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Abstract

In this paper we present the UDS-DFKI sys-
tem submitted to the Similar Language Trans-
lation shared task at WMT 2019. The first
edition of this shared task featured data from
three pairs of similar languages: Czech and
Polish, Hindi and Nepali, and Portuguese and
Spanish. Participants could choose to partic-
ipate in any of these three tracks and sub-
mit system outputs in any translation direc-
tion. We report the results obtained by our
system in translating from Czech to Polish and
comment on the impact of out-of-domain test
data in the performance of our system. UDS-
DFKI achieved competitive performance rank-
ing second among ten teams in Czech to Polish
translation.

1 Introduction

The shared tasks organized annually at WMT pro-
vide important benchmarks used in the MT com-
munity. Most of these shared tasks include En-
glish data, which contributes to make English the
most resource-rich language in MT and NLP. In
the most popular WMT shared task for example,
the News task, MT systems have been trained to
translate texts from and to English (Bojar et al.,
2016, 2017).

This year, we have observed a shift on the
dominant role that English on the WMT shared
tasks. The News task featured for the first time
two language pairs which did not include En-
glish: German-Czech and French-German. In ad-
dition to that, the Similar Language Translation
was organized for the first time at WMT 2019 with
the purpose of evaluating the performance of MT
systems on three pairs of similar languages from
three different language families: Ibero-Romance,
Indo-Aryan, and Slavic.

The Similar Language Translation (Barrault
et al., 2019) task provided participants with train-

ing, development, and testing data from the fol-
lowing language pairs: Spanish - Portuguese (Ro-
mance languages), Czech - Polish (Slavic lan-
guages), and Hindi - Nepali (Indo-Aryan lan-
guages). Participant could submit system outputs
to any of the three language pairs in any direction.
The shared task attracted a good number of par-
ticipants and the performance of all entries was
evaluated using popular MT automatic evaluation
metrics, namely BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006).

In this paper we describe the UDS-DFKI sys-
tem to the WMT 2019 Similar Language Transla-
tion task. The system achieved competitive per-
formance and ranked second among ten entries
in Czech to Polish translation in terms of BLEU
score.

2 Related Work

With the widespread use of MT technology and
the commercial and academic success of NMT,
there has been more interest in training systems
to translate between languages other than English
(Costa-jussà, 2017). One reason for this is the
growing need of direct translation between pairs
of similar languages, and to a lesser extent lan-
guage varieties, without the use of English as a
pivot language. The main challenge is to over-
come the limitation of available parallel data tak-
ing advantage of the similarity between languages.
Studies have been published on translating be-
tween similar languages (e.g. Catalan - Spanish
(Costa-jussà, 2017)) and language varieties such
as European and Brazilian Portuguese (Fancellu
et al., 2014; Costa-jussà et al., 2018). The study
by Lakew et al. (2018) tackles both training MT
systems to translate between European–Brazilian
Portuguese and European–Canadian French, and
two pairs of similar languages Croatian–Serbian
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and Indonesian–Malay.
Processing similar languages and language va-

rieties has attracted attention not only in the MT
community but in NLP in general. This is evi-
denced by a number of research papers published
in the last few years and the recent iterations
of the VarDial evaluation campaign which fea-
tured multiple shared tasks on topics such as di-
alect detection, morphosyntactic tagging, cross-
lingual parsing, cross-lingual morphological anal-
ysis (Zampieri et al., 2018, 2019).

3 Data

We used the Czech–Polish dataset provided by the
WMT 2019 Similar Language Translation task or-
ganizers for our experiments. The released paral-
lel dataset consists of out-of-domain (or general-
domain) data only and it differs substantially from
the released development set which is part of a
TED corpus. The parallel data includes Europarl
v9, Wiki-titles v1, and JRC-Acquis. We com-
bine all the released data and prepare a large out-
domain dataset.

3.1 Pre-processing

The out-domain data is noisy for our purposes, so
we apply methods for cleaning. We performed the
following two steps: (i) we use the cleaning pro-
cess described in Pal et al. (2015), and (ii) we exe-
cute the Moses (Koehn et al., 2007) corpus clean-
ing scripts with minimum and maximum number
of tokens set to 1 and 100, respectively. After
cleaning, we perform punctuation normalization,
and then we use the Moses tokenizer to tokenize
the out-domain corpus with ‘no-escape’ option.
Finally, we apply true-casing.

The cleaned version of the released data, i.e.,
the General corpus containing 1,394,319 sen-
tences, is sorted based on the score in Equation
1. Thereafter, We split the entire data (1,394,319)
into two sets; we use the first 1,000 for valida-
tion and the remaining as training data. The re-
leased development set (Dev) is used as test data
for our experiment. It should be noted noted that,
we exclude 1,000 sentences from the General cor-
pus which are scored as top (i.e., more in-domain
like) during the data selection process.

We prepare two parallel training sets from
the aforementioned training data: (i) transfer-
ence500K(presented next), collected 500,000 par-
allel data through data selection method (Axelrod

et al., 2011), which are very similar to the in-
domain data (for our case the development set),
and (ii) transferenceALL, utilizing all the released
out-domain data sorted by Equation 1.

