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Abstract

This paper presents the NICT’s participation in
the WMT19 shared Similar Language Trans-
lation Task. We participated in the Spanish—
Portuguese task. For both translation direc-
tions, we prepared state-of-the-art statistical
(SMT) and neural (NMT) machine translation
systems. Our NMT systems with the Trans-
former architecture were trained on the pro-
vided parallel data enlarged with a large quan-
tity of back-translated monolingual data. Our
primary submission to the task is the result of
a simple combination of our SMT and NMT
systems. According to BLEU, our systems
were ranked second and third respectively
for the Portuguese-to-Spanish and Spanish-to-
Portuguese translation directions. For con-
trastive experiments, we also submitted out-
puts generated with an unsupervised SMT sys-
tem.

1 Introduction

This paper describes the machine translation (MT)
systems built for the participation of the Na-
tional Institute of Information and Communica-
tions Technology (NICT) in the WMT19 shared
Similar Language Translation Task. We partici-
pated in Spanish—Portuguese (es-pt) in both trans-
lation directions. We chose this language pairs to
explore the potential of unsupervised MT for very
close languages with large monolingual data, and
to compare it with supervised MT systems trained
on large bilingual data.

We participated under the team name “NICT.”
All our systems were constrained, i.e., we used
only the parallel and monolingual data provided
by the organizers to train and tune the MT systems.
For both translation directions, we trained super-
vised neural MT (NMT) and statistical MT (SMT)
systems, and combined them through n-best list
reranking using different informative features as

proposed by Marie and Fujita (2018a). This sim-
ple combination method, in conjunction with the
exploitation of large back-translated monolingual
data (Sennrich et al., 2016a), performed among the
best MT systems in this task.

The remainder of this paper is organized as fol-
lows. Section 2 introduces the data preprocess-
ing. Section 3 describes the details of our NMT
and SMT systems, and also our unsupervised SMT
systems. Then, the combination of NMT and SMT
is described in Section 4. Empirical results pro-
duced with our systems are presented in Section 5,
and Section 6 concludes this paper.

2 Data Preprocessing

2.1 Data

As parallel data to train our systems, we used all
the provided data. As monolingual data, we used
the provided “News Crawl” corpora that are suffi-
ciently large and in-domain to train our unsuper-
vised systems and be used for generating useful
pseudo-parallel data through back-translation. To
tune/validate our systems, we used the provided
development data.

2.2 Tokenization, Truecasing, and Cleaning

We used the tokenizer and truecaser of Moses
(Koehn et al., 2007). The truecaser was trained
on one million tokenized lines extracted ran-
domly from the monolingual data. Truecasing
was then performed on all the tokenized data.
For cleaning, we only applied the Moses script
clean—-corpus—n.perl toremove lines in the
parallel data containing more than 80 tokens and
replaced characters forbidden by Moses. Note
that we did not perform any punctuation normal-
ization. Table 1 presents the statistics of the par-
allel and monolingual data, respectively, after pre-
processing.
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Corpus #sent. pairs #sent. tokens

P es pt es pt
Parallel 34IM  341M  87.38M  84.69M
Development 3,000 3,000 69,704 68,284
Monolingual  40.88M  7.61M 1.22B 171.15M

Table 1: Statistics of our preprocessed data.

3 MT Systems
3.1 NMT

For our NMT systems, we adopt the Transformer
architecture (Vaswani et al., 2017). We chose
Marian (Junczys-Dowmunt et al., 2018)! to train
our NMT systems since it supports state-of-the-art
features and is one of the fastest NMT frameworks
publicly available. In order to limit the size of the
vocabulary of the NMT models, we segmented to-
kens in the parallel data into sub-word units via
byte pair encoding (BPE) (Sennrich et al., 2016b)
using 30k operations. BPE segmentations were
jointly learned on the training parallel data for the
source and target languages. All our NMT systems
were consistently trained on 4 GPUs,? with the pa-
rameters for Marian listed in Table 2. To im-
prove translation quality, we added 5M synthetic
sentence pairs, obtained through back-translating
(Sennrich et al., 2016a) the first SM sentences
from the monolingual corpora, to the original par-
allel data for training. We performed NMT de-
coding with an ensemble of a total of four models
according to the best BLEU (Papineni et al., 2002)
scores on the development data produced by four
independent training runs using the same training
parameters.

