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Abstract
This paper presents two different approaches to-
wards Sentence Boundary Detection (SBD) that
were submitted to the FinSBD-2019 shared task.
The first is a supervised machine learning approach
which tackled the SBD task as a combination of
binary classifications based on TF-IDF representa-
tions of context windows. The second approach is
unsupervised and rule-based and applies manually
created heuristics to automatically annotated input.
Since the latter approach yielded better results on
the Dev set, we submitted it to evaluation for En-
glish and reached an F score of 0.80 and 0.86 for
detecting begin of sentences and end of sentences,
respectively.

1 Introduction
Sentences are the fundamental units of text, consisting of
words and punctuation, and constructing phrases and para-
graphs [Reynar and Ratnaparkhi, 1997]. Sentence Boundary
Detection (SBD), or finding the start and end of sentences, is
an essential prerequisite in the Natural Language Processing
(NLP) pipeline for various applications, such as Discourse
Parsing [Polanyi et al., 2004], Machine Translation, Docu-
ment Summarization, Alignment of Parallel Text, Sentiment
Analysis, and Information Retrieval [Jonathon et al., 2012].
SBD can have a strong impact on the performance of these
applications due to error propagation in the NLP pipeline.

Probably the most important factors in SBD are 1) am-
biguous expressions and 2) source of text. In disambiguating
sentence boundaries, the most misleading expression is the
period (.), which is not only used as end of sentence (ES)
marker, but also in abbreviations or numerical expressions
(e.g. ordinals and dates). Some other examples of problem-
atic expressions are question mark (?), exclamation mark (!),
and colon (:). The other key factor is the genre and / or quality
of the text, which can impact the performance of an SBD sys-
tem. Most of the existing SBD systems are highly accurate
on formal and high quality text, but their performance often
degrades when the input text is noisy or informal.

The research work for SBD mostly focuses on disam-
biguating the ends of sentences in formal, noise-free text
[Agarwal et al., 2005; Kiss and Strunk, 2006; Akita et al.,

2006; Gillick, 2009; Rudrapal et al., 2015]. The FinSBD-
2019 Shared Task, in contrast, tackles SBD in noisy text ex-
tracted from PDFs from the financial domain.

We applied two different approaches to solve the SBD
problem. The first approach treats the problem as an su-
pervised classification task on TF-IDF based representations
of context windows, thus taking advantage of the annotated
training data set. The second approach is unsupervised, rule-
based and applies manually created heuristics to automati-
cally annotated input.

The rest of the paper is structured as follows: Section
2 covers some existing work on SBD. Section 3 explains
the general configurations for experiments, including details
about the data set and evaluation measures. Sections 4 and
5 explain the two approaches in more detail, and Section 6
concludes the paper.

2 Related Work
This section covers some studies that used rule- or machine
learning-based approaches for SBD.

[Agarwal et al., 2005] applied a combination of rule-based
features and a probability based classifier (MaxEnt) to predict
sentence ending boundaries. They considered three different
data sets: 1) Wall Street Journal (WSJ) (43, 948 sentences),
2) Penn Treebank (24, 243 sentences) and 3) POS-labelled
GENIA (20, 544 sentences). The feature extraction was exe-
cuted on each context trigram of data set where each context
trigram contained its own label along with a label that either
center token is an end of sentence or not. The best results
were obtained on WSJ with an F score of 97.8%.

[Kiss and Strunk, 2006] worked on SBD by using different
heuristics (ratios, length, etc.) and collocation information
for finding abbreviations, initials, and ordinal numbers in an
unsupervised manner. The system named ‘Punkt’ was evalu-
ated on news data for eleven different languages and produced
a high F score of 91.50% and 97.22% on Wall Street Journal
(WSJ) and Lacio Web data sets respectively.

