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Jesús González-Rubio
WebInterpret Inc.

jesus.gonzalez-rubio@webinterpret.com

Abstract

This document describes the participation of
Webinterpret in the shared task on parallel cor-
pus filtering at the Fourth Conference on Ma-
chine Translation (WMT 2019). Here, we de-
scribe the main characteristics of our approach
and discuss the results obtained on the data
sets published for the shared task.

1 Task Description

Parallel corpus filtering task at WMT19 tackles
the problem of cleaning noisy parallel corpora.
Given a noisy parallel corpus (crawled from the
web), participants develop methods to filter it to a
smaller size of high quality sentence pairs.

In comparison to the German-English task last
year, the organizers now pose the problem under
more challenging low-resource conditions includ-
ing Nepali and Sinhala languages. The organiz-
ers provide very noisy 40.6 million-word (English
token count) Nepali-English and a 59.6 million-
word Sinhala-English corpora. Both raw cor-
pora were crawled from the web as part of the
Paracrawl project1. Participants are asked to se-
lect a subset of sentence pairs that amount to (a)
5 million, and (b) 1 million English words. The
quality of the resulting subsets is determined by
the quality of a statistical and a neural Machine
Translation (MT) systems trained on the selected
data. The quality of the translation systems is mea-
sured on a held-out test set of Wikipedia transla-
tions. Despite the known origin of the test set, the
organizers make explicit that the task addresses
the challenge of data quality and not domain-
relatedness of the data for a particular use case.

For our submission, we propose a variation
of coverage augmentation ranking (Haffari et al.,
2009; Gascó et al., 2012; González-Rubio, 2014).
The main idea underlying our approach is to min-
imize the amount of unseen events for the model.
In MT, these unseen events are words or sequences
thereof. These unseen events result in a loss

1https://paracrawl.eu/

of model coverage and, ultimately, of translation
quality. The main difference of our submission
respect to previous approaches is that we do not
rely on an in-domain corpus to identify underrep-
resented events. Instead, we look for the subset
of sentences that provide the most coherent cov-
erage among themselves. One of the advantages
of this approach is that it does not rely on pre-
trained models requiring additional data to train.
This characteristic fits perfectly with the focus on
low-resource languages of this year’s task.

The rest of this document is organized as fol-
lows. First, we describe the details of our ap-
proach. Next, we present the results of our sub-
mission. Finally, we close with the conclusions
and some ideas for future developments.

2 Sentence Pairs Ranking

Our goal is to rank the sentence pairs in the raw
corpora such that the pairs in the top of the rank-
ing are better candidates for training data. As
pre-processing, we only apply tokenization via the
TokTok tokenizer in the NLTK python package.

First, we filtered out some of the pairs (x,y)
in the raw corpus according to several heuristic
rules (Section 2.1). Then, for the remaining pairs,
we computed a ranking value r(x,y) for each of
them. This ranking, was the result of the combina-
tion of several different ranking functions aiming
at capturing the ”value” of the sentence pair ac-
cording to different criteria (Section 2.2 and Sec-
tion 2.3). Finally, we used the final ranking of
each pair to compute its corresponding score as
required for the shared task (Section 2.4).

2.1 Initial Rule-based Filtering

We start by describing the set of filtering rules im-
plemented to reduce the amount of candidates to
be ranked by the more sophisticated methods Sec-
tions 2.2, and 2.3. These rules have been pre-
viously proposed and successfully implemented
in the literature, for instance (Junczys-Dowmunt,
2018; Rossenbach et al., 2018).

https://paracrawl.eu/
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Nepali-English (2.2M) Sinhala-English (3.4M)
Method Sent. pairs Ratio Sent. pairs Ratio
Language Identification 1.65M 74.0% 2.27M 67.7%
Length Ratio 0.86M 38.6% 1.13M 33.8%
Max. Sentence Length 0.24M 10.9% 0.27M 8.1%
Combined 2.11M 94.4% 2.92M 86.8%

Table 1: Amount of sentence pairs (in Millions) filtered out by each filtering method. ”Combined” denotes the
final amount of sentence pairs filtered out after applying the three methods in sequence.

The filtering rules we implemented for our sub-
mission are not language specific, and moreover,
they only place very mild assumption on what con-
stitutes a ”good” sentence pair. In particular, maxi-
mum sentence length is a technical restrictions im-
plemented by many MT systems. Given that the
translation system is most probably going to ig-
nore them in any case, it makes no sense for us to
even rank them. Table 1 displays the amount of
sentences pairs filtered out by each method.

