
Proceedings of the Fourth Conference on Machine Translation (WMT), Volume 3: Shared Task Papers (Day 2) pages 90–94
Florence, Italy, August 1-2, 2019. c©2019 Association for Computational Linguistics

90

MIPT System for World-Level Quality Estimation

Mikhail Mosyagin
MIPT, Russia

mosyagin.md@phystech.edu

Varvara Logacheva
Neural Networks and Deep Learning Lab

MIPT, Russia
logacheva.vk@mipt.ru

Abstract

We explore different model architectures for
the WMT 19 shared task on word-level qual-
ity estimation of automatic translation. We
start with a model similar to Shef-bRNN (Ive
et al., 2018), which we modify by using con-
ditional random fields (CRFs) (Lafferty et al.,
2001) for sequence labelling. Additionally, we
use a different approach for labelling gaps and
source words. We further develop this model
by including features from different sources
such as BERT (Devlin et al., 2018), baseline
features for the task (Specia et al., 2018) and
transformer encoders (Vaswani et al., 2017).
We evaluate the performance of our models
on the English-German dataset for the corre-
sponding task.

1 Introduction

Current methods of assessing the quality of ma-
chine translation, like BLEU (Papineni et al.,
2002), are based on comparing the output of a ma-
chine translation system with several gold refer-
ence translations. The tasks of quality estimation
at the WMT 19 conference aims at detecting er-
rors in automatic translation without a reference
translation at various levels (word-level, sentence-
level and document-level). In this work we predict
word-level quality.

In the task the participants are given a source
sentence and its automatic translation and are
asked to label the words in the machine transla-
tion as OK or BAD. The machine translation sys-
tem could have omitted some words in the trans-
lated sentence. To detect such errors participants
are also asked to label the gaps in the automatic
translation. A target sentence has a gap between
every pair of neighboring words, one gap in the
beginning of the sentence and one gap at the end
of the sentence. We are also interested in detect-
ing the words in the source sentence that led to

errors in the translation. For this purpose partici-
pants are also asked to label the words in source
sentences. The source labels were obtained based
on the alignments between the source and the post-
edited target sentences. If a target token is labeled
as BAD in the translation, then all source tokens
aligned to it are labeled as BAD as well.

In section 2 we introduce our base model, which
is a modified version of phrase-level Shef-bRNN
(Ive et al., 2018), and further develop it by using
different methods of extracting features from the
input alongside the bi-RNN features. In section
3 we write about our experimental setup and in
section 4 we present the scores achieved by our
models. In section 5 we summarize our work and
propose ways for further development.

2 Models

All of our models have two stages: feature extrac-
tion and tag prediction. The first stage uses dif-
ferent neural architectures like bi-LSTM encoder
and BERT (Devlin et al., 2018) to extract fea-
tures from the input sequences. Some models also
use human-crafted features alongside the automat-
ically generated ones. The second stage feeds the
sequence of extracted features into a CRF (Laf-
ferty et al., 2001) to obtain labels for words or gaps
in the automatic translation.

2.1 RNN Features

Our base model is similar to phrase-level Shef-
bRNN (Ive et al., 2018). We chose the phrase-level
version of Shef-bRNN over the word-level version
because we found it to be more understandable
and intuitive.

The model is given a sequence of source to-
kens s1, . . . , sn and a sequence of target tokens
t1, . . . , tm. The source sequence is fed into the
source encoder, which is a bidirectional LSTM.



91

Thus, for every word sj in the source a source vec-

tor hsrcj =
[
~hsrcj , ~h

src

j

]
is produced, where ~hsrcj and

~h
src

j are the corresponding hidden states of the for-
ward and backward LSTMs and [x, y] is the con-
catenation of vectors x and y. Similarly, the target
sequence is fed into the target encoder, which is
also a bidirectional LSTM, to obtain a target vec-
tor htgtj for every word tj in the target sequence.
Global attention (Luong et al., 2015) is used to ob-
tain context vector cj for every target vector htgtj :

αij = hsrc>i htgtj ,

aij =
exp(αij)∑

k=1n exp(αkj)
,

cj =
n∑

k=1

akjh
src
k .