[Akita et al., 2006] experimented with SBD on Japanese
spoken transcripts extracted from Corpus of Spontaneous
Japanese (CSJ). The total corpus consisted of 200 selected
conversations out of which 30 conversations were used as
test set. The corpus was annotated both manually and au-
tomatically. Two different approaches were applied, a sta-
tistical language model (SLM) and Support Vector Machine
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(SVM) model. For SLM, they extracted three different fea-
ture categories: i) Linguistic, which consisted of word sur-
face, reading, POS tags, conjugation based features, and so
on, for each context based window, ii) Pause, which was
calculated on normalized duration (if available), and iii) Dy-
namic, which was extracted by estimating the results of pre-
ceding words. For SVM, [Akita et al., 2006] considered the
task as text chunking and adopted three categories: i) I (in-
side), ii) O (outside), and iii) E (end) of chunk, respectively.
They applied the YamCha text chunker which is based on
SVM with polynomial kernel functions, and achieved an F
score for manual annotations of 0.854 and 0.818 for SLM
and SVM respectively.

[Gillick, 2009] combined rule-based features and a ma-
chine learning approach to SBD. They extracted the rule-
based features from training data and fed them into the Sup-
port Vector Machine (SVM). For training, WSJ data was used
and then the trained model was applied to New York Times
data from the AQUAINT corpus to automatically annotate
100 million words. [Gillick, 2009] reported the error score
(lowest 0.25%) instead of F score for presenting the results
of their system.

[Orosz et al., 2013] presented a hybrid system based on a
rule-based approach and unsupervised machine learning for
clinical data in Hungarian language. The data set consisted
of 1, 320 lines in Dev set and 1, 310 lines in Test set respec-
tively, without having a train set. They achieved an F score of
91.89% on the test set.

[Rudrapal et al., 2015] collected social media text from
Facebook, Twitter and manually annotated the data for sen-
tence breaking utterances. The final corpus was composed of
6, 444 sentences in total. [Rudrapal et al., 2015] applied two
different approaches, rule-based and machine learning based,
to solve the SBD task. Before applying any of approaches,
the sentences were tokenized using CMU tokenizer to remove
the ambiguities of end of sentence markers. [Rudrapal et al.,
2015] obtained an F score of 78.72% and 87.0% with the rule-
based approach and SMO classifier respectively.

[Kreuzthaler and Schulz, 2015] worked on abbreviation
and SBD with a supervised approach on medical narratives
in German language. The authors collected patient discharge
summaries from the Graz University Hospital for a period
of more than 6 years. The final data set consisted of 1, 696
documents which were split into half for generating training
and testing set. Different rule-based features were extracted
from the data based on length, word information, and contex-
tual and language information. These features were passed to
an SVM classifier in the training phase for abbreviations and
SBD individually, and achieved the F score of 0.95 and 0.94,
respectively.

More recently, [Wiechetek et al., 2019] conducted research
on a North Sámi data set consisting of the Uralic language,
which has a complex morphological structure and is spoken
in Norway, Sweden and Finland. [Wiechetek et al., 2019]
applied a context based approach for feature extraction by us-
ing constraint grammar and some other structural based infor-
mation. They report promising results for detecting sentence
boundaries with 97% accuracy and 99.99% recall.

English French
Data set Tokens Sentences Tokens Sentences
Train 904,057 22,342 827,825 22,636
Dev 49,859 1384 119,008 3141
Test 56,952 1265 106,577 2981

Table 1: Statistics of the FinSBD-2019 Data Set

3 Experimental Setup
This section covers the data set and configuration used for our
experiments.

3.1 Data set
The Fin-SBD data set [Ait Azzi et al., 2019] was provided in
JSON format along with original PDF files. The data set was
comprised of three different parts: i) Train set, ii) Dev set, and
iii) Test set, for English and French. Table 1 shows the basic
data set statistics. Each token was annotated as either ES (End
of Sentence), BS (Begin of Sentence), or O (Ordinary token).

3.2 Evaluation Measures
The evaluation metrics include Precision, Recall and F score,
which can be automatically computed by the supplied eval-
uation script for all three labels. Due to the overwhelming
number of tokens that are labeled as O, the official system
performance was only computed as the average F score for
BS and ES label prediction. Also, the standard result format
has only two decimal places, i.e. F score ranges from 0.00
to 1.00. While this might be sufficient for overall ranking of
shared task participants, we found it too coarse-grained, es-
pecially in the detailed analysis of the rule-based system (cf.
Section 5), for which we changed the result precision to five
decimal places.

4 ML based SBD with Contextual Windows
This section describes our machine learning based SBD ap-
proach. It exploits the advantages of supervised machine
learning along with context based information for a token
passed as a window.