Language Identification
We implemented a very straightforward language
identification using the Python LangID package.
Specifically, we filtered out all those pairs not
belonging to the desired pair of languages. For
example, each pair (x,y) in the Nepali-English
corpus should satisfy: LangID(x) = ”ne” and
LangID(y) = ”en”, otherwise the sentence pair is
filtered out. For Sinhala-English, we require Sin-
hala as source language: LangID(x)=”si”.

Length Ratio
As our second heuristic filtering, we chose the ra-
tio between the number of tokens of x and y. This
is a very simple criterion, but efficient to identify
mispaired sentences. We limited this ratio to be
under 1.7 and smoothed the counts by adding 1 to
them. That is, we rejected the sentence pair if:

|x|+ 1

|y|+ 1
or
|y|+ 1

|x|+ 1

where |x| and |y| are the number of tokens of x
and y respectively.

Maximum Sentence Length
Most translation systems have an upper bound for
the sentence length. These sentences will be ig-
nored in any case during training so we decided
to filter them out directly. If either the source (x)
or destination (y) sentence in a pair was over 50
tokens, we filtered out the pair.

2.2 Coverage Ranking
Sparse data problems are ubiquitous in MT (Zipf,
1935). In a learning scenario, this means that
some rare events will be missing completely from
a training set, even when it is very large. Miss-
ing events result in a loss of coverage, a situa-
tion where the structure of the model is not rich
enough to cover all types of input. An extreme
case of this are out-of-vocabulary words for which
the MT system will have no information on how
to translate them. Therefore, words (or sequences
thereof) that do not appear in the training set can-
not be adequately translated (Haddow and Koehn,
2012; Sennrich et al., 2016).

According to these considerations, we propose
to explicitly measure how well represented are the
different words on a potential training corpus T as
a proxy of the actual ”value” of such corpus. We
define this corpus ”value”, V (T ), as:

V (T ) =
∑

s∈tokens(T )

min(N, c(s, T ))
N

(1)

where function tokens(T ) returns the set of to-
kens that appear in T , c(s, T ) counts how many
times a token s appears in T , and N denotes a
count above which we consider a token to be ad-
equately represented. After some initial experi-
ments, we used N=50 in our submission.

In order to rank the different sentences in the
raw corpora, we implemented a greedy algorithm
to create a training corpus T by iteratively adding
sentences to it taken from a given pool. At start,
T = ∅ and the pool is equal to the sentences that
passed the filtering rules in the previous section.
The sentence to be added at each step is the one
that resulted in a new T with the highest value as
measured by Equation 1. This selected sentence is
then removed from the pool and definitely added
to T . This process repeats until the pool is empty.

This algorithm has a complexity of O(R2)
where R is the number of sentences initially in the
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pool. In Section 3, we describe how we modify
this algorithm for the final submission in order to
improve its time performance.

In our submission, we considered as tokens n-
grams of sizes from one up to four, and com-
puted them for both the source and destination
sentences. This resulted in a total of eight ranks
per sentence pair. We denote each of them as
rc(s, n) where s ∈ {x,y}, and 1 ≤ n ≤ 4.

The main shortcoming of this ranking scheme
is that it ignores how the source and destination
sentences in a pair relate to each other. Long sen-
tences with multiple tokens will most surely rank
high even when the other sentence in the pair carry
completely different meaning. In order to counter-
balance these undesired effects, we implement a
secondary adequacy ranking to measure such cor-
respondence between the sentences on each pair.

2.3 Adequacy Ranking

This ranking function measures how much of the
original meaning is expressed in the translation
and vice versa. Specifically, we estimate to which
extent the words in the original and translated sen-
tences correspond to each other.

We compute this ranking from a simple (but
fast) word-to-word translation model (Brown
et al., 1993). Given a sentence pair (x,y), we
compute a source-given-target score according to
the geometric average probability over the words
for the IBM model 1 formulation:

PM1(x,y) =
|x|

√√√√∏|x|
i=1

∑|y|
j=0 P (xi | yj)

(|y|+ 1)|x|
(2)

where P (xi | yj) is the lexical probability of the
ith source word in x given the jth target word in
y. For the target-given-source direction, source
and target sentences swap their roles. We denote
these two rankings as rM1

a (x,y) and rM1
a (y,x).

