , we have to update the counting for
the pair of q(k, i) and σi, in order to calculate
mw(Mj , q, σ). So the computational cost for each
step i is O(K). ���

Lemma 2 For all Mj and q ∈ Qj ,
Coemitw(σ|Mj , q) are computed in the time
O(NK|Σ|).

Proof We trace all machines while they are
emitting σ1, · · · , σN . Suppose that machines
are at q(1, i), · · · , q(K, i) after σ1, · · · , σi−1

are emitted sequentially. The critical part is
calculating sumCoemit(σ)〈Mj ,q〉(w) . For each
step i, we have to update emission probabilities
for all pairs of Mj and σ ∈ Σ. This update is in
the time O(K|Σ|). Thus, the time complexity for
calculating sumCoemitw(σ,Mj , q) isO(NK|Σ|).
���

6 Conclusion

The negative log likelihood function associated
with a FRPD class C is convex, and it is pos-
sible to efficiently find a MLE of any sequences
of data generated i.i.d. with respect to C. Es-
sentially, the parameters of the model are found
by running the corpus through each of the indi-
vidual factor PDFAs and calculating the relative
frequencies. While this was the approach adopted
by Heinz and Rogers (2010) for SP stochastic lan-
guages, we have generalized it to sets of finitely
many PDFAs.

There are several directions for future research,
both theoretical and applied. On the theoretical
side, one clear avenue is to better understand these
results in terms of probabilistic graphical mod-
els (Koller and Friedman, 2009). As a reviewer
pointed out, the application of those methods to
formal language theory and grammatical inference
(de la Higuera, 2010) appears fruitful.

On the applied side, there are several different
opportunities. One area of interest is language
modeling. The results here permit a modular ap-
proach to constructing language models, where
certain primitive factors are included or excluded.
For example, we expect that language models
which incorporate both n-gram models (Jurafsky
and Martin, 2008) (which cannot describe long-
distance dependencies) and SP stochastic lan-
guages (which can describe some kinds of long-
distance dependencies) will have lower perplex-
ity, a hypothesis under current investigation. More
generally, researchers can use aspects of the sub-
regular hierarchies of languages (Thomas, 1997;
Rogers et al., 2013) to identify a range of ‘primi-
tive factors’ whose DFA models can form the basis
of various FRPD classes.

Finally, we are also interested in extending
these results to weighted deterministic automata
for computing regular relations (Beros and de la
Higuera, 2016) or elements of other monoids
(Gerdjikov, 2018).

Acknowledgments

We would like to thank two anonymous reviewers
for helpful comments, and another anonymous re-
viewer in particular for making clear the scope of
this work, which resulted in a significant revisions
to our original submission. This work was sup-
ported by NIH grant #R01HD87133-01 to JH and
JSPS KAKENHI grant #JP18K11449 to CS.

References
Borja Balle, Rémi Eyraud, Franco M. Luque, Ariadna

Quattoni, and Sicco Verwer. 2016. Results of the se-
quence prediction challenge (SPiCe): a competition
on learning the next symbol in a sequence. In Pro-
ceedings of The 13th International Conference on
Grammatical Inference, volume 57 of JMLR: Work-
shop and Conference Proceedings, pages 132–136.

Achilles Beros and Colin de la Higuera. 2016. A
canonical semi-deterministic transducer. Funda-
menta Informaticae, 146(4):431–459.

Christopher M. Bishop. 2006. Pattern Recognition and
Machine Learning. Information Science and Statis-
tics. Springer.

S. Boyd and L. Vandenberghe. 2004. Convex optimiza-
tion. Cambridge.

Stefan Gerdjikov. 2018. A general class of
monoids supporting canonisation and minimisation

112

of (sub)sequential transducers. In Language and Au-
tomata Theory and Applications - 12th International
Conference, LATA 2018, Ramat Gan, Israel, April 9-
11, 2018, Proceedings, pages 143–155.

J. Heinz and J. Rogers. 2010. Estimating Strictly
Piecewise Distributions. Proceedings of the 48th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 886–896.

Jeffrey Heinz. 2010a. Learning long-distance phono-
tactics. Linguistic Inquiry, 41(4):623–661.

Jeffrey Heinz. 2010b. String extension learning. In
Proceedings of the 48th Annual Meeting of the As-
sociation for Computational Linguistics, pages 897–
906, Uppsala, Sweden. Association for Computa-
tional Linguistics.

Jeffrey Heinz. 2014. Culminativity times harmony
equals unbounded stress. In Harry van der Hulst,
editor, Word Stress: Theoretical and Typological Is-
sues, chapter 8. Cambridge University Press, Cam-
bridge, UK.

Jeffrey Heinz. 2018. The computational nature of
phonological generalizations. In Larry Hyman and
Frans Plank, editors, Phonological Typology, Pho-
netics and Phonology, chapter 5, pages 126–195. De
Gruyter Mouton.

Jeffrey Heinz, Colin de la Higuera, and Menno van
Zaanen. 2015. Grammatical Inference for Compu-
tational Linguistics. Synthesis Lectures on Human
Language Technologies. Morgan and Claypool.

Jeffrey Heinz, Anna Kasprzik, and Timo Kötzing.
2012. Learning with lattice-structured hypothesis
spaces. Theoretical Computer Science, 457:111–
127.

Jeffrey Heinz and James Rogers. 2013. Learning sub-
regular classes of languages with factored determin-
istic automata. In Proceedings of the 13th Meeting
on the Mathematics of Language (MoL 13), pages
64–71, Sofia, Bulgaria. Association for Computa-
tional Linguistics.

Colin de la Higuera. 2010. Grammatical Inference:
Learning Automata and Grammars. Cambridge
University Press.

John Hopcroft, Rajeev Motwani, and Jeffrey Ullman.
2001. Introduction to Automata Theory, Languages,
and Computation. Boston, MA: Addison-Wesley.

Daniel Jurafsky and James Martin. 2008. Speech and
Language Processing: An Introduction to Natu-
ral Language Processing, Speech Recognition, and
Computational Linguistics, 2nd edition. Prentice-
Hall, Upper Saddle River, NJ.

Daphne Koller and Nir Friedman. 2009. Probabilistic
Graphical Models: Principles and Techniques. MIT
Press.

Robert Malouf. 2002. A comparison of algorithms for
maximum entropy parameter estimation. In Pro-
ceedings of the 6th Conference on Natural Language
Learning - Volume 20, COLING-02, pages 1–7. As-
sociation for Computational Linguistics.

James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlef-
sen, Molly Visscher, David Wellcome, and Sean
Wibel. 2010. On languages piecewise testable in the
strict sense. In The Mathematics of Language, vol-
ume 6149 of Lecture Notes in Artifical Intelligence,
pages 255–265. Springer.

James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy
Hurst, Dakotah Lambert, and Sean Wibel. 2013.
Cognitive and sub-regular complexity. In Formal
Grammar, volume 8036 of Lecture Notes in Com-
puter Science, pages 90–108. Springer.

Chihiro Shibata and Jeffrey Heinz. 2016. Predicting
sequential data with lstms augmented with strictly
2-piecewise input vectors. In Proceedings of The
13th International Conference on Grammatical In-
ference, volume 57 of JMLR: Workshop and Con-
ference Proceedings, pages 137–142.

Wolfgang Thomas. 1997. Languages, automata, and
logic. In Handbook of Formal Languages, volume 3,
chapter 7. Springer.

Enrique Vidal, Franck Thollard, Colin de la Higuera,
Francisco Casacuberta, and Rafael C. Carrasco.
2005a. Probabilistic finite-state machines-part I.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(7):1013–1025.

Enrique Vidal, Frank Thollard, Colin de la Higuera,
Francisco Casacuberta, and Rafael C. Carrasco.
2005b. Probabilistic finite-state machines-part II.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(7):1026–1039.