4.1 Generation of Contextual Windows
We utilize the surrounding information of a token as a context
window to determine whether this token is a boundary token
(either begin or end) or not. A contextual window (CW ) for
a center token at position i consists of some preceding tokens
(i− 1, i− 2, ..., i−n), the token itself (i), and some succeed-
ing tokens (i + 1, i + 2, ..., i + n) depending on the size of
the window (n). A context window (CW ) of size n can be
generalized for a center token Ti as follows:

CWi = Ti−n + ...+ Ti−1 + Ti + Ti+1 + ...+ Ti+n

The size of CW depends on how much context we want
to take into account. For example, a context of size 1 will
result in a CW size of 3, consisting of one preceding token,
the center token, and one succeeding token. We calculated
different sizes of CW , i.e. 3, 5, 7 and 9. Each CW is labeled
for center token only, therefore, depending on that token, a
CW can have one of the three labels BS, ES, orO. A CW is
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generated for each token that is present in the data set, with
majority of the CWs falling into the O category.

4.2 Reduction of Contextual Windows
Generating a CW for each token would result in a huge list
of windows that might include duplicates as well. As men-
tioned earlier, the majority of CWs are labeled O, and it is
undesirable to have a highly imbalanced data set for the clas-
sification task as it can strongly impact the performance of
classifier. Therefore, we opted for two strategies to remove
the duplicates and to mitigate the effect of the inherently im-
balanced nature of the data set.

Handling Majority Class
To optimize the approach by reducing the majority class O,
we applied a selection criterion for each center token to de-
cide whether to add the corresponding CW into the list or
not. For application of this criterion, we generated two dic-
tionaries based on the Train set consisting of all unique tokens
labeled as BS and ES. We utilized the given BS and ES indices
to get all BS and ES tokens from the Train set and then finding
unique lists for both. The total number of unique BS and ES
tokens are 921 and 216 for English, 790 and 575 for French
Train data, respectively. These dictionaries served as selec-
tion criteria that if a center token is present in the dictionary,
then the corresponding CW will be added in the final CW
list, hence resulting in a smaller number of O labeled CWs
than before.

Removing Duplicates
To remove the duplicates from the final CW list, at the time
of inserting a new CW , a search was made on entire list to
check if current CW is already present in the list or not. If
current CW is already present, then it will not be added again
to handle the redundancy. Finally, each input document was
converted into a list of context based windows (CWs) which
can be passed to a machine learning classifier for predicting
labels for each center token of CW . To preserve the mapping
of the original tokens with their indices, we stored the index
of each center token for each CW .

4.3 Feature Representation
For applying a machine learning algorithm on textual data,
we have to transform the textual data into some numeric or
vector representation. There are different methods available
for this, such as occurrence based, term-frequency based, TF-
IDF (Term Frequency-Inverse Document Frequency), word
co-occurrence matrix, and so on. TF-IDF is an occurrence
based vector representation of text where TF (Term Fre-
quency) represents the normalized score of word occurrence
by the size of the document [Joachims, 1997]. TF of a word
w can be expressed as below where D denotes to Document
[Joachims, 1997].

TF (w) =
Count(w) in D

Total w in D

The result of TF is the assignment of the same weights for
each word in the vector representation, which is undesirable.
This is because discriminating information of text is mainly

contained in words other than stop words, articles, preposi-
tions, etc which occured a lot in a document. Therefore, such
unwanted words should have reduced weights, and the pro-
cess of suppressing TF scores is done with IDF (Inverse Doc-
ument Frequency). IDF of a word w can be calculated as
follows where D denotes to Document.

IDF (w) = Log(
Total# of D

# of D having w
)

TF-IDF is the product of both scores which converts the tex-
tual data into a vector representation where discriminative
words have a higher score than others. We applied TF-IDF
vector representation to CWs for generating character N-
grams. This resulted in variable length of character N-grams
where the minimum length of N is 3 and the maximum length
of N is 10. The TF-IDF vector representation usually gener-
ates a huge vector space which is computationally expensive.
Therefore, we selected the top 5, 000 features only.