Additionally, we compute another two rankings
based on a Viterbi implementation of Equation 2:

PMv(x,y) =
|x|

√√√√∏|x|
i=1max

|y|
j=0 P (xi | yj)

(|y|+ 1)|x|
(3)

where we replace the summation (
∑|y|

j=0) in Equa-
tion 2 by a maximization. Again, we calculate
both source-given-target and target-given-source
directions: rMv

a (x,y) and rMv
a (y,x) respectively.

2.4 Ranking Aggregation
Finally, we combined the different rankings de-
scribed in previous sections to obtain the final
ranking of our submission.

Aggregation of Coverage Rankings
We start combining the eight coverage rankings
described in Section 2.2. First, we average the
four rankings for x into a source coverage rank-
ing. Then, we repeat the process for the four des-
tination rankings. Finally, we got the final cover-
age ranking rC(x,y) as the average between the
source and destination coverage rankings:

rc(x,y) =

4∑
n=1

rc(x, n)

4
+

4∑
n=1

rc(y, n)

4
2

(4)

where rc(x, n) denotes the ranking of sentence x
using n-grams of size n as tokens.

Aggregation of Adequacy Rankings
First, we averaged the two (source-to-destination
and destination-to-source) rankings computed
with Equation 2. Then, we repeated the process
for the two rankings computed with Equation 3.
The final adequacy ranking ra(x,y) was then ob-
tained as the average of these two rankings:

ra(x,y) =

(
rM1
a (x,y) + rM1

a (y,x)

2
+

rMv
a (x,y) + rMv

a (y,x)

2

)
/2 (5)

Final Submission Scores
Once we had computed for each sentence pair
(x, y) its coverage (rc(x,y)) and adequacy
(ra(x,y)) rankings, we averaged these two to ob-
tain the final ranking r(x,y) of the pair:

r(x,y) =
rc(x,y) + ra(x,y)

2
(6)

For the final submission however, the organiz-
ers ask to provide a score for each pair. Scores
do not have to be meaningful, except that higher
scores indicate better quality. To do this, we take
the simple solution of computing the score s(x,y)
as the number of sentences in the raw corpus (R)2

divided by the final ranking of the sentence pair.
2R=2235512 for Nepali-English, and R=3357018 for

Sinhala-English.
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Additionally, in order to break potential ties, and
to provide a smoothing score for filtered out sen-
tences (see Section 2.1), we added to the score
the average word probability as described in Equa-
tion 2. The final scores in our submission were:

s(x,y) =
R

r(x,y)
+ PM1(x,y) (7)

Note that filtered pairs were considered to have
an ”infinite” ranking which results in R

r(x,y) = 0;
for unfiltered pairs the value of this fraction is as-
sured to be greater than one.

3 Submission

We submitted three different score files to the
shared task. All employ the same score function
Equation 7 but use different ranking functions:

• PRIMARY: computed using as ranking func-
tion the combination of coverage and ade-
quacy rankings in Equation 6.

• SECONDARYCOV: computed using only the
aggregated coverage ranking in Equation 4.

• SECONDARYADE: computed using only the
aggregated adequacy ranking in Equation 5.

3.1 Coverage Rankings Computation

As described in Section 2.2, we implemented a
greedy algorithm to compute coverage ranking. At
each step, the algorithm selects the sentences that
provide a largest increase of ”value” (Equation 1)
to a iteratively increasing training corpus.

The computational cost of this approach is
O(R2) where R is the number of sentences under
consideration. The initial filtering partially allevi-
ates this cost by drastically reducing the amount
of sentences to rank. However, it is still a slow
process that took about one second per iteration
with our Python implementation3. To further re-
duce the computational time of the algorithm, we
implemented a batch approach where at each step
we selected not a single sentence but a batch of the
most ”valuable” ones. After some experiments,
we chose to select 1000 sentences at each step as
a good compromise; running time was reduced by
a factor of 1000 while the ”value” of the selected
training corpus was barely affected.

3After filtering about 176k pairs remained for Nepali-
English, and 442k pairs remained for Sinhala-English.

Ne–En Si–En
1M 5M 1M 5M

PRIMARY 3.4 3.1 3.3 2.6 3.7 2.1 4.1 1.7
SECONDARYCOV 2.9 0.5 4.2 2.4 2.6 0.1 4.0 1.2
SECONDARYADE 3.5 3.6 4.3 2.4 3.9 2.9 4.1 1.4

Table 2: Results of our submissions, in BLEU [%].
SMT figures are in blue while NMT is in red. Best
results are in bold.