113

Sentence Length

Gábor Borbély András Kornai
{borbely,kornai}@math.bme.hu

Department of Algebra, Budapest University of Technology and Economics

Abstract

The distribution of sentence length in ordi-
nary language is not well captured by the ex-
isting models. Here we survey previous mod-
els of sentence length and present our random
walk model that offers both a better fit with
the data and a better understanding of the dis-
tribution. We develop a generalization of KL
divergence, discuss measuring the noise inher-
ent in a corpus, and present a hyperparameter-
free Bayesian model comparison method that
has strong conceptual ties to Minimal Descrip-
tion Length modeling. The models we obtain
require only a few dozen bits, orders of mag-
nitude less than the naive nonparametric MDL
models would.

1 Introduction

Traditionally, statistical properties of sentence
length distribution were investigated with the goal
of settling disputed authorship (Mendenhall, 1887;
Yule, 1939). Simple models, such as a “monkeys
and typewriters” Bernoulli process (Miller, 1957)
do not fit the data well, and this problem is in-
herited from n-gram Markov to n-gram Hidden
Markov models, such as found in standard lan-
guage modeling tools like SRILM (Stolcke et al.,
2011). Today, length modeling is used more often
as a downstream task to probe the properties of
sentence vectors (Adi et al., 2017; Conneau et al.,
2018), but the problem is highly relevant in other
settings as well, in particular for the current gener-
ation of LSTM/GRU-based language models that
generally use an ad hoc cutoff mechanism to reg-
ulate sentence length. The first modern study, in-
terested in the entire shape of the sentence-length
distribution, is Sichel (1974), who briefly summa-
rizes the earlier proposals, in particular negative
binomial (Yule, 1944), and lognormal (Williams,
1944), being rather critical of the latter:

The lognormal model suggested by
Williams and used by Wake must be re-
jected on several grounds: In the first
place the number of words in a sentence
constitutes a discrete variable whereas
the lognormal distribution is continu-
ous. Wake (1957) has pointed out that
most observed log-sentence-length dis-
tributions display upper tails which tend
towards zero much faster than the cor-
responding normal distribution. This
is also evident in most of the cu-
mulative percentage frequency distribu-
tions of sentence-lengths plotted on log-
probability paper by Williams (1970).
The sweep of the curves drawn through
the plotted observations is concave up-
wards which means that we deal with
sub-lognormal populations. In other
words, most of the observed sentence-
length distributions, after logarithmic
transformation, are negatively skew. Fi-
nally, a mathematical distribution model
which cannot fit real data –as shown
up by the conventional χ2 test– cannot
claim serious attention. (Sichel, 1974,
p. 26)

Sichel’s own model is a mixture of Poisson dis-
tributions given as

φ(r) =

√
1− θγ

Kγ(α
√

1− θ)
(αθ/2)r

r!
Kr+γ(α) (1)

where Kγ is the modified Bessel function of the
second kind of order γ. As Sichel notes, “a
number of known discrete distribution functions
such as the Poisson, negative binomial, geomet-
ric, Fisher’s logarithmic series in its original and
modified forms, Yule, Good, Waring and Riemann
distributions are special or limiting forms of (1)”.

114

While Sichel’s own proposal certainly cannot be
faulted on the grounds enumerated above, it still
leaves something to be desired, in that the parame-
ters α, γ, θ are not at all transparent, and the model
lacks a clear genesis. In Section 2 of this article we
present our own model aimed at remedying these
defects and in Section 3 we analyze its properties.
Our results are presented is Section 4. The relation
between the sentence length model and grammati-
cal theory is discussed in the concluding Section 5.

2 The random walk model

In the following Section we introduce our model
of random walk(s). The predicted sentence length
is basically the return time of these stochastic pro-
cesses, i.e. the probability of a given length is the
probability of the appropriate return time.

Let Xk be a random walk on Z and Xk(t) the
position of the walk at time t. Let Xk(0) = k
be the initial condition. The walk is given by the
following parameters:

Xk(t+ 1)−Xk(t) =





−1 with probability p−1
0 with probability p0
1 with probability p1
2 with probability p2

(2)

The random walk is the sum of these independent
steps. (2) is a simple model of valency (depen-
dency) tracking: at any given point we may in-
troduce, with probability p2, some word with two
open valences (e.g. a transitive verb), with proba-
bility p1 one that brings one new valence (e.g. an
intransitive verb or an adjective), with probability
p0 one that doesn’t alter the count of open valen-
cies (e.g. an adverbial), and with probability p−1
one that fills an open valency, e.g. a proper noun.
For ease of presentation here we cut off at 2, mak-
ing no provisions for ditransitives and higher ar-
ity verbs, but in actual numerical work (Section 3)
we will relax this assumption. We also cut off at
−1, making no provision for those cases where a
single word can fill more than one valency, as in
Latin accusativus cum infinitivo or (arguably) En-
glish equi. We discuss these cutoffs further in Sec-
tions 3.1 and 5. The return time is defined as

τk = min
t≥0
{t : Xk(t) = 0} (3)

In particular, τ1 is the time needed to go from 1→

5 10 15 20
t

1

2

3

4

5

6

k

Figure 1: Sentence length is modeled as the return time
of a random walk.

0. We will calculate the probability-generating
function to find the probabilities.

f(x) := E (xτ1) (4)

The generating function of τk easily follows from
τ1, since τk is the sum of k independent copies
of τ1, so the generating function of τk is simply
f(x)k.

In order to calculate f(x), we condition on the
first step:

f(x) = p−1 · x+ finishing in one step

p0 · x · f(x)+ wait τ1 again

p1 · x · f(x)2+ wait τ1 two times

p2 · x · f(x)3 wait τ1 three times
(5)

Therefore, f(x) is the solution of the following
equation (solved for f , x is a parameter):

p−1·x+(p0·x−1)·f+p1·x·f2+p2·x·f3 = 0 (6)

This can be solved with Cardano’s formula. The
probabilities are given by

P(τk = i) = [xi]f(x)k , 1

i!

∂i

∂xi
f(x)k

∣∣∣∣
x=0

(7)

(Here and in what follows, [xi] refers to the coeffi-
cient of xn in the expansion of the function to the
right of it.) For given parameters p−1, p0, p1, p2
and k, and a given i, one can evaluate these prob-
abilities numerically, but we need a bit more ana-
lytical form. Let us define the following.

F (u) = p−1 + p0 · u+ p1 · u2 + p2u
3 (8)

g(f) =
f

F (f)
(9)

115

With these functions Equation 6 becomes x =
g(f(x)), meaning that we are looking for the in-
verse function of g. One can see that g(0) = 0
and g′(0) = 1/p−1 6= 0, therefore we can apply
the Lagrange inversion theorem. Calculations de-
tailed in the Appendix yield the following formula.

P(τk = i) =
k

i
[ui−k]F i(u) (10)

SinceF is a polynomial, one can calculate its pow-
ers by polynomial multiplication and get P(τk =
i) by looking up the appropriate coefficient. Here
k is an integer (discrete) model parameter and
p−1, p0, p1, p2 are real (continuous) numbers. This
makes the above mentioned probabilities differen-
tiable in the continuous parameters.

We call the parameter k, the starting point of the
random walk, the total valency. Note that τk ≥ k
with probability 1, therefore one cannot model the
sentences shorter then k. To overcome this obsta-
cle, we introduce the mixture model that consists
of several models with various k values and coef-
ficients for convex linear combination.

Pk1,α1,k2,α2,...km,αm(τ = i) =
m∑

j=1

αj · P(τkj = i)

(11)
where the parameters αj are mixture coefficients;
positive and sum up to 1, see Figure 2. Also every
term in the mixture have different p−1, p0, p1 and
p2 values (all positive and sum up to one). In this
way, we can model the sentences with length at
least minj kj .

k1 α1 p1−1 p10 p11 p12
k2 α2 p2−1 p20 p21 p22
...

