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Abstract

Although the problem of similar language
translation has been an area of research inter-
est for many years, yet it is still far from be-
ing solved. In this paper, we study the per-
formance of two popular approaches: statisti-
cal and neural. We conclude that both meth-
ods yield similar results; however, the perfor-
mance varies depending on the language pair.
While the statistical approach outperforms the
neural one by a difference of 6 BLEU points
for the Spanish-Portuguese language pair, the
proposed neural model surpasses the statisti-
cal one by a difference of 2 BLEU points for
Czech-Polish. In the former case, the language
similarity (based on perplexity) is much higher
than in the latter case. Additionally, we re-
port negative results for the system combina-
tion with back-translation.

Our TALP-UPC system submission won 1st
place for Czech—Polish and 2nd place for
Spanish—Portuguese in the official evaluation
of the 1st WMT Similar Language Translation
task.

1 Introduction

Much research work has been done on language
translation in the past decades. Given recent suc-
cess of various machine translation (MT) sys-
tems, it is not surprising that some could consider
similar language translation an already solved
task. However, there are still remaining challenges
that need to be addressed, such as limited re-
sources or out-of-domain. Apart from these well-
known, standard problems, we have discovered
other under-researched phenomena within the task
of similar language translation. Specifically, there
exist languages from the same linguistic family
that have a high degree of difference in alphabets,
as it is the case for Czech-Polish, which may pose
a challenge for MT systems.

Neural MT has achieved the best results in
many tasks, outperforming former statistical MT
(SMT) methods (Sennrich et al., 2016a). How-
ever, there are tasks where previous statistical MT
approaches are still competitive, such as unsuper-
vised machine translation (Artetxe et al., 2018;
Lample et al., 2018). Motivated by the close prox-
imity between the languages at hand and limited
resources, in this article we aimed to determine
whether the neural or the statistical approach is a
better one to solve the given problem.

We report our results in the 1st Simi-
lar Language Translation WMT task (Barrault
et al., 2019). In the official evaluation, our
Czech—Polish and Spanish—Portuguese transla-
tion systems were ranked 1st and 2nd respectively.
The main contributions of our work are the neural
and statistical MT systems trained for similar lan-
guages, as well as the strategies for adding mono-
lingual corpora in neural MT. Additionally, we re-
port negative results on the system combination by
using back-translation and Minimum Bayes Risk
(Kumar and Byrne, 2004) techniques.

2 Background

In this section, we provide a brief overview of sta-
tistical (phrase-based) and neural-based MT ap-
proaches as well as strategies for exploiting mono-
lingual data.

2.1 Phrase-based Approach

Phrase-based (PB) statistical MT (Koehn et al.,
2003) translates by concatenating at a phrase level
the most probable target given the source text. In
this context, a phrase is a sequence of words, re-
gardless if it is a phrase or not from the linguistic
point of view. Phrases are extracted from word
alignments between both languages in a large
parallel corpus, based on the probabilistic study,
which identifies each phrase with several features,
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such as conditional probabilities. The collection of
scored phrases constitutes the translation model.

In addition to this model, there are also other
models to help achieve a better translation, such
as the reordering model, which helps in a better
ordering of the phrases; or the language model,
trained from a monolingual corpus in the target
language helping to obtain a better fluency in the
translation. The weights of each of these mod-
els are optimized by tuning over a validation set.
Based on these optimized combinations, the de-
coder uses beam search to find the most probable
output given an input. Figure 1 shows a diagram
of the phrase-based MT approach.
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Figure 1: Basic schema of a phrase-based MT system