The vector cj gives a summary of the source sen-
tence, focusing on parts which are most relevant to
the target token. Using the same technique, we ob-
tain self-context vector scj for every target vector
htgtj by computing global attention for htgtj over
htgti , i 6= j. The resulting feature vector is denoted

as fRNN
j =

[
htgtj , cj , scj

]
for every word tj in the

target sequence.

2.2 Baseline Features

Specia et al. (2018) use a CRF (Lafferty et al.,
2001) with a set of human-crafted features as the
baseline model for the same task at WMT 18.
The WMT 18 and WMT 19 tasks use the same
English-German dataset, so we can use the base-
line features provided with the WMT 18 dataset to
further improve the performance our model.

For every word tj in the target sequence base-
line features represent a sequence of 34 values:
b1j , . . . , b

34
j , some of which are numerical – like

the word count in source and target sentences –
and the others are categorical – like the target to-
ken, aligned source token and their part-of-speech
(POS) tags. We represent categorical features us-
ing one-hot encoding. In this case if a value of
a categorical feature occurs less than min occurs
times in the train dataset, then this value is ignored
(i.e. it is represented by a zero vector). After the
conversion all features are concatenated into a sin-
gle feature vector fBase

j

2.3 BERT Features
BERT is a model for language representation pre-
sented by Delvin et al. (2018) which demonstrated
state of the art performance on several NLP tasks.
BERT is trained on a word prediction task and, as
shown in (Kim et al., 2017), word prediction can
be helpful for the quality estimation task. Pre-
trained versions of BERT are publicly available
and we use one of them to generate features for
our models.

To extract BERT features the target sequence is
fed into a pretrained BERT model. It is impor-
tant to note that we do not fine-tune BERT and
just use its pretrained version as-is. BERT uti-
lizes WordPiece tokenization (Wu et al., 2016),
so for each target token tj it produces kj output
vectors BERT1

j , . . . ,BERT
kj
j . However, we can

only use a fixed size feature vector for each source
token. We noticed that about 83% of target to-
kens produce less than three BERT tokens. This
means that by using only two of the produced to-
kens we will preserve most of the information.
To obtain the BERT feature vector, we decided
to concatenate the first and the last BERT outputs
fBERT
j =

[
BERT1

j ,BERT
kj
j

]
. We chose the first

and the last outputs, because this approach was the
easiest to implement.

2.4 Transformer Encoder
We tried replacing bi-RNN encoders with trans-
former encoders (Vaswani et al., 2017) to include
more contextual information in the encoder out-
puts.

The source transformer encoder produces em-
beddings hsrc1 , . . . , hsrcn for the source sequence
and the target transformer encoder produces out-
puts htgt1 , . . . , htgtm for the target sequence. Af-
ter that, similarly to 2.1, a context vector cj is
obtained for every word in the target sequence.
For transformer encoder we do not compute self-
context vectors as the transformer architecture it-
self utilizes the self-attention mechanism.

The resulting feature vector is denoted as
fTrfj =

[
htgtj , cj

]
.

2.5 Word Labelling
After the feature vectors for the target sequence
have been obtained, they are fed into a CRF that
labels the words in the translation. In this paper we
explore architectures that use the following feature
vectors:



92

• RNN: fRNN
j ;

• RNN+Baseline:

fRNN+Baseline
j =

[
fRNN
j , fBase

j

]
;

• RNN+BERT:

fRNN+BERT
j =

[
fRNN
j , fBERT

j

]
;

• RNN+Baseline+BERT:

fRNN+Baseline+BERT
j =

=
[
fRNN
j , fBase

j , fBERT
j

]
;

• Transformer: fTrfj .

• Transformer+Baseline+BERT:

fTransformer+Baseline+BERT
j =

=
[
fTrfj , fBase

j , fBERT
j

]
;

To label words in the source sequence we use
the alignments between the source sentence and
the machine translation provided with the dataset.
Specifically, if a source word sj is aligned with
a target word tj , which is labeled as BAD then we
label sj as BAD as well. In case when sj is aligned
with multiple target words, we label sj as BAD if
at least one of the aligned target words is labeled
BAD.