...
...

km αm pm−1 pm0 pm1 pm2

Figure 2: Model parameters. The framed parameters
are real, positive numbers and should sum up to 1.

It is easy to generalize our model to allow
higher upward steps, i.e. p3 for ditransitives or
even higher steps for higher arity relations. The
only technical constraint is that p−1 and p0 should
be positive, and no lower steps are allowed (no
p−2). This is also a reasonable assumption if a
word can only fulfill one role in a sentence, a mat-
ter we return to in Section 5. Altogether, the num-

ber of upward steps is called order and it is an
other hyper-parameter in our model.

Theoretically, there is no obstacle to have differ-
ent number of p values to different k values. The
model can be a heterogeneous mixture of random
walks, where the individual processes can have
different upward steps. But we did not investigate
that possibility.

3 Model analysis

Here we introduce and analyze the experimen-
tal setup that we will use in Section 4 to fit our
model to various datasets. The raw data is a
set of positive integers, the sentence lengths, and
their corresponding weights (absolute frequen-
cies) {nx}x∈X . We call n :=

∑
x∈X nx the

size and X the support of the data. Since the
model is differentiable in the continuous param-
eters (including the mixing coefficients), the di-
rect approach would be to perform gradient de-
scent on the dissimilarity as an objective function
to find the parameters. With fixed valency pa-
rameters kj this is a constrained optimization task
dist(Psample,Pmodeled)→ min.

In some cases, especially for smaller datasets,
we might find it expedient to bin the data, for ex-
ample (Adi et al., 2017) use bins (5-8), (9-12),
(13-16), (17-20), (21-25), (26-29), (30-33), and
(34-70). On empirical data (for English we will
use the BNC1 and the UMBC Webbase2 and for
other languages the SZTAKI corpus3) this partic-
ular binning leaves a lot to be desired. We dis-
cuss this matter in subsection 3.1, together with
the choice of dissimilarity (figure of merit). An
important consideration is that a high number of
mixture components fit the data better but have
more model parameters – this is discussed in sub-
section 3.2.

3.1 Length extremes
Short utterances are common both in spoken cor-
pora and in written materials, especially in dia-
log intended to sound natural (see 2nd and 5th
columns of Table 1). As is well known, people
don’t speak in complete sentences, and a great
deal of the short material is the result of sluicing,
zero anaphora, and similar cross-sentence ellipsis

1http://www.natcorp.ox.ac.uk
2https://ebiquity.umbc.edu/resource/

html/id/351
3http://hlt.sztaki.hu/resources/

webcorpora.html

116

phenomena (Merchant, 2001), with complete sen-
tences such as imperatives like Help! comprising
only a small portion of the data. In nonfiction,
short strings are encountered overwhelmingly in
titles, subtitles, and itemized lists, material that is
hard to separate from actual sentences. Here we
go around the problem by permitting in the mix-
ture components with low total valency (small k
at the start of the random walk).

dataset < 5 >100 dataset < 5 >100

BNC-A 7.2% 0.1% Dutch 17.4% 1.1%
BNC-B 9.6% 0.1% Finnish 14.1% 0.7%
BNC-C 8.8% 0.1% Indonesian 11.3% 2.0%
BNC-D 25.9% 1.4% Lithuanian 25.2% 1.1%
BNC-E 8.7% 0.1% Bokmål 14.4% 1.1%
BNC-F 12.1% 0.2% Nynorsk 8.7% 0.4%
BNC-G 11.2% 0.1% Polish 23.3% 1.9%
BNC-H 14.5% 0.2% Portuguese 22.7% 2.5%
BNC-J 15.2% 0.5% Romanian 8.2% 3.1%
BNC-K 29.9% 0.2% Serbian.sh 15.3% 1.9%
UMBC 3.7% 0.2% Serbian.sr 33.7% 9.0%
Catalan 15.7% 2.8% Slovak 12.4% 1.9%
Croatian 16.7% 2.1% Spanish 14.7% 3.2%
Czech 13.7% 1.3% Swedish 24.6% 0.8%
Danish 20.8% 1.1%

Table 1: Distribution of short and long sentences

Especially on the long end (see columns 3 and
6 of Table 1) data becomes so sparse that some
kind of binning is called for. Since the eight bins
used by (Adi et al., 2017) actually ignore the very
low (1-4) and very high (71+) ranges of the data,
we will use ordinary deciles, setting the ten bins
as the data dictates. In this regard, it is worth not-
ing that in the 18 non-English corpora used in this
study the low bin neglected by (Adi et al., 2017)
contains on the average 17.4% of the data (vari-
ance 6.3%, low 8.1% on Romanian, high 33.7% on
Serbian_sr) whereas on the high end the problem
is much less severe: for example in UMBC 1.0%,
and in the BNC only 0.8% would be ignored.

To cover 99.9% we need to consider only sen-
tences up to a few hundred words (see column
5 of Table 2), and in the current study we ap-
plied a cutoff of 1,000 to be above 99.9% coverage
in all cases while keeping compute time manage-
able. The last column of Table 2 shows the length
of the longest sentence in each of the subcorpora
considered. The original binning (cutoff at 71)
would have resulted in coverage 95.7% on the av-
erage (variance 3.1%, low 84.9% Serbian_sr, high
98.8% for Nynorsk).

The prevailing tokenization convention, where
punctuation is counted as equivalent to a full word,

dataset number of
sentences

tolerance
(in nats)

mean 99.9% max
sentence length

B
N

C
-2

.0
(E

ng
lis

h)

BNC-A 753442 9.847e-4 20.967 97 555
BNC-B 362003 7.741e-3 20.650 96 365
BNC-C 955486 9.494e-3 20.524 102 491
BNC-D 6138 8.510e-2 16.366 228 466
BNC-E 337370 5.000e-3 22.219 106 763
BNC-F 527758 2.630e-2 19.351 130 2208
BNC-G 478860 9.199e-3 18.753 106 435
BNC-H 1185549 3.385e-2 18.841 118 950
BNC-J 359352 7.940e-2 18.666 156 1100
BNC-K 1086242 2.134e-1 12.784 116 918

UMBC 136630947 2.442e-3 24.434 116 3052

SZ
TA

K
Ic

or
pu

s

Catalan 23927377 1.751e-3 27.496 384 5279
Croatian 62196524 5.616e-3 23.975 369 8598
Czech 30382696 5.147e-3 20.139 285 6081
Danish 26687240 7.557e-3 18.593 296 16425
Dutch 103958658 2.408e-3 19.135 296 16128
Finnish 58104101 1.946e-3 15.538 237 5552
Indonesian 13095607 1.231e-2 23.675 343 22762
Lithuanian 81826291 1.184e-3 17.170 294 21857
Bokmål 84375397 3.564e-3 19.199 281 14032
Nynorsk 1393312 3.946e-3 18.836 175 1591
Polish 72983880 8.508e-3 19.549 396 24353
Portuguese 37953728 4.973e-2 25.365 448 9614
Romanian 36211510 2.338e-2 29.466 473 54434
Serbian.sh 35606837 4.531e-3 23.744 332 6800
Serbian.sr 2023815 7.189e-3 37.736 862 6800
Slovak 39633566 2.572e-3 21.759 402 24571
Spanish 47673229 8.365e-4 29.305 471 29183
Swedish 54218846 2.526e-3 16.468 315 8127

Table 2: Sentence length datasets. For tolerance see
subsection 3.2

has an effect on the distribution, more perceptible
at the low end. Besides this (and more subtle is-
sues of tokenization, such as the treatment of hy-
phenation or of multiple punctuation) perhaps the
most important factor influencing sentence length
is morphological complexity, since in highly ag-
glutinating languages a single word is sufficient
for what would require a multiword sentence in
English, as in Hungarian elvihetlek ‘I can give you
a ride’.