3.2 SMT

We trained SMT systems using Moses.
Word alignments and phrase tables were ob-
tained from the tokenized parallel data using
mgiza. Source-to-target and target-to-source
word alignments were symmetrized with the
grow—diag—-final-and heuristic. We also
trained MSLR (monotone, swap, discontinuous-
left, discontinuous-right) lexicalized reordering
model. We trained one 4-gram language models
on the entire monolingual data concatenated to
the target side of the parallel data using LMPLZ

3

"https://marian-nmt.github.io/, version
1.6.0

’NVIDIA® Tesla® P100 16Gb.

*https://github.com/moses—smt/

mosesdecoder/
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—-—type transformer
——max—length 80
—--mini-batch-fit --valid-freq
5000 --save-freqg 5000
——workspace 8000 —--disp-freqg
500 --beam-size 12 --normalize
1 ——valid-mini-batch 16
—-—overwrite --early-stopping

5 ——-cost-type ce-mean-words
—--valid-metrics ce-mean-words
translation —-keep-best
—-—enc-depth 6 —--dec-depth

6 ——transformer—-dropout

0.1 —--learn-rate 0.0003
——dropout-src 0.1
——dropout-trg 0.1 —--lr-warmup
16000 —--1lr-decay-inv-sqrt
16000 —--lr-report
—-label-smoothing 0.1
—-—devices 0 1 2 3 --dim-vocabs
30000 30000 —--optimizer-params
0.9 0.98 1e-09 —--clip-norm 5
—--sync-sgd —--tied-embeddings
——exponential-smoothing

Table 2: Parameters of Marian used for training our
NMT systems.

(Heafield et al., 2013). Our systems used the
default distortion limit of 6. We tuned the SMT
model weights with KB-MIRA (Cherry and
Foster, 2012) and selected the weights giving the
best BLEU score on the development data after
15 iterations.

3.3 Unsupervised SMT

We also built an SMT system, without any super-
vision, i.e., using only but all the provided mono-
lingual data for training. We chose unsupervised
SMT (USMT) over unsupervised NMT (UNMT)
since previous work (Artetxe et al., 2018b) has
shown that USMT slightly outperforms UNMT
and that we expect USMT to work well for this
language pair that involves only very few word re-
orderings.

We built USMT systems using a framework
similar to the one proposed in Marie and Fujita
(2018b). The first step of USMT is the induc-
tion of a phrase table from the monolingual cor-
pora. We first collected phrases of up to six to-
kens from the monolingual News Crawl corpora


https://marian-nmt.github.io/
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using word2phrase.* As phrases, we also con-
sidered all the token types in the corpora. Then,
we selected the 300k most frequent phrases in the
monolingual corpora to be used for inducing a
phrase table. All possible phrase pairs are scored,
as in Marie and Fujita (2018b), using bilingual
word embeddings, and the 300 target phrases with
the highest scores were kept in the phrase table for
each source phrase. In total, the induced phrase
table contains 90M (300k x300) phrase pairs. For
this induction, bilingual word embeddings of 512
dimensions were obtained using word embeddings
trained with fast Text> and aligned in the same
space using unsupervised Vecmap (Artetxe et al.,
2018a). For each one of these phrase pairs a total
of four scores, to be used as features in the phrase
table were computed to mimic phrase-based SMT:
forward and backward phrase and lexical transla-
tion probabilities. Finally, the phrase table was
plugged into a Moses system that was tuned on
the development data using KB—MIRA. We per-
formed four refinement steps to improve the sys-
tem using at each step 3M synthetic parallel sen-
tences generated, from sentences randomly sam-
pled from the monolingual data, by the forward
and backward translation systems, instead of us-
ing only either forward (Marie and Fujita, 2018b)
or backward translations (Artetxe et al., 2018b).
We report on the performance of the systems ob-
tained after the fourth refinement step.

4 Combination of NMT and SMT

Our primary submission for WMT19 is the re-
sult of a simple combination of NMT and SMT.
Indeed, as demonstrated by Marie and Fujita
(2018a), and despite the simplicity of the method
used, combining NMT and SMT makes MT more
robust and can significantly improve translation
quality, even when SMT greatly underperforms
NMT. Moreover, due to the very few word reorder-
ings to perform and the morphological similarity
between Spanish and Portuguese, we can expect
SMT to perform closely to NMT while remaining
different and complementary. Following Marie
and Fujita (2018a), our combination of NMT and
SMT works as follows.