The transference500Ktraining set is prepared
using in-domain (development set) bilingual
cross-entropy difference for data selection as was
described in Axelrod et al. (2011). The differ-
ence in cross-entropy is computed based on two
language models (LM): a domain-specific LM is
estimated from the in-domain (containing 2050
sentences) corpus (lmi) and the out-domain LM
(lmo) is estimated from the eScape corpus. We
rank the eScape corpus by assigning a score to
each of the individual sentences which is the sum
of the three cross-entropy (H) differences. For a
jth sentence pair srcj–trgj , the score is calculated
based on Equation 1.

score = |Hsrc(srcj , lmi)−Hsrc(srcj , lmo)|
+ |Htrg(trgj , lmi)−Htrg(trgj , lmo)| (1)

4 System Architecture - The
Transference Model

Our transference model extends the original
transformer model to multi-encoder based trans-
former architecture. The transformer architec-
ture (Vaswani et al., 2017) is built solely upon such
attention mechanisms completely replacing recur-
rence and convolutions. The transformer uses po-
sitional encoding to encode the input and output
sequences, and computes both self- and cross-
attention through so-called multi-head attentions,
which are facilitated by parallelization. We use
multi-head attention to jointly attend to informa-
tion at different positions from different represen-
tation subspaces.

The first encoder (enc1) of our model encodes
word form information of the source (fw), and
a second sub-encoder (enc2) to encode sub-word
(byte-pair-encoding) information of the source
(fs). Additionally, a second encoder (encsrc→mt)
which takes the encoded representation from the
enc1, combines this with the self-attention-based
encoding of fs (enc2), and prepares a represen-
tation for the decoder (dece) via cross-attention.
Our second encoder (enc1→2) can be viewed as
a transformer based NMT’s decoding block, how-
ever, without masking. The intuition behind our
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architecture is to generate better representations
via both self- and cross-attention and to further fa-
cilitate the learning capacity of the feed-forward
layer in the decoder block. In our transference
model, one self-attended encoder for fw, fw =
(w1, w2, . . . , wk), returns a sequence of contin-
uous representations, enc2, and a second self-
attended sub-encoder for fs, fs = (s1, s2, . . . , sl),
returns another sequence of continuous represen-
tations, enc2. Self-attention at this point pro-
vides the advantage of aggregating information
from all of the words, including fw and fs, and
successively generates a new representation per
word informed by the entire fw and fs context.
The internal enc2 representation performs cross-
attention over enc1 and prepares a final repre-
sentation (enc1→2) for the decoder (dece). The
decoder generates the e output in sequence, e =
(e1, e2, . . . , en), one word at a time from left to
right by attending to previously generated words
as well as the final representations (enc1→2) gen-
erated by the encoder.

We use the scale-dot attention mechanism (like
Vaswani et al. (2017)) for both self- and cross-
attention, as defined in Equation 2, where Q, K
and V are query, key and value, respectively, and
dk is the dimension of K.

attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2)

The multi-head attention mechanism in the trans-
former network maps the Q, K, and V matrices by
using different linear projections. Then h paral-
lel heads are employed to focus on different parts
in V. The ith multi-head attention is denoted by
headi in Equation 3. headi is linearly learned by
three projection parameter matrices: WQ

i ,W
K
i ∈

Rdmodel×dk , W V
i ∈ Rdmodel×dv ; where dk = dv =

dmodel/h, and dmodel is the number of hidden units
of our network.

headi = attention(QWQ
i ,KW

K
i , V W

V
i ) (3)

Finally, all the vectors produced by parallel heads
are linearly projected using concatenation and
form a single vector, called a multi-head attention
(Matt) (cf. Equation 4). Here the dimension of the
learned weight matrix WO is Rdmodel×dmodel .

Matt(Q,K, V ) = Concatni:1(headi)W
O (4)

5 Experiments

We explore our transference model –a two-
encoder based transformer architecture, in CS-PL
similar language translation task.

5.1 Experiment Setup

For transferenceALL, we initially train on the
complete out-of-domain dataset (General). The
General data is sorted based on their in-domain
similarities as described in Equation 1.

transferenceALLmodels are then fine-tuned to-
wards the 500K (in-domain-like) data. Finally,
we perform checkpoint averaging using the 8 best
checkpoints. We report the results on the provided
development set, which we use as a test set before
the submission. Additionally we also report the
official test set result.

To handle out-of-vocabulary words and to re-
duce the vocabulary size, instead of considering
words, we consider subword units (Sennrich et al.,
2016) by using byte-pair encoding (BPE). In the
preprocessing step, instead of learning an explicit
mapping between BPEs in the Czech (CS) and
Polish (PL), we define BPE tokens by jointly pro-
cessing all parallel data. Thus, CS and PL derive
a single BPE vocabulary. Since CS and PL be-
long to the similar language, they naturally share
a good fraction of BPE tokens, which reduces the
vocabulary size.

We pass word level information on the first en-
coder and the BPE information to the second one.
On the decoder side of the transference model we
pass only BPE text.