2.2 Neural Approach

Neural networks (NNs) have been successful in
many Natural Language Processing (NLP) tasks
in recent years. NMT systems, which use end-to-
end NN models to encode a source sequence in
one language and decode a target sequence in the
second language, early on demonstrated perfor-
mance on a par with or even outperformed tradi-
tional phrase-based SMT systems (Kalchbrenner
and Blunsom, 2013; Cho et al., 2014; Sutskever
et al., 2014; Bahdanau et al., 2015; Sennrich et al.,
2016a; Zhou et al., 2016; Wu et al., 2016).
Previous state-of-the-art NMT models used pre-
dominantly bi-directional recurrent neural net-
works (RNN) equipped with Long-Short Term
Memory (LSTM; Hochreiter and Schmidhuber
1997) units or Gated Recurrent Units (GRU; Cho
et al. 2014) both in the encoder and the decoder
combined with the attention mechanism (Bah-
danau et al., 2015; Luong et al., 2015). There
were also approaches, although less common, to
leverage convolutional neural networks (CNN) for
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sequence modeling (Kalchbrenner et al., 2016;
Gehring et al., 2017).

In this work, we focus on the most cur-
rent state-of-the-art NMT architecture, the Trans-
former (Vaswani et al., 2017), which shows sig-
nificant performance improvements over tradi-
tional sequence-to-sequence models. Interest-
ingly, while the Transformer employs many con-
cepts that were used earlier in encoder-decoder
RNN and CNN based models, such as: resid-
ual connections (He et al., 2016b), position em-
beddings (Gehring et al., 2017), attention; the
Transformer architecture relies solely on the self-
attention mechanism without resorting to either re-
currence or convolution.

The variant of the self-attention mechanism im-
plemented by the Transformer, multi-head atten-
tion, allows to model dependencies between all to-
kens in a sequence irrespective of their actual po-
sition. More specifically, the representation of a
given word is produced by means of computing a
weighted average of attention scores of all words
in a sentence.

Adding Monolingual Data Although our pro-
posed statistical MT model incorporates monolin-
gual corpora, the supervised neural MT approach
is not capable to make use of such data. However,
recent studies have reported notable improvements
in the translation quality when monolingual cor-
pora were added to the training corpora, either
through back-translation (Sennrich et al., 2016b)
or copied corpus (Currey et al., 2017). Encour-
aged by those results and given the similarity of
languages at hand, we propose to exploit monolin-
gual data by leveraging back-translation as well as
by simply copying target-side monolingual corpus
and use it together with the original parallel data.

3 System Combination with
Back-translation

In this paper, we propose to combine the results of
both phrase-based and NMT systems at the sen-
tence level. However, differently from the previ-
ous work of Marie and Fujita (2018), we aimed
for a conceptually simple combination strategy.
In principle, for every sentence generated by the
two alternative systems we used the BLEU score
(Papineni et al., 2002) to select a sentence with
the highest translation quality. Each of the trans-
lations was back-translated (i.e. translated from
the target language to the source language). In-



stead of using only one system to perform back-
translation, we used both PB and neural MT sys-
tems and weighted them equally. See Figure 2 for
a graphical representation of this strategy.

This approach was motivated by the recent suc-
cess of different uses of back-translation in neural
MT studies (Sennrich et al., 2016b; Lample et al.,
2018). The final test set was composed of sen-
tences produced by the system that obtained the
highest score based on the quality of the combined
back-translation.

4 Experimental Framework

In this section we describe the data sets, data pre-
processing as well as training and evaluation de-
tails for the PB and neural MT systems and the
system combination.

4.1 Data and Preprocessing

Both submitted systems are constrained, hence
they don’t use any additional parallel or mono-
lingual corpora except for the datasets provided
by the organizers. For both Czech-Polish and
Spanish-Portuguese, we used all available paral-
lel training data, which in the case of Czech-
Polish consisted of about 2.2 million sentences
and about 4.5 million sentences in the case of
Spanish-Portuguese. Also, we used all the target-
side monolingual data, which was 1.2 million sen-
tences for Polish and 10.9 million sentences for
Portuguese.