Since the number of datapoints is high, rang-
ing from 1.3M (Nynorsk) to 136.6M (UMBC), the
conventional χ2 test does not provide a good fig-
ure of merit on the original data (no fit is ever sig-
nificant, especially as there is a lot of variation at
the high end where only few lengths are extant),
nor on the binned data, where every fit is highly
significant.

A better choice is the Kullback–Leibler diver-
gence, but this still suffers from problems when
the supports of the distributions do not coincide.
In our case we have this problem both at the low
end, where the model predicts P(τ = i) = 0 for
i < k, and at the high end, where we predict pos-

117

itive (albeit astronomically small) probabilities of
arbitrarily long sentences. To remedy this defect,
we define generalized KL divergence, gKL, as
follows.

Definition 3.1 (Motivated by Theorem A.2.). Let
P and Q be probability measures over the same
measurable space (X,Σ) that are both absolutely
continuous with respect to a third measure dx,
and let λ be P(supp(P) ∩ supp(Q)). Then

gKL(P,Q) := −λ · lnλ+
∫

supp(P)∩supp(Q)

P(x) · ln P(x)

Q(x)
dx

(12)

Clearly, gKL reduces to the usual KL diver-
gence if the support of the distributions coincide.
The high end of the distribution could be ignored,
at least for English, at the price of losing less than
0.1% of the data, but ignoring the short sentences,
14.4% of the BNC, is hard to countenance. As a
practical matter this means we needed to bring in
mixture components with total valency k < 4, and
these each bring 4 parameters (the mixture weight
and 3 pi values) in tow. Obviously, the more com-
ponents we use, the better the fit will be, so we
need to control the trade-off between these. In sub-
section 3.2 we introduce a method derived from
Bayesian model comparison (MacKay, 2003) that
will remedy the zero modeled probabilities and an-
swer the model complexity trade-off.

3.2 Bayesian model comparison

If a dataset D has support X , with nx > 0 being
the number that length x occurred, the data size
is |D| = ∑

x∈X nx and the observed probabilities
are px := nx

|D| . Let Hi ⊆ Rd be ith model in some
list of models. Each model is represented by a pa-
rameter vector wi ∈ Hi in the parameter space,
and suppHi = {x | P(x | Hi) > 0} is not neces-
sarily equal to X . Clearly, different Hi may have
different support, but a given model has the same
support for every wi. Model predictions are given
by Qwi(x) := P(x | wi,Hi), and the evidence
the ith model has is

P(Hi | D) =
P(D | Hi) · P(Hi)

P(D)
(13)

If one supposes that no model is preferred over any
other models (P(Hi) is constant) then the decision

simplifies to finding the model that maximizes

P(D | Hi) =

∫

Hi

P(D | wi,Hi) ·P(wi | Hi) dwi

(14)
We make sure that no model parameter is preferred
by setting a uniform prior:

P(wi | Hi) = 1/

(∫

Hi

1 dwi

)
= 1/Vol(Hi)

(15)
We estimated this integral with Laplace’s method
by introducing f(wi) := − 1

|D| lnQwi(D), i.e. the
cross entropy (measured in nats).

P(D | wi,Hi) =
∏

x∈X
Qwi(x)nx

f(wi) = −
∑

x∈X
px · lnQwi(x) (16)

Taking − 1
|D| ln(•) of the evidence amounts to

minimizing in i the following quantity:

f(w∗i) +
1

|D| · ln Vol(Hi)+ (17)

1

2|D| ln det f ′′(w∗i) +
d

2|D| · ln
|D|
2π

where d is the dimension of Hi (number of
parameters), f ′′ is the Hessian and w∗i =
arg minwi∈Hi

f(wi) for a given i. Since the the-
oretical optimum of f(wi) is the entropy of the
data (ln 2 · H(D)), we subtract this quantity from
Equation 17 so that the term f(wi) becomes the
relative entropy (measured in nats) with a theoret-
ical minimum of 0.

We introduce an augmented model to deal with
the datapoints where Qwi(x) = 0.

Qwi,q(x) :=

{
λQwi(x) if Qwi(x) > 0

(1− λ)qx if nx > 0,Qwi(x) = 0
(18)

where

λ =
∑

x∈X∩supp(Hi)

px covered probability

1− λ =
∑

x∈X\supp(Hi)

px uncovered probability

The newly introduced model parameters q =
(qx)x∈X\supp(Hi) are also constrained: they have
to be positive and sum up to one, i.e. inside the
probability simplex. After finding the optimum of

118

q and modifying Equation 17 with the auxiliary
terms and subtracting the entropy of the data (ln 2 ·
H(D)) as discussed above, one gets:

− λ · lnλ+
∑

x∈X∩supp(Hi)

px · ln
px

Qw∗
i
(x)

+

1

|D| · (ln Vol(Hi) + ln Vol(aux. model)) +

1

2|D| · ln det (model Hessian) +

1

2|D| · ln det (aux. model Hessian) +

d′

2|D| · ln
|D|
2π

(19)

where d′ is the original model dimension plus
the auxiliary model dimension. One possible use
(or abuse) of auxilary parameters would be to di-
rectly (nonparametrically) model the low end of
the length distribution. But, as we shall see in Sec-
tion 4, the parametric models actually do better. To
see what is going in, let us consider the asymptotic
behavior of models.

For sufficiently large corpora (|D| → ∞) all
but the first term will be negligible, meaning that
the most precise model (in terms of gKL diver-
gence) wins regardless of model size. One way
out would be to choose an ‘optimum corpus size’
(Zipf, 1949), a move that has already drawn strong
criticism in Powers (1998) and one that would
amount to little more than the addition of an ex-
tra hyperparameter to be set heuristically.

Another, more data-driven approach is based on
the observation that corpora have inherent noise,
measurable as the KL divergence between a ran-
dom subcorpus and its complement (Kornai et al.,
2013) both about the same size (half the origi-
nal). Here we need to take into account the fact
that large sentence lengths appear with frequency
1 or 0, so subcorpora D1 and D2 = D \ D1 will
not have the exact same support as the original,
and we need to use symmetrized gKL: the inher-
ent noise δD of a corpus D is 1

2(gKL(D1, D2) +
gKL(D2, D1)), where D1 and D2 are equal size
subsets of the original corpus D, and the gKL di-
vergence is measured on their empirical distribu-
tions.
δD is largely independent of the choice of sub-

sets D1, D2 of the original corpus, and can be eas-
ily estimated by randomly sampled Dis. To the
extent crawl data and classical corpora are sequen-

tially structured (Curran and Osborne, 2002), we
sometimes obtain different noise estimates based
on random Di than from comparing the first to the
second half of a corpus, the procedure we followed
here. In the Minimum Description Length (MDL)
setting where this notion was originally developed
it is obvious that we need not approximate corpora
to a precision better than δ, but in the Bayesian
setup that we use here matters are a bit more com-
plicated.

Definition 3.2. For δ > 0 let

gKLδ(P,Q) := max(0, gKL(P,Q)− δ) (20)

For a sample P with inherent noise δ, a model Q
is called tolerable if gKLδ(P,Q) = 0

If gKLδ is used instead of gKL in Equation 19
then model size d becomes important. If a model
fits within δ then the first term becomes zero and
for large |D| values the number of model param-
eters (including auxiliary parameters) will domi-
nate the evidence. The limiting behavior of our ev-
idence formula, with tolerance for inherent noise,
is determined by the following observations:

1. Any tolerable model beats any non-tolerable
one.

2. If two models are both tolerable and have dif-
ferent number of model parameters (includ-
ing auxiliary model), then the one with the
fewer parameters wins.