4.4 Classification
We performed supervised machine learning to exploit the
benefit of given annotated data set. To simplify the task, we
split the task into two binary classifications: BS vs. O and
ES vs. O. For classification, we opted for Random Forest en-
semble classifier (decision trees = 100) due to its unbiased
and stable nature and Naive Bayes classifier as a baseline.
We provided TF-IDF based features on different CW sizes
as an input to the classifiers. The Train and Dev data sets
were used for training and evaluation to find the optimized
configuration. We found the best results from both classi-
fiers with CW size = 5 among all sizes. After that, Train
and Test data sets were used for getting final predictions for
Test set. Each predicted label was stored against the original
index number (cf. Section 4.2), so it could be mapped back
into the Test data. The given data set is the full list of to-
kens and their indices. The indices for which no prediction is
made are marked as O by the given evaluation script. The fi-
nal step is to merge the predictions of both classification tasks
to maintain the structure and format of the given data set. As
we treated BS and ES detection as separate tasks, so there are
two predictions for each token. For each token, we require
only one prediction, so two cases arise here for selecting a
single prediction for each token, BS/ES vs. O, and BS vs. ES.
We resolved this according to the evaluation script where all
tokens are initialized with O, then BS markers are placed, and
finally ES markers are written.

4.5 Results
Table 2 presents the results of the machine learning based
approach with contextual windows CWs of size 5. The first
column presents the data set for which the results are reported
in the corresponding row. The second column denotes to the
classifier used for the classification. The next columns are
grouped together to present the results of BS and ES detec-
tion in terms of Precision (P), Recall (R) and F score (F). For
the English data set, the highest results are obtained on the
Dev set for ES (F score = 0.88) and BS (F score = 0.70) de-
tection respectively with the Random Forest classifier, while
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BS ES
P R F P R F

Set Clf EN
Dev RF 0.65 0.77 0.70 0.83 0.93 0.88
Test 0.60 0.72 0.65 0.74 0.94 0.83
Dev NB 0.29 0.61 0.40 0.62 0.77 0.69
Test 0.34 0.60 0.44 0.56 0.76 0.65

FR
Dev RF 0.73 0.75 0.74 0.77 0.91 0.84
Test 0.76 0.79 0.77 0.81 0.91 0.85
Dev NB 0.38 0.57 0.46 0.52 0.78 0.63
Test 0.38 0.56 0.45 0.54 0.77 0.63

Table 2: Results of ML based Approach with CW Size = 5

performance of the classifier dropped on the Test set for ES
(F score = 0.83) and BS (F score = 0.65) detection respec-
tively. The same behavior can be observed with the Naive
Bayes classifie, i.e. better results are produced on Dev set for
ES detection (F score = 0.69), however, for BS detection (F
score = 0.44), the results of Test set are more satisfactory.

Overall, Recall is greater than Precision for Random For-
est, which shows that the classifier learned very well despite
the imbalanced nature of the data set. For Naive Bayes, Re-
call is also higher than Precision, however, low Precision re-
sults in low F score. For the French data set, the best results
are obtained on Test set for ES (F score = 0.85) and BS (F
score = 0.77) detection respectively with Random Forest clas-
sifier, and the performance of the classifier was a bit less on
Dev set for ES (F score = 0.84) and BS (F score = 0.74) detec-
tion respectively. Interestingly, the performance of the Naive
Bayes classifier on Dev and Test sets is very similar for ES (F
score = 0.63) and BS detection (F score = 0.46 for Dev and F
score = 0.45 for Test set). A similar pattern is identified for
Recall and Precision where Recall is better than Precision for
Random Forest, which also confirms the robust nature of the
classifier. For Naive Bayes, Recall is also higher than Preci-
sion, however, low Precision resulted in low F score.
Comparing the results of the BS and ES detection task, overall
the results of ES detection are higher than BS detection which
depicts that BS marker are harder to find than the ES markers.
The other reason for better ES detection result can be corre-
lated with the total number of unique marks. As mentioned in
Section 4.2, the total number of unique ES markers is much
smaller than that of BS markers. Probably, the smaller num-
ber of unique markers resulted in better learning of classifier.
Regarding the languages, the classifiers showed good perfor-
mance for French on Test set considering both ES and BS
detection.