3.2 Adequacy Rankings Computation

The cornerstone of the adequacy ranking de-
scribed in Section 2.3 is the probabilistic lexicons
in Equations 2 and 3. In our submissions, we used
the probabilistic lexicons that can be obtained as
a sub-product of the training of full statistical MT
models. For this end, we used Moses (Koehn et al.,
2007) with its default configuration and the paral-
lel data provided by the organizers as training data.

3.3 Evaluation and Results

Participants in the shared task were asked to sub-
mit a file with quality scores, one per line, cor-
responding to the sentence pairs on the Nepali-
English and Sinhala-English corpora. The per-
formance of the submissions is evaluated by sub-
sampling 1 million and 5 million word corpora
based on these scores, training statistical (Koehn
et al., 2007) and neural 4 MT systems with these
corpora, and assessing translation quality on blind
tests using BLEU (Papineni et al., 2002).

Table 2 shows the scores of our three submis-
sions for each language pair and condition. Of
the three, the one based on coverage rankings
(SECONDARYCOV) showed a lower performance
consistently being outperformed, particularly in
the 1 million condition, by both our PRIMARY and
SECONDARYADE submissions.

We were surprised by the ”poor” performance
of coverage ranking. Previous works (Haffari
et al., 2009; Gascó et al., 2012) showed quite
promised results. However, in contrast to our case,
all these assume the availability of a sample of the
domain to be translated. We hypothesize that the
lack of this in-domain data in conjunction with the
eclectic domains of the data to be filtered are the
causes of the poor results of this approach. More-
over, the greedy selection implemented may ag-
gravate this issue by taking not-optimal initial de-
cisions from which the algorithm cannot recover.

Another interesting observation is the unintu-

4https://github.com/facebookresearch/flores

https://github.com/facebookresearch/flores
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Figure 1: Best results for each team in the competition. We display the participants by increasing sum of BLEU
scores for neural and statistical MT models.

itive results for NMT. While SMT results tend to
go up as more data is selected, results for NMT
tend to show the opposite trend. A fact to consider
is that actual BLEU figures are quite low so the
actual relevance of these trends are not clear. Ad-
ditionally, given that this observation is valid other
submissions as we will see next, we think this is an
issue worthy of further investigation.

After discussing the performance of our sub-
missions, we will compare our best submission on
each condition to the rest of participants. Figure 1
summarizes the results of the shared task as re-
ported by the organizers of the task (Bojar et al.,
2019). Each sub-figure displays the best submis-
sion of each individual participant institution for
a particular task and condition. Plots in the up-
per row show results for Nepalese-English while
the bottom row does the same for Sinhala-English.
Plots in the left column are for the 1 million con-
dition while results for the 5 million condition are
shown in the right column. Stacked bars displayed
in the plots denote the BLEU scores for the statis-
tical (blue) and neural (red) systems. We sort them
in increasing order according to each system’s sum
of SMT and NMT scores.

The organizers do not provide confidence in-
tervals for the reported scores so compare results
is somehow difficult. Still, as we mention previ-
ously, it is surprising the degradation in transla-
tion quality for NMT when comparing the 5 mil-
lion condition to the 1 million condition. Usu-
ally, a larger amount of data correlates with an in-
crease in translation quality. In this case, however,
scores for SMT barely changed while NMT results
went down. This seems to indicate that our meth-
ods were not sophisticated enough to find adequate
data, or that the really adequate data in the noise
corpora amount for less than 5 million words.

Our submission (WI) lays in the upper half
among the best submission of the different par-
ticipants. Regarding Nepalese-English, it scored
an aggregated of 7.1 and 6.7 BLEU points for the
1 million and 5 million conditions respectively.
This represent respectively about a 64% of the best
result submitted for the 1 million condition, and
about a 85% of the best result for the 5 million
condition. As for the Sinhala–English condition,
we scored 6.8 and 5.8 BLEU points which repre-
sent a 64% of the best results respectively.
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4 Conclusions

We have presented our submission to the WMT19
shared task on parallel corpus filtering. We have
mostly explored the application of coverage aug-
mentation ranking techniques with the aim at se-
lecting the subset of sentence pairs that provide the
best coherent coverage for the raw sentences.

Results have shown that our proposed coverage
approach is not well suited for this particular task.
Our secondary submission based on lexical scor-
ing works better in all conditions, and even outper-
forms our primary submission that combines both
coverage and lexical rankings.

One interesting effect seen in the results of the
task is the reduced performance on NMT in the
presence of more data that can be observed for all
participants. Given this, we think that exploring
methods able to decide when adding more data
will be harmful for performance it is a good re-
search direction to explore.
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