2.6 Gap Labelling

Unlike word-level Shef-bRNN, we refrain from
using a dummy word to predict gap tags, because
increasing the input sequence length might make it
difficult for encoders to carry information between
distant words. Instead, we train different models
for word labelling and gap labelling.

To modify a word labelling architecture Arch,
where Arch is either RNN+Baseline+BERT or
Transformer+Baseline+BERT, to label gaps, we
construct a new sequence of features:

fgArch
j =

[
fArch
j , fArch

j+1

]
for j = 0, . . . ,m. Here we assume fArch

0 and
fArch
m+1 to be zero vectors.

After the new sequence has been constructed,
we feed it into a CRF to label the gaps.

3 Experimental Setup

We train and evaluate our models on the WMT
19 Word-Level Quality Estimation Task English-
German dataset. In our experiments we did not
utilize pre-training or multi-task learning unlike
some versions of Shef-bRNN. All our models
were implemented in PyTorch, the code is avail-
able online. 1

For RNN feature extraction we use OpenNMT
(Klein et al., 2017) bi-LSTM encoder implemen-
tation with 300 hidden units in both backward and
forward LSTMs for models that label words and
150 hidden units for models that label gaps. We
used FastText models (Grave et al., 2018) for En-
glish and German languages to produce word em-
beddings.

Baseline features were provided with
the dataset. In our experiments we used
min occurs = 4 when building baseline feature
vocabularies.

Pretrained BERT model was provided by the
pytorch-pretrained-bert package. 2 In our exper-
iments we used the bert-base-multilingual-cased
version of BERT.

We used the OpenNMT (Klein et al., 2017)
transformer encoder implementation with the fol-
lowing parameters: num layers = 3, d model =
300, heads = 4, d ff = 600 (or d ff = 300 for
gap labelling), dropout = 0.1.

We trained our models using PyTorch imple-
mentation of the ADADELTA algorithm (Zeiler,
2012) with all parameters, except the learning rate,
set to their default values. For the train loss to con-
verge we used the learning rate of 1 for the RNN
and Transformer models, the learning rate of 0.3
for the RNN+Baseline model and the learning rate
of 0.1 for RNN+Bert, RNN+Baseline+Bert and
Transformer+Baseline+Bert models. The inputs
were fed into the model in mini-batches of 10 sam-
ples.

4 Results

We used the English-German dataset provided in
the WMT 19 Shared task on Word-Level Quality
Estimation. The primary metric for each type of
tokens – source words, target words and gaps – is

1https://github.com/Mogby/
QualityEstimation

2https://github.com/huggingface/
pytorch-pretrained-BERT

https://github.com/Mogby/QualityEstimation
https://github.com/Mogby/QualityEstimation
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT


93

F1 Mult which is the product of F1 scores for BAD
and OK labels.

The scores for each system are presented
in Table 1 (participation results), Table 2 (tar-
get words), Table 3 (source words) and Ta-
ble 4 (gaps). For the WMT 19 task we
submitted the RNN+Baseline+BERT and Trans-
former+Baseline+BERT models which corre-
spond to the Neural CRF RNN and Neural CRF
Transformer entries in the public leaderboard.

We don’t have the scores for the WMT
18 Baseline system and the Shef-bRNN sys-
tem on the development dataset, so we can
compare them directly with only two of our
systems from table 1. Both of these sys-
tems perform on par with Shef-bRNN and the
Transformer+Baseline+BERT model was able to
achieve a slightly better score for target classifica-
tion. Word-level Shef-bRNN seems to outperform
all of our other systems, most likely, because it
uses a more appropriate architecture for the task.
All of our systems, seem to outperform the WMT
18 baseline system.

The BERT features turned out to improve the
performance a little – an increase of 0.02 for tar-
get labelling and an increase of 0.01 for source
labelling. The baseline features, on the other
hand, have a greater impact on the model’s per-
formance, increasing the score by 0.05 for target
labelling and by 0.04 for source labelling. Replac-
ing the bi-RNN encoder with a transformer en-
coder also improved the score by 0.03 in case of
the RNN+Baseline+BERT configuration.