5 Rule-based SBD
The general strategy underlying our alternative, rule-based
approach can be characterized as follows: In an initial step,
for easier access at the following stages, the input document
is represented as a sequence of numbered tokens which are
read from the original JSON data set. We do this by extract-
ing the content of the ‘text’ element from the JSON file and
splitting it on the basis of white space, thus maintaining the
original tokenization and the gold data token indices, which
are stored as the first item in a 4-tuple (cf. Figure 1). Then,
we strip any trailing newlines from each token, but store in
the tuple for each token whether it originally ended in a new-

...

(11765, ‘calculated’, False, []), (11766, ‘using’ False, []),
(11767, ‘the’, False, []), (11768, ‘Relative’, False, []),
(11769, ‘Value,’ False, []), (11770, ‘at’, False, []),
(11771, ‘Risk’, False, []), (11772, ‘Approach’, False, []),
(11773, ‘.’, True, []), (11774, ‘Portfolio’, False, []),
(11775, ‘management’, False, []), (11776, ‘and’, False, []),
(11777, ‘investment’, False, []), (11778, ‘advising’, True, []),
(11779, ‘UBS’, False, []), (11780, ‘Third’, False, []),
(11781, ‘Party’, False, []), (11782, ‘Management’, False, []),
(11783, ‘Company’, False, []), (11784, ‘S’, False, []),
(11785, ‘.’, True, []), (11786, ‘A’, False, []),
(11787, ‘.’, True, []), (11788, ‘,’, False, []),

...

Figure 1: Enriched Document Tokens before Automatic Annotation

line. Note that all period (.) tokens in the data have a trailing
newline, apparently added at tokenization time, while other
newlines are merely for layout purposes (e.g. headlines, cf.
token 11778 in Figure 1). Finally, each tuple contains an (ini-
tially empty) list to which annotation labels are added. Figure
1 contains a short excerpt from the Dev data set.

Then, we perform an automatic, pattern-based annotation
of the input document, which assigns descriptive labels (e.g.
URL, ABBREVIATION, ENUMERATION, and SECTION) to
sequences of tokens. Apart from providing shallow hints
regarding the document structure (e.g. start / end of an
ENUMERATION, which normally occur in groups), these
labels also effectively disambiguate potential ES markers
(mainly periods (.)) by binding them to the larger units. Since
neither an annotation scheme nor an operationalizable defini-
tion of BS and ES for the domain of the Fin-SBD documents
were available, rules were created inductively by analyzing
the annotated documents (based on an HTML-based visual-
ization). Finally, we perform the actual ES and BS detec-
tion, which employs hand-crafted, heuristic rules partly oper-
ating on the plain tokens, and partly on the token annotations.
While the heuristic rule application happens after the pattern-
based annotation, we describe it first (Section 5.1), and the
pattern-based annotation afterwards (Section 5.2).

5.1 ES and BS Detection
ES and BS detection work by going through the list of 4-tuples
and checking each tuple against a short list of rules. These
rules take into account the string and pertaining annotations
of both the current token T i and its immediately preceding
and following tokens T i−n and T i+n. ES detection is done
first, because it provides some information that is used by
BS detection later. The full list of heuristic rules for ES de-
tection in their actual order is given in Figure 2. At most
one rule is applied to every token T i. We use the expression
STRING(T i) to represent the actual token, ANNO(T i) to rep-
resent the annotations assigned to T i, and NEWLINE(T i) to
represent whether the token originally ended in a newline.
Many of the rules in Figure 2 are more or less self-
explanatory. Rules 1 and 2 directly handle potential ES-
signalling tokens, with the additional condition in rule 1 en-
suring that a previously disambiguated period character (.) is
prevented from causing a sentence break. Rule 3 exploits an
observed structural property of the annotation, i.e. that items
in enumerations (like ’(a) ...’, ’(b) ...’, ’(c) ...’) are treated as
sentences. Similarly, rule 4 exploits the fact that token se-