3. If two models are both tolerable and have the
same number of parameters, then the model
volume and Hessian decides.

An interesting case is when no model can reach
the inherent noise – in this case we recover the
original situation where the best fit wins, no matter
the model size.

4 Results

A single model Hi fit to some dataset is identi-
fied by its order, defined as the number of up-
ward steps the random walk can take at once:
1, 2 or 3, marked by the number before the first
decimal; and its mixture, a non-empty subset of
{1, 2, 3, 4, 5} that can appear as k: valency of a
single component. For example 1.k1.2.4 marks
order 1 and k mixture: {1, 2, 4} ⊆ {1, 2, 3, 4, 5}.
Altogether, we trained 3 × 31 = 93 locally opti-
mal models for each dataset and compared them

119

with Equation 19, except that gKLδ is used with
the appropriate tolerance.

We computed w∗i with a (non-batched) gradient
descent algorithm.4 We used Adagrad with ini-
tial learning rate η = 0.9, starting from uniform
p and α values, and iterated until every coordi-
nate of the gradient fell within ±10−3. The gra-
dient descent typically took 102−103 iterations to
reach a plateau, but about .1% of the models were
more sensitive and required a smaller learning rate
η = 0.1 with more (10k) iterations.

4.1 Validation

The model comparison methodology was first
tested on artificially generated data. We generated
1M+1M samples of pseudo-random walks with
parameters: p−1 = 0.5, p0 = p1 = 0.25 (at most
one step upward) and k = 3 (no mixture) and ob-
tained the inherent noise and length distribution.
The inherent noise was about 3.442e-4 nats. We
trained all 93 models and compared them as de-
scribed above.

The validation data size is 2 · 106 but we also
replaced |D| with a hyper-parameter n in Equa-
tion 19. This means that we faked the sample to be
bigger (or smaller) with the same empirical distri-
bution. We did this with the goal of imitating the
‘optimum corpus size’ as an adverse effect.

As seen on Table 3 the true model wins. We also
tested the case when the true model was simply
excluded from the competing models. In this case,
the tolerance is needed to ensure a stable result as
n→∞.

1.k3 artificial data best parameters for various n values
1k 10k 100k 1M 10M 1G

with tolerance 3.k1-5 1.k3 1.k3 1.k3 1.k3 1.k3
w/o tolerance 3.k1-5 1.k3 1.k3 1.k3 1.k3 1.k3

w tolerance, -true 3.k1-5 2.k4 2.k4 2.k4 2.k4 2.k4
w/o tolerance, -true 3.k1-5 2.k4 1.k2.3 1.k2.3 1.k2.3 1.k3-5

Table 3: Optimal models for artificially generated data
(1.k3) for various n values.

As there are strong conceptual similarities be-
tween MDL methods and the Bayesian approach
(MacKay, 2003), we also compared the models
with MDL, using the same locally optimal param-
eters as before, but encoding them in bits. To this
end we used a technique from (Kornai et al., 2013)

4You can find all of our code used for training and
evaluating at https://github.com/hlt-bme-hu/
SentenceLength

where all of the continuous model parameters are
discretized on a log scale unless the discretization
error exceeds the tolerance. The model with the
least number of bits required wins if it fits within
tolerance. (The constraints are hard-coded in this
model, meaning that we re-normalized the param-
eters after the discretization.) In the artificial test
example, the model 1.k3 wins, which is also the
winner of the Bayesian comparison. If the true
model is excluded, the winner is 1.k2.3. Further
MDL results will be discussed in Section 4.4.

4.2 Empirical data

Let us now turn to the natural language corpora
summarized in Table 2. Not only are the webcrawl
datasets larger than the BNC sections, but they are
somewhat noisier and have suspiciously long sen-
tences. To ease the computation, we excluded sen-
tences longer than 1, 000 tokens. This cutoff is al-
ways well above the 99.9th percentile given in the
next to last column of Table 2. The results, sum-
marized in Table 4, show several major tendencies.

First, most of the models (151 out of 174) fit
sentence length of the entire subcorpus better than
the empirical distribution of the first half would
fit the distribution of the second half. When this
criterion is not met for the best model, i.e. the gKL
distance of the model from the data is above the
internal noise, the ill-fitting model form is shown
in italics.

Second, this phenomenon of not achieving tol-
erable fit is seen primarily (16 out of 29) in the
first column of Table 4, corresponding to a radi-
cally undersampled condition n = 1, 000, and (7
out of 29) to a somewhat undersampled condition
n = 10, 000.

Third, and perhaps most important, for suffi-
ciently large n the Bayesian model comparison
technique we advocate here actually selects rather
simple models, with order 1 (no ditransitives, a
matter we return to in Section 5) and only one or
two mixture components. We emphasize that ‘suf-
ficiently large’ is still in the realistic range, one
does not have to take the limit n → ∞ to obtain
the correct model. The last two columns (gigadata
and infinity) always coincide, and in 21 of the 29
corpora the 1M column already yield the same re-
sult.

Given that tolerance is generally small, less
than 0.66 bits even in our noisiest corpus (BNC-
K), we didn’t expect much change if we perform

120

the model comparison without using Equation 20.
Unsurprisingly, if we reward every tiny improve-
ment in divergence, we get more models (159 out
of 174) within the tolerable range – those outside
the tolerance limit are again given in italics in Ta-
ble 6. But we pay a heavy price in model complex-
ity: the best models (in the last two columns) are
now often second order, and we have to counte-
nance a hyperparameter n which matters (e.g. for
Polish).

dataset best parameters for various n values
1k 10k 100k 1M 1G ∞

BNC-A 3.k1-5 3.k2-5 1.k4.5 1.k4.5 1.k4.5 1.k4.5
BNC-B 3.k1-5 3.k1-5 1.k1.5 1.k1.5 1.k1.5 1.k1.5
BNC-C 3.k2-5 3.k2-5 3.k2-5 1.k1.4 1.k1.4 1.k1.4
BNC-D 3.k2.3.5 3.k2.3.5 3.k2.3.5 1.k2 1.k2 1.k2
BNC-E 3.k1.3-5 3.k1.3-5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
BNC-F 3.k3.4.5 3.k3.4.5 3.k3.4.5 1.k3 1.k3 1.k3
BNC-G 3.k1-5 3.k1-5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
BNC-H 3.k2.4.5 3.k3.4.5 1.k4 1.k4 1.k4 1.k4
BNC-J 3.k2.3.4 3.k2.3.4 3.k2.5 1.k2 1.k2 1.k2
BNC-K 3.k1-5 3.k1-5 1.k2 1.k2 1.k2 1.k2

UMBC 3.k1.3-5 3.k1.3-5 1.k2.5 1.k2.5 1.k2.5 1.k2.5

Catalan 3.k2-5 3.k2-5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Croatian 3.k3.4.5 3.k3.4.5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Czech 3.k4.5 3.k1.3.5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Danish 3.k1-5 3.k1.3.5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Dutch 3.k1-5 3.k3.4.5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Finnish 3.k1.3.5 1.k2.4 1.k2.4 1.k2.4 1.k2.4 1.k2.4
Indonesian 3.k1-5 3.k1-5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Lithuanian 3.k2.3.4 3.k2.3.4 1.k2.3 1.k2.3 1.k2.3 1.k2.3
Bokmål 3.k2.4.5 3.k2.4.5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Nynorsk 3.k1-5 1.k2.5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Polish 3.k2-5 3.k2-5 3.k2-5 3.k2-5 1.k2.5 1.k2.5
Portuguese 3.k2.3.5 3.k2.3.5 1.k2 1.k2 1.k2 1.k2
Romanian 3.k1.3-5 3.k1.3-5 1.k5 1.k5 1.k5 1.k5
Serbian.sh 3.k1.2.4.5 3.k2.3.5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Serbian.sr 3.k2-5 3.k2.3.4 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Slovak 3.k2.4.5 3.k2-5 1.k2.5 1.k2.5 1.k2.5 1.k2.5
Spanish 3.k2.4.5 1.k2.3 1.k2.3 1.k2.3 1.k2.3 1.k2.3
Swedish 1.k2.4 1.k2.4 1.k2.4 1.k2.4 1.k2.4 1.k2.4

Table 4: Optimal models with tolerance for inner noise.
Ill-fitting models are marked with italics.