Preprocessing Our NMT model was trained on
a combination of the original Czech-Polish par-
allel corpus together with pseudo-parallel corpus
obtained from translating Polish monolingual data
to Czech with Moses. Additionally, the develop-
ment corpus was split into two sets: first contain-
ing 2k sentences and second containing 1k sen-
tences, where the former was added to the train-
ing data and the latter was used for validation pur-
poses.

Our Phrase-Based model was trained on a com-
bination of the original Spanish-Portuguese par-
allel corpus together with 2k sentences from the
dev corpus. Specifically, the development corpus
was split into two sets: first containing 2k sen-
tences and second containing 1k sentences, where
the former was added to the training data and the
latter was used for validation purposes.

Then we followed the standard preprocessing
scheme, where training, dev and test data are nor-
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malized, tokenized and truecased using Moses'
scripts.  Additionally, training data was also
cleaned with clean-corpus-n.perl script
from Moses. Finally, to allow open-vocabulary,
we learned and applied byte-pair encoding (BPE)?
for the concatenation of the source and target lan-
guages with 16k operations. The postprocessing
was done in reverse order and included detruecas-
ing and detokenization.

4.2 Parameter Details

Phrase-based For the Phrase-based systems we
used Moses (Koehn et al., 2007), which is a statis-
tical machine translation system. In order to build
our model, we used generally the default parame-
ters which include: grow-diagonal-final-and word
alignment, lexical msd-bidirectional-fe reordering
model trained, lexical weights, binarized and com-
pacted phrase table with 4 score components and
4 threads used for conversion, 5-gram, binarized,
loading-on-demand language model with Kneser-
Ney smoothing and trie data structure without
pruning; and MERT (Minimum Error Rate Train-
ing) optimisation with 100 n-best list generated
and 16 threads.

Neural-based Our neural network model is
based on the Transformer architecture (as de-
scribed in section 2.2) implemented by Facebook
in the fairseq toolkit’. The following hyperpa-
rameter configuration was used: 6 attention lay-
ers in the encoder and the decoder, with 4 at-
tention heads per layer, embedding dimension of
512, maximum number of tokens per batch set to
4000, Adam optimizer with 51 = 0.90, 52 = 0.98,
varied learning rate with the inverse square root
of the step number (warmup steps equal 4000),
dropout regularization and label smoothing set to
0.1, weight decay and gradient clipping threshold
set to 0.

System Combination The key parameter in the
system combination with back-translation, ex-
plained in section 3, is the score. Hence, we
used the BLEU score (Papineni et al., 2002) at the
sentence level, implemented as sentence-bleu in
Moses. Furthermore, we assigned equal weights
to both phrase and neural-based translations and
back-translations.

"https://github.com/moses-smt/mosesdecoder
Zhttps://github.com/rsennrich/subword-nmt
*https://github.com/pytorch/fairseq
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Figure 2: Scheme of the system combination approach

As contrastive approaches for system combi-
nation, we used two additional strategies: Mini-
mum Bayes Risk (Kumar and Byrne, 2004) and
the length ratio. In the former case, we used the
implementation available in Moses. In the latter
approach, the ratio was computed as the number
of words in the translation divided by the number
of words in the source input. Sentence translations
that gave a length ratio closer to 1 were selected.
In the case of ties, we kept the sentence from the
system that scored the best according to Table 3.

5 Results

The results provided in Table 1 show BLEU scores
for the direct phrase-based and neural-based MT
systems. Also, we report on experiments with in-
corporating monolingual data in two ways: either
using a monolingual corpus both on the source
and target sides (monolingual) or using the back-
translation system to produce a translation of a
monolingual corpus (pseudo corpus). Interest-
ingly, we observe that the monolingual approach
harms the performance of the system even in the
case of similar languages. With regard to the
Spanish-Portuguese language pair, due to the large
size of the monolingual corpora as well as the time
constraint, we were unable to finish training of our
NMT model with the pseudo corpus.

Table 1: Phrase-based (PB) and Neural-based (NMT)
results.