118



Given a token T i , label it as ES if

1. STRING(T i) = ’.’ and
ANNO(T i) = [ ];

2. STRING(T i) = ’?’ or ’!’;

3. ANNO(T i+1) = ’B-ENUM’;

4. STRING(T i) = ’;’ or ’and’ or ’or’ and
STRING(T i+1) = ’-’;

5. STRING(T i) = ’:’ or ’,’ or ’;’ or ’and’ or ’or’ and
ANNO(T i+1) = ’B-ENUM’ and
ANNO(T i−1) != ’E-ENUM’;

Figure 2: Heuristic ES Detection Rules

quences starting with a dash (-) are also treated as sentences
(cf. also rule 4 in Figure 3), and that the tokens ’;’, ’and’, and
’or’ also mark sentence breaks if they immediately precede
such a dash. Rule 5, finally, handles sequences of enumera-
tions. For BS detection, the rules are given in Figure 3. Note
that tokens T i for which ANNO(T i) = ’B-HEADLINE’ or
’B-BULLET’ are regarded as non-BS, and are not submit-
ted to the rules. The same is true for tokens T i for which
STRING(T i−1) = ’-’ and NEWLINE(T i−2) = True.

Given a token T i , label it as BS if

1. ANNO(T i) = ’B-ENUM’;

2. ANNO(T i−1) = ’E-HEADLINE’;

3. ANNO(T i−1) = ’E-BULLET’ and
ANNO(T i) = [ ];

4. STRING(T i) = ’-’ and
ANNO(T i−1) = ’ES’;

5. STRING(T i) starts with uppercase and
ANNO(T i−1) = ’ES’;

Figure 3: Heuristic BS Detection Rules

The rules in Figure 3 are less complex than those in Fig-
ure 2. At least in part, this is due to the fact that they make
use of the results of previous rules (cf. below). The first two
rules in Figure 3 are very straightforward. One striking dif-
ference between the BS and the ES detection rules is that the
former makes use of the output of the latter: Rule 4 is the
complement to rule 4 in Figure 2, which assigns the BS label
to dash characters (-) which immediately follow a previously
assigned ES label. Similarly, rule 5 is a kind of default which
assigns the BS label to all tokens with an uppercase initial
character directly following a previously assigned ES label.

5.2 Pattern-based Automatic Annotation
In this step, the document is matched against a group of sim-
ple to averagely complex patterns. As mentioned earlier, this
step happens before rule application, because the patterns are
used to enrich the input for the rules. Some patterns oper-
ate strictly locally, while others depend on earlier patterns.
The patterns, their sequence of application, and their respec-
tive cumulative effects on rule application for Train, Dev, and
Test can be found in Table 3.

Note that the result precision was set to five decimal places
because, as will become apparent, the effects that some pat-
terns have on BS and ES detection are rather subtle. Row 0
contains the results when the rules described in Section 5.1
are applied without any previous annotation. Performance

differences between Train, Dev, and Test on this level are in-
dicative of inherent differences between these data sets. Ac-
tually, we can observe the following: i) On Train, F score for
the BS task is higher than for the ES task, while on Dev and
Test, F score for the ES task is higher. ii) Looking only at
the BS task, P and R are roughly on a par for all three data
sets, while for the ES task, R is generally much higher than P,
and F scores for Train and Test are very similar (.67758 and
.66194), while F score for Dev is much higher (.74945). iii)
Looking only at the ES task, F score for Dev and Test are rea-
sonably similar (.82627 and .80643), while F score for Train
is much lower (.62658).

The URLS and DATES patterns (rows 1 and 2) detect sim-
ple expressions like ’www . ubs . com’ and ’12 . 10 . 2011’,
respectively. These are mainly targeted at period (.) disam-
biguation, which should be visible in improvement of P for
ES detection. And in fact, BS performance on neither Train,
Dev, nor Test is affected by these patterns, and ES R is also
constant. We can see the expected improvements in P for ES
detection, however, these are extremely small only.

The ABBREVS LU and ABBREVS PT patterns (rows 3 and
4) detect the abbreviations including period (.) characters.
The first pattern does a simple look-up in a predefined list of
abbreviations, while the second detects the abbreviations by
matching sequences of single upper case letters and period
characters. These two patterns are also mainly targeted at pe-
riod disambiguation, which is indeed visible in considerable
jumps in ES detection P (.49848 to .56340 for Train, .75073
to .89815 for Dev, and .73839 to .77070 for Test). R is con-
sistently drops a little, but overall F score for ES detection
increases. However, we also see a positive effect of these two
patterns on P of the BS detection task, because with more cor-
rect ES being detected, the coverage of the BS detection rules
(e.g. rule 5 in Figure 3) also improves.