4.3 Previous models
We also compared previous or baseline sen-
tence length models with our new model. The
hyper-parameters of the bins model are the bins
themselves. The distribution over the bins are
the continuous model-parameters. For m bins:
[1, b1), [b1, b2), . . . [bm−1,∞), the probability dis-
tribution P(bi ≤ X < bi+1) = qi is to be op-
timized. This model has m − 1 free parameters
(model dimension) and its model volume is the
volume of a probabilisticm-simplex. No auxiliary
model is required.

We also trained5 and compared Sichel’s model
(Equation 1) with our method. In this case α and θ
are the model-parameters and γ was a non-trained
hyper-parameter. In Sichel (1974) it was fixed γ =
−1

2 , we trained γ ∈ {−0.5,−0.4}, the higher γ
value was usually better. Again no auxiliary model
was needed.

dataset Sichel binned randwalk δ

BNC-A 3.554e-2 1.489e-2 4.409e-4 9.847e-4
BNC-B 6.212e-2 1.274e-2 7.215e-3 7.741e-3
BNC-C 4.861e-2 1.431e-2 6.989e-3 9.494e-3
BNC-D 9.917e-2 8.387e-2 5.945e-2 8.510e-2
BNC-E 6.976e-2 2.251e-2 4.353e-3 5.000e-3
BNC-F 3.153e-2 2.196e-2 2.270e-2 2.630e-2
BNC-G 2.598e-2 1.495e-2 5.762e-3 9.199e-3
BNC-H 4.765e-2 3.265e-2 3.106e-2 3.385e-2
BNC-J 3.048e-2 6.854e-2 2.946e-2 7.940e-2
BNC-K 6.583e-2 1.388e-1 3.899e-2 2.134e-1

UMBC 6.584e-2 2.615e-2 1.390e-3 2.442e-3

Catalan 1.389e-1 6.102e-2 9.382e-4 1.751e-3
Croatian 1.131e-1 4.604e-2 2.063e-3 5.616e-3
Czech 5.857e-2 3.687e-2 2.563e-3 5.147e-3
Danish 1.618e-1 3.072e-2 2.772e-3 7.557e-3
Dutch 4.232e-1 3.447e-2 1.391e-3 2.408e-3
Finnish 9.968e-2 2.830e-2 1.659e-3 1.946e-3
Indonesian 2.159e-1 5.017e-2 1.390e-3 1.231e-2
Lithuanian - 3.113e-2 6.637e-4 1.184e-3
Bokmål - 3.332e-2 3.515e-3 3.564e-3
Nynorsk - 2.830e-2 3.757e-3 3.946e-3
Polish - 4.078e-2 1.518e-3 8.508e-3
Portuguese - 5.133e-2 4.514e-2 4.973e-2
Romanian - 6.539e-2 1.579e-2 2.338e-2
Serbian.sh - 4.676e-2 1.346e-3 4.531e-3
Serbian.sr - 1.389e-1 6.971e-3 7.189e-3
Slovak - 4.344e-2 2.184e-3 2.572e-3
Spanish - 6.501e-2 7.718e-4 8.365e-4
Swedish - 2.652e-2 2.310e-3 2.526e-3

Table 5: Best of the models and their fit. Ill-fitting mod-
els are marked with italics.

As can be seen, the fit is always improved (on
the average by 40%) from the mixture Poisson to
the binned model, and the random walk model fur-
ther improves from the binned (on the average by
70%). More important, the mixture Poisson model
never, the binned model rarely, but the random
walk model always approximates the data better
than its inner noise. Altogether the random walk
models always outperforms the other two, but not
always for the same reason. In the case of bins,
the fit was poor and only the fine-grained bins per-

5Optimizing the mixture Poisson coefficients took orders
of magnitude more time than optimizing the other mod-
els. The difficulties come from computing the derivatives of
Bessel functions. At the time of going to press still about
a third of the values are missing – by the time of the meet-
ing these will be published at https://github.com/
hlt-bme-hu/SentenceLength

121

formed within inherent noise. Note that none of
our parametric models use mode than 11 parame-
ters, which makes only systems with 12 or fewer
bins competitive.

In case of Equation 1, Sichel already mentions
that the fit is satisfactory only with binned proba-
bilities, i.e. on a dumbed down distribution with
4-5 data points aggregated into one. This classic
model has only 2 parameters, which would make it
very competitive for large inherent noise or small
data size, but neither is the case here.

4.4 MDL approach

Finally, let us consider the MDL results given in
Table 7. These are often (9 out of 29 subcorpora)
consistent with the results obtained using Equa-
tion 20, but never with those obtained without con-
sidering inherent noise to be a factor. Remarkably,
we never needed more than 6 bits quantization,
consistent with the general principles of Google’s
TPUs (Jouppi et al., 2017) and is in fact sugges-
tive of an even sparser quantization regime than
the eight bits employed there.

For a baseline, we discretized the naive (non-
parametric) model in the same way. Not only does
the quantization require on the average two bits
more, but we also have to countenance a consid-
erably larger number of parameters to specify the
distribution within inherent noise, so that the ran-
dom walk model offers a size savings of at least
95.3% (BNC-A) to 99.7% (Polish).

With the random walk model, the total number
of bits required for characterizing the most com-
plex distributions (66 for BNC-A and 60 for Span-
ish) appears to be more related to the high consis-
tency (low internal noise) of these corpora than to
the complexity of the length distributions.

5 Conclusion

At the outset of the paper we criticized the stan-
dard mixture Poisson length model of Equation 1
for lack of a clear genesis – there is no obvious
candidate for ‘arrivals’ or for the mixture. In con-
trast, our random walk model is based on the sug-
gestive idea of total valency ‘number of things you
want to say’, and we see some rather clear meth-
ods for probing this further.

First, we have extensive lexical data on the va-
lency of individual words, and know in advance
that e.g. color adjectives will be dependent on
nouns, while relational nouns such as sister can

dataset best parameters for various n values
1k 10k 100k 1M 1G

BNC-A 3.k1-5 1.k4.5 1.k4.5 1.k1-5 1.k1-5
BNC-B 3.k1-5 1.k2.3.5 2.k4.5 2.k4.5 2.k4.5
BNC-C 3.k2-5 1.k2.4.5 1.k2.4.5 1.k2.4.5 1.k2.4.5
BNC-D 3.k3.4 1.k2.5 2.k2.5 2.k2.5 2.k2.5
BNC-E 3.k1.3-5 1.k4.5 1.k4.5 1.k4.5 1.k4.5
BNC-F 3.k3-5 1.k2.4.5 1.k2.4.5 1.k2.4.5 1.k2.4.5
BNC-G 3.k1-5 1.k4.5 1.k2.4.5 1.k2.4.5 2.k2.4.5
BNC-H 3.k3-5 1.k4.5 2.k2.4.5 2.k2.4.5 2.k2.4.5
BNC-J 3.k1-5 1.k2.4.5 1.k2.4.5 1.k2.4.5 1.k2.4.5
BNC-K 3.k2-5 3.k2-5 1.k2.4.5 1.k2.4.5 1.k2.4.5