5 Conclusion

We applied different neural systems to the task of
word-level quality estimation. We measured their
performance in comparison to each other and the
baseline system for the task. All of our systems
outperformed the WMT 18 baseline on the devel-
opment dataset and can be trained in a couple of
hours on a single Tesla K80 GPU.

Our models can be further improved by fine-
tuning BERT and utilizing multi-task learning as
proposed in (Kim et al., 2017).

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings
of the International Conference on Language Re-
sources and Evaluation (LREC 2018).

Julia Ive, Carolina Scarton, Frédéric Blain, and Lucia
Specia. 2018. Sheffield submissions for the WMT18
quality estimation shared task. In Proceedings of the
Third Conference on Machine Translation: Shared
Task Papers, WMT 2018, Belgium, Brussels, Octo-
ber 31 - November 1, 2018, pages 794–800.

Hyun Kim, Jong-Hyeok Lee, and Seung-Hoon Na.
2017. Predictor-estimator using multilevel task
learning with stack propagation for neural quality
estimation. pages 562–568.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
In Proc. ACL.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning (ICML
2001), Williams College, Williamstown, MA, USA,
June 28 - July 1, 2001, pages 282–289.

Minh-Thang Luong, Hieu Pham, and Christo-
pher D. Manning. 2015. Effective approaches to
attention-based neural machine translation. CoRR,
abs/1508.04025.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Lucia Specia, Frédéric Blain, Varvara Logacheva,
Ramón Astudillo, and André F. T. Martins. 2018.
Findings of the wmt 2018 shared task on quality es-
timation. In Proceedings of the Third Conference
on Machine Translation: Shared Task Papers, pages
689–709, Belgium, Brussels. Association for Com-
putational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://aclanthology.info/papers/W18-6463/w18-6463
https://aclanthology.info/papers/W18-6463/w18-6463
https://aclanthology.info/papers/W17-4763/w17-4763
https://aclanthology.info/papers/W17-4763/w17-4763
https://aclanthology.info/papers/W17-4763/w17-4763
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://www.aclweb.org/anthology/W18-6451
https://www.aclweb.org/anthology/W18-6451
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762


94

Model Target F1 Mult Source F1 Mult
RNN + Baseline + BERT 0.30 0.26
Transformer + Baseline + BERT 0.33 0.27

Table 1: Final results on the test dataset.

Model Dataset F1 OK F1 BAD F1 Mult
WMT 18 Baseline test 0.20 0.92 0.18
Shef-bRNN (Word-Level) test 0.86 0.35 0.30
RNN dev 0.88 0.26 0.23
RNN + Baseline dev 0.91 0.31 0.28
RNN + BERT dev 0.88 0.29 0.25
RNN + Baseline + BERT dev 0.88 0.34 0.30
Transformer dev 0.90 0.25 0.23
Transformer + Baseline + BERT dev 0.89 0.37 0.33

Table 2: Models scores on WMT 19 English-German dataset, target prediction. The baseline scores are taken from
(Specia et al., 2018) and the Shef-bRNN scores are taken from (Ive et al., 2018)

Model Dataset F1 OK F1 BAD F1 Mult
Shef-bRNN (Word-Level) test 0.87 0.33 0.29
RNN dev 0.88 0.22 0.19
RNN + Baseline dev 0.90 0.25 0.23
RNN + BERT dev 0.87 0.23 0.20
RNN + Baseline + BERT dev 0.88 0.29 0.25
Transformer dev 0.88 0.23 0.20
Transformer + Baseline + BERT dev 0.89 0.28 0.25

Table 3: Models scores on WMT 19 English-German dataset, source prediction. The Shef-bRNN scores are taken
from (Ive et al., 2018)

Model Dataset F1 OK F1 BAD F1 Mult
Shef-bRNN (Word-Level) test 0.99 0.12 0.12
RNN + Baseline + BERT dev 0.98 0.14 0.14
Transformer + Baseline + BERT dev 0.99 0.14 0.14

Table 4: Models scores on WMT 19 English-German dataset, gap prediction. The Shef-bRNN scores are taken
from (Ive et al., 2018)

Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR,
abs/1609.08144.

Matthew D. Zeiler. 2012. ADADELTA: an adaptive
learning rate method. CoRR, abs/1212.5701.

http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701