The SECTION pattern (row 5) is similar to the
ABBREVS PT pattern, but detects sequences of numbers and
period characters. This is another pattern targeting period dis-
ambiguation which should have an impact on P for ES task.
However, this is the case for Train only, where P and con-
sequently F score is considerable improved from .67546 to
.73884, while there is hardly any impact on Dev and Test.

The AMOUNTS pattern (row 6) is a variant of the SECTION
pattern which also handles leading and trailing zeros, to de-
tect expressions such as ’0 . 025’. This pattern has the overall
expected positive effect on P (and F score) for the ES detec-
tion task, but again, we observe huge differences in improve-
ment between Train on the one hand and Dev and Test on the
other. For Train, application of this pattern boosts P of ES
from .66324 to .83619 with only a marginal drop in R, result-
ing in an improvement in F score from .73884 to .83473. For
Dev and Test, the final improvement in F score is only about
.02.
ENUMS and ENUMS-MERGE (rows 7a and 7b) is a two-

step pattern which does not address period disambiguation,
but the detection of expressions like ’(a’, ’(a)’, ’I b)’ etc.,
which the Fin-SBD annotation treats as sentences. Accord-
ingly, this pattern has a more complex effect, as it mainly
addresses R for both BS and ES, while accepting some drops
in P. In general, however, application of this pattern(s) results
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Train Dev Test
BS ES BS ES BS ES

Pattern P R F P R F P R F P R F P R F P R F
0 - .68976 .66583 .67758 .49488 .85382 .62658 .76330 .73627 .74954 .74810 .92269 .82627 .65909 .66482 .66194 .73550 .89249 .80643
1 URLS .68976 .66583 .67758 .49843 .85382 .62943 .76330 .73627 .74954 .74897 .92269 .82680 .65909 .66482 .66194 .73839 .89249 .80816
2 DATES .68976 .66583 .67758 .49848 .85382 .62947 .76330 .73627 .74954 .75073 .92269 .82788 .65909 .66482 .66194 .73839 .89249 .80816
3 ABBREVS LU .72387 .66059 .69079 .54893 .84585 .66579 .76646 .72327 .74424 .80608 .91908 .85888 .65986 .66403 .66194 .75300 .89170 .81650
4 ABBREVS PT .74823 .65912 .70085 .56340 .84317 .67546 .83207 .71604 .76971 .89815 .91113 .90459 .66933 .66245 .66587 .77070 .89012 .82612
5 SECTIONS .76025 .65075 .70125 .66324 .83390 .73884 .83207 .71604 .76971 .90394 .91113 .90752 .66933 .66245 .66587 .77495 .89012 .82855
6 AMOUNTS .76025 .65075 .70125 .83619 .83327 .83473 .83404 .71532 .77013 .93824 .91113 .92449 .66933 .66245 .66587 .80300 .88933 .84396
7a ENUMS .71812 .73673 .72730 .79389 .89925 .84329 .78777 .79118 .78947 .89708 .97616 .93495 .62608 .74387 .67991 .76662 .94783 .84765
7b ENUMS-MERGE .73191 .72961 .73076 .81434 .89893 .85455 .81111 .79118 .80102 .92156 .97616 .94807 .64408 .74387 .69039 .78830 .94783 .86073
8 HEADLINES .80346 .85413 .82802 .81327 .88443 .84736 .89393 .88295 .88840 .92156 .97616 .94807 .74251 .86166 .79766 .79024 .94704 .86156
9 BULLETS .80199 .84245 .82172 .81126 .86939 .83932 .90973 .93208 .92077 .92324 .97327 .94759 .74251 .86166 .79766 .79024 .94704 .86156

Table 3: Results of BS and ES Detection Rules with Cumulative Effect of Different Annotation Patterns

in an increase in F for both BS and ES for all data sets.
The HEADLINES pattern (row 8) uses, among other

things, the NEWLINE feature extracted from the raw data
(cf. Figure 1 above) to distinguish actual sentences from
sentence-like headlines, which are not annotated as sentences
in the Fin-SBD data. Headline information is explicitly used
for BS detection (cf. rule 2 in Figure 3). Accordingly, this
pattern mainly affects the BS results, while ES results are
mostly unaffected. It greatly improves both P and R for BS
on all three data sets, with increases of up to .1 in F: F for
Train increases from .73076 to .82802, for Dev from .80102
to .88840, and for Test from .69039 to .79776.