UMBC 3.k1.3-5 1.k2.4 1.k2.4.5 1.k2.4.5 1.k2.4.5

Catalan 3.k2-5 3.k2-5 1.k2.4 1.k1.3-5 1.k1.3-5
Croatian 3.k3-5 1.k2.3 1.k2.3 1.k3-5 1.k3-5
Czech 3.k2-5 3.k3-5 1.k2.3 1.k1.3-5 1.k1.3-5
Danish 3.k1-5 1.k2.3 1.k1.2.4.5 1.k1.2.4.5 3.k2-5
Dutch 3.k1-5 1.k2.4 1.k3.4 1.k1-5 1.k1-5
Finnish 3.k1.3.5 1.k1.3.4 1.k1.3.4 1.k1.3-5 1.k1.3-5
Indonesian 3.k1-5 1.k3.5 1.k3-5 1.k3-5 1.k3-5
Lithuanian 3.k2.3.4 1.k2.3 1.k2-5 1.k2-5 1.k2-5
Bokmål 3.k2.4.5 3.k2.4.5 1.k1.3-5 1.k1.3-5 1.k1.3-5
Nynorsk 3.k1-5 1.k2.4.5 1.k1-5 1.k1-5 1.k1-5
Polish 3.k2-5 3.k2-5 1.k1.4.5 1.k2-5 1.k2-5
Portuguese 3.k2.4.5 1.k2.3 1.k3.4 1.k3.4 1.k3.4
Romanian 3.k2.4.5 1.k2.4 1.k2.3.4 1.k2.3.4 1.k2.3.4
Serbian.sh 3.k1.2.4.5 1.k2.4 1.k3.4 1.k2-5 1.k2-5
Serbian.sr 3.k2-5 1.k4.5 1.k4.5 1.k4.5 1.k4.5
Slovak 3.k2.4.5 1.k2.3 1.k1.3-5 1.k1.3-5 1.k1.3-5
Spanish 3.k2.4.5 1.k2.3 1.k1.3.5 1.k1.3.5 1.k1.3.5
Swedish 1.k2.3 1.k2.3 1.k1-5 1.k1-5 1.k1-5

Table 6: Optimal models without tolerance. Ill-fitting
models are marked with italics.

bring further nouns or NPs. Combining the lexical
knowledge with word frequency statistics is some-
what complicated by the fact that a single word
form may have different senses with different va-
lency frames, but these cause no problems for a
statistical model that convolves the two distribu-
tions.

Second, thanks to Universal Dependencies6 we
now have access to high quality dependency tree-
banks where the number of dependencies running
between words w1, . . . , wk and wk+1 . . . wn, the
y coordinate of our random walk at k, can be ex-
plicitly tracked. Using these treebanks, we could
perform a far more detailed analysis of phrase or
clause formation than we attempted here, e.g. by
systematic comparison of the learned p1 and p2
values with the observable proportion of intransi-
tive and transitive verbs and relational nouns. Di-
transitives are rare (in fact they usually make up
less than 2% of the verbs) and we think these can
be eliminated entirely (Kornai, 2012) without loss

6http://universaldependencies.org

122

dataset mq nq tb opt % size

BNC-A 6 7 66 1.k4.5 4.69
BNC-B 4 5 40 2.k2.5 4.65
BNC-C 3 5 36 1.k1.2.4 3.32
BNC-D 2 3 6 1.k2 1.29
BNC-E 4 5 32 1.k2.5 3.56
BNC-F 2 5 16 1.k2.5 1.13
BNC-G 3 5 24 1.k1.2 2.45
BNC-H 2 4 16 1.k2.5 1.36
BNC-J 2 4 6 1.k2 0.51
BNC-K 2 3 6 1.k2 0.63

UMBC 4 7 44 1.k4.5 0.88

Catalan 5 7 40 1.k2.5 0.57
Croatian 4 6 32 1.k2.4 0.53
Czech 3 6 24 1.k2.5 0.41
Danish 3 6 24 1.k2.4 0.41
Dutch 5 7 40 1.k2.5 0.57
Finnish 4 7 48 1.k1.2.3 0.69
Indonesian 4 5 32 1.k2.4 0.66
Lithuanian 4 7 32 1.k2.3 0.46
Bokmål 3 7 30 2.k2.5 0.43
Nynorsk 4 6 32 1.k2.3 1.14
Polish 2 5 16 1.k2.5 0.32
Portuguese 3 5 18 1.k4 0.36
Romanian 3 5 24 1.k1.2 0.48
Serbian.sh 4 6 32 1.k2.4 0.53
Serbian.sr 4 5 32 1.k2.5 0.64
Slovak 5 6 40 1.k2.3 0.67
Spanish 6 7 60 1.k3.4 0.86
Swedish 5 7 40 1.k2.3 0.57

Table 7: Optimal models with MDL comparison
(with tolerance). mq: Model quantization bits. nq:
naive/nonparametric quantization bits. tb: total bits.
opt: optimal model configuration. %size: size of ran-
dom walk model as percentage of size of nonparametric
model.

of generality. The same kind of analysis could be
attempted for other grammatical formalisms like
type-logical grammars, which make tracking the
open arguments an even more attractive proposi-
tion, but unfortunately these lack large parsed cor-
pora. Another significant issue with formalisms
other than UD is that the cross-linguistic breadth
of parsed corpora is minute – do we want to base
general conclusions of the type attempted here,
linking predicate/argument structure to sentence
length, on English alone?

Third, we can extend the analysis in a typo-
logically sound manner to morphologically more
complex languages. Using a morphologically an-
alyzed Hungarian corpus (Oravecz et al., 2014) we
measured the per-word morpheme distribution and
per-sentence word distribution. We found that the
random sum of ‘number of words in a sentence’
independent copies of ‘number of morphemes in
a word’ estimates the per-sentence morpheme dis-

tribution within inherent noise. To the extent these
results can be replicated for other morphologically
complex languages (again UD morphologies7 of-
fer the best testbed, though a lot remains to be
done for ensuring homogeneity) problems like six-
word ‘I can give you a ride’ versus one-word elvi-
hetlek disappear.

Another avenue of research alluded to above
would be the study of subject- and object-control
verbs and infinitival constructions, where single
nouns or NPs can fill more than one open depen-
dency. This would complicate the calculations in
Equation 5 in a non-trivial way. We plan to extend
our mathematical model in a future work, but it
should be clear from the foregoing that sentences
exhibiting these phenomena are so rare as to ren-
der unlikely any prospect of improving the statisti-
cal model by means of accounting for these. This
is not to say that control phenomena are irrelevant
to grammar – but they are likely ‘within the noise’
for statistical length modeling.

One of the authors (Kornai and Tuza, 1992)
already suggested that the number of dependen-
cies open at any given point in the sentence must
be subject to limitations of short-term memory
(Miller, 1956) – this may act as a reflective barrier
that keeps asymptotic sentence length smaller than
the pure random walk model would suggest. In
particular, Bernoulli and other well-known models
predict exponential decay at the high end, whereas
our data shows polynomial decay proportional to
n−C , with C somewhere around 4 (in the 3 − 5
range). This is one area where our corpora are
too small to draw reliable conclusions, but over-
all we should emphasize that corpora already col-
lected (and in the case of UD treebanks, already
analyzed) offer a rich empirical field for studying
sentence length phenomena, and the model pre-
sented here makes it possible to use statistics to
shed light on the underlying grammatico-semantic
structure.

Acknowledgments

The presentation greatly benefited from the re-
marks of the anonymous reviewers. Research
partially supported by National Research, Devel-
opment and Innovation Office (NKFIH) grants
#120145: Deep Learning of Morphological Struc-
ture and NKFIH grant #115288: Algebra and al-

7https://universaldependencies.org/u/
overview/morphology.html

123

gorithms as well as by National Excellence Pro-
gramme 2018-1.2.1-NKP-00008: Exploring the
Mathematical Foundations of Artificial Intelli-
gence. A hardware grant from NVIDIA Corpo-
ration is gratefully acknowledged. GNU parallel
was used to run experiments (Tange, 2011).