CS-PL | ES-PT
PB 9.87 64.96
NMT 11.69 58.40
NMT + monolingual 10.91 52.37
NMT + pseudo corpus | 12.76 —

As presented in Table 3, our proposed system
combinations, employing either MBR or the back-
translation approach, did not achieve any signif-
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Table 2: Back-translation system results.

Ist system | 2nd system | PL-CS | PT-ES

PB PB 44.34 84.62
NMT 2451 66.15
PB 32.47 63.37

NMT NMT 27.31 60.01

Table 3: System Combination results.

CS-PL | ES-PT
MBR 12.75 62.17
Back-translation 10.71 64.97

icant improvements. The MBR strategy was ap-
plied to all systems from Table 1, which means
that for the Czech-Polish pair we used 4 systems
and for Spanish-Portuguese we used 3 systems.
Back-translation results were evaluated with re-
spect to the systems in Table 2 and the system
combination with back-translation was created us-
ing the best two systems from Table 1.

In order to analyze the reason behind the
weak performance of the system combination with
back-translation, we evaluated the correlation be-
tween the quality of each translated sentence (gen-
erated using PB and NMT systems) and the quality
of back-translations (both for PB and NMT sys-
tems) on the validation set. For any combination,
Czech-Polish or Spanish-Portuguese, correlation
varies between 0.2 and 0.4, which explains the
poor performance of back-translation as a quality
estimation metric.

6 Discussion

Although Czech and Polish belong to the same
family of languages (Slavic) and share the same
subgroup (Western Slavic), the BLEU score ob-
tained by our winning system is relatively low
comparing to other pairs of similar languages (e.g.
Spanish and Portuguese). It may seem surprising
considering some common characteristics shared



by both languages, such as 7 noun cases, 2 num-
ber cases, 3 noun gender cases as well as 3 tenses
among others.

Low performance on this task could be ex-
plained by the language distance. Considering the
metric proposed by Gamallo et al. (2017), which is
based on perplexity as a distance measure between
languages, the distance between Czech and Pol-
ish is 27 while for Spanish-Portuguese is 7. The
very same metric used to evaluate the distance of
Czech and Polish from other Slavic languages (i.e.
Slovak and Russian) shows that Polish is the most
distant language within this group (see Table 4).
In general, distances between Latin languages are
smaller than between Slavic ones.

Table 4: Distances between Slavic and Latin languages.
Examples across families.

Slavic Latin Mix
pair dist. pair dist. pair dist.
CS-PL | 27 | ES-PT 7 ES-CS | 37
CS-SL 8 ES-FR | 15 | ES-PL | 44
CS-RU | 21 | ES-RO | 20 | PT-CS | 31
PL-SL | 24 | PT-FR 15 | PT-PL | 38
PL-RU | 34 | PT-RO | 22

While Czech and Polish languages are highly
inflected, which poses a challenge, we hypothe-
size that one of the reasons for the low BLEU
score lies also in the difference of the alphabets.
Even though both alphabets are based on the Latin
script, they include letters with diacritics — g, ¢, ¢,
t 1, 0,8 7 Zin Polish, and d, ¢ d’, é, ¢, ch, i,
n, 0, F, S t, 4, u, ¥, Zin Czech. The total num-
ber of unique letters in Polish is 32, while in the
Czech language there are 42 letters. Moreover,
some letters are used only in the case of foreign
words, such as ¢, x (in Czech and Polish), w (in
Czech), and v (in Polish).

7 Future Work

In the future we plan to extend our research in the
following directions. First, we would like to ex-
plore how removing diacritics on the source-side
would impact the performance of our system for
the Czech-Polish language pair. Furthermore, we
would like to study the performance of our system
combination while applying various quality esti-
mation approaches. We would be interested in ex-
perimenting with the reward score introduced by
He et al. (2016a), which is a linear combination of
language model score and the reconstruction prob-
ability of the back-translated sentence, as well as
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with other quality measures implemented in the
OpenKiwi (Kepler et al., 2019) toolkit*.
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