‘nttps://code.google.com/archive/p/
word2vec/

Shttps://github.com/facebookresearch/
fastText
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4.1 Generation of n-best Lists

We first produced the six 100-best lists of trans-
lation hypotheses generated by four NMT left-
to-right models individually, by their ensemble,
and by one right-to-left model. Unlike Moses,
Marian must use a beam of size k to produce a k-
best list during decoding. However, using a larger
beam size during decoding for NMT may worsen
translation quality (Koehn and Knowles, 2017).
Consequently, we also produced with Marian
the 12-best lists and merged them with Marian’s
100-best lists to obtain lists containing up to 112
hypotheses,® or up to 672 hypotheses after merg-
ing all the lists produced by NMT. In this way, we
make sure that we still have hypotheses of good
quality in the lists despite using a larger beam size.
We also generated 100-best translation hypotheses
with SMT.” Finally, we merged the lists produced
by Marian and Moses.

4.2 Reranking Framework and Features

We rescored all the hypotheses in the resulting lists
with a reranking framework using SMT and NMT
features to better model the fluency and the ade-
quacy of each hypothesis. This method can find
a better hypothesis in these merged n-best lists
than the one-best hypothesis originated by either
Moses or Marian. We chose KB-MIRA as a
rescoring framework and used a subset of the fea-
tures proposed in Marie and Fujita (2018a). As
listed in Table 3, it includes the scores given by
the four left-to-right NMT models used to perform
ensemble decoding (see Section 3.1). We also
used as features the scores given by the right-to-
left NMT model that we trained for each transla-
tion direction with the same parameters as left-to-
right NMT models. The right-to-left NMT model
achieving the best BLEU score on the develop-
ment data, was selected, giving us another feature
for each translation direction. All the following
features we used are described in details by Marie
and Fujita (2018a). We computed sentence-level
translation probabilities using the lexical transla-
tion probabilities learned by mgiza during the
training of our SMT systems. The language model
trained for SMT was also used to score the transla-

®Note that we did not remove duplicated hypotheses that
may appear, for instance, in both 12-best and 100-best lists.

"We used the option distinct in Moses to avoid du-
plicated hypotheses, i.e., with the same content but obtained
from different word alignments, and consequently to increase
diversity in the generated n-best lists.
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Feature = Description

L2R (4)  Scores given by each of the 4 left-to-right Marian models

R2L (1)  Scores given by 1 right-to-left Marian models

LEX (4) Sentence-level translation probabilities, for both translation directions

LM (1) Scores given by the language model used by our SMT system

LEN (2) Difference between the length of the source sentence and the length of the translation hypothesis, and

its absolute value

Table 3: Set of features used by our reranking systems. The column “Feature” refers to the same feature name
used in Marie and Fujita (2018a). The numbers in parentheses indicate the number of scores in each feature set.

es—pt pt—es
System dev test dev test
SMT 55.6 - 60.4 -
NMT 53.8 - 61.3 -
Reranked SMT+NMT 572 533 619 599
USMT 514 479 579 549

Table 4: Results (BLEU). Since the translation refer-
ence of the test data was not released at the time of
writing this paper, we could not compute BLEU scores
on the test data for the configurations that we did not
submit to the tasks and put “-” instead.

tion hypotheses. To account for hypotheses length,
we added the difference, and its absolute value, be-
tween the number of tokens in the translation hy-
pothesis and the source sentence.

The reranker was trained on n-best lists pro-
duced by decoding the same development data that
we used to validate NMT system’s training and to
tune SMT’s model weights.

5 Results

The results for both translation directions are pre-
sented in Table 4. As expected, we obtained very
high BLEU scores that point out that the proxim-
ity between the two languages has a key role in the
success of MT. Also, due to the many characteris-
tics shared by both languages, especially regarding
word orderings and morphology, we can observe
that SMT performed as good as NMT. Combining
SMT and NMT through reranking derived our best
results with, for instance, a substantial improve-
ment of 1.6 BLEU points for es—pt on the devel-
opment data.

USMT also achieved very high BLEU scores:
only 5.4 BLEU points below our primary model
for es—pt on the test data. The USMT perfor-
mance points out that training MT systems with
large bilingual data may be unnecessary for very
close languages, such as Spanish and Portuguese.
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6 Conclusion

We participated in the Spanish—Portuguese trans-
lation task and compared a strong supervised MT
system with USMT. While our supervised MT sys-
tem significantly outperformed USMT, we showed
that USMT for close languages has the potential
to be a reasonable alternative since it can deliver a
good translation quality without requiring manual
creation of large parallel data for training.
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