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer

Lavi, and Yoav Goldberg. 2017. Fine-grained anal-
ysis of sentence embeddings using auxiliary predic-
tion tasks. In Proceedings of International Confer-
ence on Learning Representations.

Alexis Conneau, Germán Kruszewski, Guillaume
Lample, Loïc Barrault, and Marco Baroni. 2018.
What you can cram into a single \$&!#* vector:
Probing sentence embeddings for linguistic proper-
ties. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2126–2136. Associa-
tion for Computational Linguistics.

James R. Curran and Miles Osborne. 2002. A very very
large corpus doesn’t always yield reliable estimates.

Norman P. Jouppi, Cliff Young, Nishant Patil, David
Patterson, and et. al. 2017. In-datacenter perfor-
mance analysis of a tensor processing unit. In Pro-
ceedings of ISCA ’17.

András Kornai. 2012. Eliminating ditransitives. In
Ph. de Groote and M-J Nederhof, editors, Revised
and Selected Papers from the 15th and 16th Formal
Grammar Conferences, LNCS 7395, pages 243–
261. Springer.

András Kornai and Zsolt Tuza. 1992. Narrowness,
pathwidth, and their application in natural language
processing. Discrete Applied Mathematics, 36:87–
92.

András Kornai, Attila Zséder, and Gábor Recski. 2013.
Structure learning in weighted languages. In Pro-
ceedings of the 13th Meeting on the Mathematics of
Language (MoL 13), pages 72–82, Sofia, Bulgaria.
Association for Computational Linguistics.

David J.C. MacKay. 2003. Information Theory, Infer-
ence, and Learning Algorithms. Cambridge Univer-
sity Press.

T.C. Mendenhall. 1887. The characteristic curves of
composition. Science, 11:237–249.

Jason Merchant. 2001. The Syntax of Silence: Sluicing,
Islands, and the Theory of Ellipsis. Oxford Univer-
sity Press.

George A. Miller. 1956. The magical number seven,
plus or minus two: some limits on our capacity
for processing information. Psychological Review,
63:81–97.

George A. Miller. 1957. Some effects of intermittent
silence. American Journal of Psychology, 70:311–
314.

Csaba Oravecz, Tamás Váradi, and Bálint Sass. 2014.
The Hungarian Gigaword Corpus. In Proceedings
of the Ninth International Conference on Language
Resources and Evaluation (LREC-2014). European
Language Resources Association (ELRA).

David M.W. Powers. 1998. Applications and expla-
nations of Zipf’s law. In D.M. W. Powers, ed-
itor, NEMLAP3/CONLL98: New methods in lan-
guage processing and Computational natural lan-
guage learning, pages 151–160. ACL.

H.S. Sichel. 1974. On a distribution representing sen-
tence length in written prose. Journal of the Royal
Statistical Society Series A, 137(1):25–34.

Andreas Stolcke, Jing Zheng, Wen Wang, and Victor
Abrash. 2011. Srilm at sixteen: Update and outlook.
In Proceedings of IEEE Automatic Speech Recogni-
tion and Understanding Workshop, volume 5.

O. Tange. 2011. Gnu parallel - the command-
line power tool. ;login: The USENIX Magazine,
36(1):42–47.

W.C. Wake. 1957. Sentence-length distributions of
Greek authors. Journal of the Royal Statistical So-
ciety Series A, 120:331–346.

C.B. Williams. 1944. A note on the statistical analy-
sis of sentence-length as a criterion of literary style.
Biometrika, 31:356–361.

G. Udny Yule. 1939. On sentence-length as a statisti-
cal characteristic of style in prose: with application-
sto two cases of disputed authorship. Biometrika,
30:363–390.

G. Udny Yule. 1944. The Statistical Study of Literary
Vocabulary. Cambridge University Press.

George K. Zipf. 1949. Human Behavior and the Prin-
ciple of Least Effort. Addison-Wesley.

A Appendix

Theorem A.1. Let us define f as x = f(x)
F (f(x)) with

F (0) > 0, then

[
xi
]

(f(x))k =
k

i
[xi−k]F i(x) (21)

Proof. By Lagrange–Bürmann formula with com-
position function H(x) = xk.

Theorem A.2. In the Bayesian evidence if both
the model and parameter a priori is uniform, then

P(Hi | D) =
P(D | Hi) · P(Hi)

P(D)
∝ f(w∗i)+

1

n
· ln Vol(Hi) +

1

2n
ln det f ′′(w∗i) +

d

2n
· ln n

2π

124

where f(wi) is the cross entropy of the measured
and the modeled distributions. See Equation 17.

If the augmented model (18) is used, then Equa-
tion 19 follows.

Proof.

P(D | Hi)
uniform a priori

=∫
P(D | wi,Hi) ·

1

Vol(Hi)
dwi =

1

Vol(Hi)
·
∫ ∏

x∈X
Qwi(x)nx dwi =

∫
exp

{
− n ·

f(wi)︷ ︸︸ ︷(
−
∑

x∈X

nx
n
· lnQwi(x)

)}
dwi

Vol(Hi)

Using Laplace method:

≈ 1

Vol(Hi)
· e−n·f(w∗

i) ·
(
2π
n

) d
2

√
det f ′′(w∗i)

Taking − 1
n ln(•) for scaling (does not effect the

relative order of the models):

1

n
ln Vol(Hi) + f(w∗i) +

1

2n
ln det f ′′(w∗i)+

d

2n
· ln
(n

2π

)

As for the augmented model, the model param-
eters are the concatenation of the original parame-
ters and the auxiliary parameters. Thus the overall
Hessian is the block-diagonal matrix of the origi-
nal and the auxiliary Hessian. Similarly, the over-
all model volume is the product of the original and
the auxiliary volume. Trivially, the logarithm of
product is the sum of the logarithms.

Since the auxiliary model can fit the uncovered
part perfectly: px = (1− λ) · qx on x /∈ suppHi.
See (18) for that λ is the covered probability of the

sample.

P(D | H′i) = −
∑

x∈X\supp(Hi)

px · ln px

−
∑

x∈X∩supp(Hi)

px · ln
(
λ ·Qw∗

i
(x)
)

+

1

n
· (ln Vol(Hi) + ln Vol(aux. model)) +

1

2n
· ln det (model Hessian) +

1

2n
· ln det (aux. model Hessian) +

d′

2n
· ln n

2π
(22)

where d′ is the overall parameter number.
Further, if one subtracts the entropy of the sam-

ple then only the first two term is changed com-
pared to Equation 22 and Equation 19 follows.

∑

x∈X
px · ln px −

∑

x∈X\supp(Hi)

px · ln px

−
∑

x∈X∩supp(Hi)

px · ln
(
λ ·Qw∗

i
(x)
)

=

∑

x∈X∩supp(Hi)

px · ln
px

λ ·Qw∗
i
(x)

=

∑

x∈X∩supp(Hi)

px ·
(

ln
px

Qw∗
i
(x)

+ ln
1

λ

)
=

λ · (− lnλ) +
∑

x∈X∩supp(Hi)

px · ln
px

Qw∗
i
(x)

q.v. Definition 3.1.

125

	Proceedings of the 13th International Conference on Computational Semantics - Long Papers
	ISBN
	Preface
	Programme Committee
	Table of Contents
	Parsing Weighted Order-Preserving Hyperedge Replacement Grammars
	Sensing Tree Automata as a Model of Syntactic Dependencies
	Presupposition Projection and Repair Strategies in Trivalent Semantics
	Dependently-Typed Montague Semantics in the Proof Assistant Agda-flat
	Quantifier-free least fixed point functions for phonology
	Some classes of sets of structures definable without quantifiers
	Efficient learning of Output Tier-based Strictly 2-Local functions
	Learning with Partially Ordered Representations
	Maximum Likelihood Estimation of Factored Regular Deterministic Stochastic Languages
	Sentence Length