We evaluate our approach with development
data which is used as test case before submission.
We use BLEU (Papineni et al., 2002) and TER
(Snover et al., 2006).

5.2 Hyper-parameter Setup

We follow a similar hyper-parameter setup for all
reported systems. All encoders, and the decoder,
are composed of a stack of Nfw = Nfs = Nes =
6 identical layers followed by layer normalization.
Each layer again consists of two sub-layers and a
residual connection (He et al., 2016) around each
of the two sub-layers. We apply dropout (Srivas-
tava et al., 2014) to the output of each sub-layer,
before it is added to the sub-layer input and nor-
malized. Furthermore, dropout is applied to the
sums of the word embeddings and the correspond-
ing positional encodings in both encoders as well
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as the decoder stacks.
We set all dropout values in the network to

0.1. During training, we employ label smoothing
with value εls = 0.1. The output dimension pro-
duced by all sub-layers and embedding layers is
dmodel = 512. Each encoder and decoder layer
contains a fully connected feed-forward network
(FFN ) having dimensionality of dmodel = 512
for the input and output and dimensionality of
dff = 2048 for the inner layers. For the scaled
dot-product attention, the input consists of queries
and keys of dimension dk, and values of dimen-
sion dv. As multi-head attention parameters, we
employ h = 8 for parallel attention layers, or
heads. For each of these we use a dimensional-
ity of dk = dv = dmodel/h = 64. For optimiza-
tion, we use the Adam optimizer (Kingma and Ba,
2015) with β1 = 0.9, β2 = 0.98 and ε = 10−9.

The learning rate is varied throughout the train-
ing process, and increasing for the first training
steps warmupsteps = 8000 and afterwards de-
creasing as described in (Vaswani et al., 2017). All
remaining hyper-parameters are set analogously to
those of the transformer’s base model. At training
time, the batch size is set to 25K tokens, with a
maximum sentence length of 256 subwords, and
a vocabulary size of 28K. After each epoch, the
training data is shuffled. After finishing training,
we save the 5 best checkpoints which are written
at each epoch. Finally, we use a single model ob-
tained by averaging the last 5 checkpoints. During
decoding, we perform beam search with a beam
size of 4. We use shared embeddings between CS
and PL in all our experiments.

6 Results

We present the results obtained by our system in
Table 1.

tested on model BLEU TER
Dev set Generic 12.2 75.8
Dev set Fine-tuned* 25.1 58.9
Test set Generic 7.1 89.3
Test set Fine-Tuned* 7.6 87.0

Table 1: Results for CS–PL Translation; * averaging 8
best checkpoints.

Our fine-tuned system on development set pro-
vides significant performance improvement over
the generic model. We found +12.9 abso-
lute BLEU points improvement over the generic

model. Similar improvement is also observed in
terms of TER (-16.9 absolute). It is to be noted that
our generic model is trained solely on the clean
version of training data.

Before submission, we performed punctuation
normalization, unicode normalization, and detok-
enization for the run.

In Table 2 we present the ranking of the compe-
tition provided by the shared task organizers. Ten
entries were submitted by five teams and are or-
dered by BLEU score. TER is reported for all
submissions which achieved BLEU score greater
than 5.0. The type column specifies the type of
system, whether it is a Primary (P) or Constrastive
(C) entry.

Team Type BLEU TER
UPC-TALP P 7.9 85.9
UDS-DFKI P 7.6 87.0
Uhelsinki P 7.1 87.4
Uhelsinki C 7.0 87.3
Incomslav C 5.9 88.4
Uhelsinki C 5.9 88.4
Incomslav P 3.2 -
Incomslav C 3.1 -
UBC-NLP C 2.3 -
UBC-NLP P 2.2 -

Table 2: Rank table for Czech to Polish Translation

Our system was ranked second in the competition
only 0.3 BLEU points behind the winning team
UPC-TALP. The relative low BLEU and high TER
scores obtained by all teams are due to out-of-
domain data provided in the competition which
made the task equally challenging to all partici-
pants.

7 Conclusion

This paper presented the UDS-DFKI system sub-
mitted to the Similar Language Translation shared
task at WMT 2019. We presented the results ob-
tained by our system in translating from Czech
to Polish. Our system achieved competitive per-
formance ranking second among ten teams in the
competition in terms of BLEU score. The fact that
out-of-domain data was provided by the organiz-
ers resulted in a challenging but interesting sce-
nario for all participants.

In future work, we would like to investigate how
effective is the proposed hypothesis (i.e., word-
BPE level information) in similar language trans-
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lation. Furthermore, we would like to explore
the similarity between these two languages (and
the other two language pairs in the competition)
in more detail by training models that can best
capture morphological differences between them.
During such competitions, this is not always pos-
sible due to time constraints.
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Tanja Samardžić, Francis Tyers, Miikka Silfverberg,
Natalia Klyueva, Tung-Le Pan, Chu-Ren Huang,
Radu Tudor Ionescu, Andrei Butnaru, and Tommi
Jauhiainen. 2019. A Report on the Third VarDial
Evaluation Campaign. In Proceedings of VarDial.