The final pattern is BULLETS (row 9), which looks for
itemized text. The effect of this pattern, however, is mixed,
with some small increases in R for some data sets, and some
decreases in others, but no effect at all on the Test set.

Of the two final results that we submitted, the first one
(HITS-SBD1) is the final result for Test in Table 3, which
was rounded and averaged by the organizers to an F of .83.

5.3 Optional PDF Re-Processing
The patterns and rules described and analyzed above repre-
sent the core of our rule-based system. We created one al-
ternative result (submitted as HITS-SBD2) in which we ad-
dressed an apparent problem with the original tokenization,
which we expected to improve the results considerably. Dur-
ing the data set inspection, we often observed cases where
tokens in the original data set were incorrectly merged, like
in the following examples:
(31288, ‘the’, [], False),
(31289, ‘Prospectus’, [], False),
(31290, ‘.’, [], True),
(31291, ‘________________________Investor’, [], False),
(31292, ‘profile’, [], True),
(31293, ‘The’, [], False)
...
(38074, ‘duties’, [], False),
(38075, ‘or’, [], False),
(38076, ‘other’, [], False),
(38077, ‘chargesD’, [], False),
(38078, ‘=’, [], True),
(38079, ‘net’, [], False)

We applied Apache tika1 to the provided PDF files and cre-
ated an improved tokenization. We automatically aligned it
with the original tokenization and detected cases of incorrect
token merges. These were then split, where care was taken
to retain the original token indices. As a result, the improved
tokenization looked like the following:

1https://tika.apache.org/

(31288, ‘the’, [], False),
(31289, ‘Prospectus’, [], False),
(31290, ‘.’, [], True),
(31291, ‘________________________’, [], False),
(31291, ‘Investor’, [], False),
(31292, ‘profile’, [], True),
(31293, ‘The’, [], False)
...
(38074, ‘duties’, [], False),
(38075, ‘or’, [], False),
(38076, ‘other’, [], False),
(38077, ‘charges’, [], False),
(38077, ‘D’, [], False),
(38078, ‘=’, [], True),
(38079, ‘net’, [], False)

While we were expecting this improved pre-processing to
have a huge effect on our results, the actual improvements
were minimal: On Test, we obtained an F of .80162 for BS
and .86280 for ES, respectively.

6 Summary and Conclusion
We presented two competing systems for SBD that were de-
veloped for the Fin-SBD shared task 2019. The ML-based
system was based on a simple and elegant approach which
was inspired by the prior work on SBD in more classical,
less noisy genres, where more locally oriented features (like
the context windows applied in this work) are known to work
better. However, in the domain of the Fin-SBD shared task,
where the notion of sentence is less well-defined, this ap-
proach failed to reach an acceptable result. The other ap-
proach was based on a combination of simple, surface-based
patterns, and heuristic rules for solving the task in an unsuper-
vised manner. Both patterns and rules were created manually
on the basis of the introspection of the Train and Dev data
sets. While this approach allowed for the creation of some
high-precision rules, including ones that are strongly tailored
towards the sometimes idiosyncratic annotations in the origi-
nal data set, it failed to produce a complete and sufficiently ro-
bust solution. However, the results, while more in the bottom
range, are still acceptable, especially given the fact that the
results from all competing parties are rather close together.
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tence Boundary Detection for Social Media Text. In Pro-
ceedings of the 12th International Conference on Natural
Language Processing, pages 254–260, Trivandrum, India,
2015. NLP Association of India.

[Wiechetek et al., 2019] Linda Wiechetek, Sjur Nørstebø
Moshagen, and Thomas Omma. Is this the end? Two-step
tokenization of sentence boundaries. In Proceedings of the
Fifth International Workshop on Computational Linguis-
tics for Uralic Languages, pages 141–153, Tartu, Estonia,
2019. Association for Computational Linguistics.

121


