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Abstract

‘We obtain new results using referential transla-
tion machines with increased number of learn-
ing models in the set of results that are stacked
to obtain a better mixture of experts predic-
tion. We combine features extracted from the
word-level predictions with the sentence- or
document-level features, which significantly
improve the results on the training sets but de-
crease the test set results.

Referential Translation Machines for
Machine Translation Performance
Predicion

Quality estimation task in WMT19 (Specia et al.,
2019) (QET19) address machine translation per-
formance prediction (MTPP), where translation
quality is predicted without using reference trans-
lations, at the sentence- and word- (Task 1),
and document-levels (Task 2). The tasks con-
tain subtasks involving English-German, English-
Russian, and English-French machine transla-
tion (MT). The target to predict in Task 1
is HTER (human-targeted translation edit rate)
scores (Snover et al., 2006) and binary classifica-
tion of word-level translation errors and the tar-
get in Task 2 is multi-dimensional quality metrics
(MQM) (Lommel, 2015). Table 1 lists the number
of sentences in the training and test sets for each
task and the number of instances used as interpre-
tants in the RTM models (M for million).

We use referential translation machine
(RTM) (Bigici, 2018; Bigici and Way, 2015)
models for building our prediction models. RTMs
predict data translation between the instances in
the training set and the test set using interpretants,
data close to the task instances. Interpretants
provide context for the prediction task and are
used during the derivation of the features mea-
suring the closeness of the test sentences to the
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RTM interpretants
Task Train Test | Training LM
Task 1 (en-de) | 14442 1000
Task 1 (en-ru) | 16089 1000 | 0.250M 5M
Task 2 (en-fr) | 1468 180

Table 1: Number of instances and interpretants used.

training data, the difficulty of translating them,
and to identify translation acts between any two
data sets for building prediction models. With
the enlarging parallel and monolingual corpora
made available by WMT, the capability of the
interpretant datasets selected by RTM models
to provide context for the training and test sets
improve as can be seen in the data statistics
of parfda instance selection (Bigici, 2019).
Figure 1 depicts RTMs and explains the model
building process. RTMs use parfda for instance
selection and machine translation performance
prediction system (MTPPS) for obtaining the
features, which includes additional features
from word alignment and also from GLMd for
word-level prediction.

We use ridge regression, kernel ridge regres-
sion, k-nearest neighors, support vector regres-
sion, AdaBoost (Freund and Schapire, 1997), gra-
dient tree boosting, gaussian process regressor, ex-
tremely randomized trees (Geurts et al., 2006), and
multi-layer perceptron (Bishop, 2006) as learn-
ing models in combination with feature selection
(FS) (Guyon et al., 2002) and partial least squares
(PLS) (Wold et al., 1984) where most of these
models can be found in scikit-learn.! We
experiment with:

e including the statistics of the binary tags ob-
tained as features extracted from word-level
tag predictions for sentence-level prediction,

e using KNN to estimate the noise level for

"http://scikit-learn.org/
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Figure 1: RTM depiction: parfda selects interpretants close to the training and test data using parallel corpus in
bilingual settings and monolingual corpus in the target language or just the monolingual target corpus in monolin-
gual settings; an MTPPS use interpretants and training data to generate training features and another use interpre-
tants and test data to generate test features in the same feature space; learning and prediction takes place taking

these features as input.

SVR, which obtains accuracy with 5% er-
ror compared with estimates obtained with
known noise level (Cherkassky and Ma,
2004) and set € = 0/2.

Martins et al. (2017) used a hybrid stacking
model to combine the word-level predictions from
15 predictors using neural networks with different
initializations together with the previous features
from a linear model. The neural network architec-
ture they used is also hybrid with different types of
layers: input word embedding use 64 dimensional
vectors, the next three layers are two feedforward
layers with 400 nodes and a bidirectional gated
recurrent units layer with 200 units, followed by
similar three layers with half nodes, followed by
a feedforward layer with 50 nodes and a softmax
layer.

We use Global Linear Models (GLM) (Collins,
2002) with dynamic learning (GLMd) (Bigici,
2018) for word- and phrase-level translation per-
formance prediction. GLMd uses weights in a
range [a,b] to update the learning rate dynami-
cally according to the error rate. Evaluation met-
rics listed are Pearson’s correlation (), mean ab-
solute error (MAE), and root mean squared error
(RMSE).

2 Mixture of Experts Models

We use prediction averaging (Bigici, 2018) to ob-
tain a combined prediction from various predic-
tion outputs better than the components, where the
performance on the training set is used to obtain
weighted average of the top k predictions, § with
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evaluation metrics indexed by j € J and weights
with w:

__wji
Wii = T
B = 1309 MEAN
Qj,w;; ﬁ K wj g
Y =[] 2jed gj,w{; MIX
(1)

We assume independent predictions and use
pi/(1—p;) for weights where p; represents the ac-
curacy of the independent classifier ¢ in a weighted
majority ensemble (Kuncheva and Rodriguez,
2014). We only use the MIX prediction if we ob-
tain better results on the training set. We select
the best model using r and mix the results using r,
RAE, MRAER, and MAER. We filter out those re-
sults with higher than 1 relative evaluation metric
scores.

We also use stacking to build higher level mod-
els using predictions from base prediction models
where they can also use the probability associated
with the predictions (Ting and Witten, 1999). The
stacking models use the predictions from predic-
tors as features and build second level predictors.

For the document-level RTM model, instead of
running separate MTPPS instances for each train-
ing or test document to obtain specific features
for each document, we concatenate the sentences
from each document to obtain a single sentence
representing each and then run an RTM model.
This conversion decreases the number of features
and obtains close results (Bigici, 2018).

Before model combination, we further filter
prediction results from different machine learn-



rp MAE RAE MAER MRAER
sentence  en-de 0.4908 0.1102 0.8017 0.8721 0.7554
+word tags | 0.9608 0.0237 0.1725 0.1388 0.1823
% enru 0.2724 0.1548 0.8769 0.9064 0.7736
Q +word tags | 0.9481 0.028  0.1587 0.1541 0.1553
document enfr 0.3959 17.982 0.8564 0.933 0.7908
+word tags | 0.478 17.1015 0.8144 0.8921 0.7564
en-de SMT 0.4386 0.1368 0.8675 0.9103 0.8168
+word tags | 0.9424 0.0391 0.248 0.1716 0.2969
en-de NMT 0.4613 0.1109 0.8066 0.8414 0.7347
+word tags | 0.9589 0.0244 0.1777 0.144 0.1901
de-en SMT 0.5636 0.1355 0.7903 0.9173 0.7826
g sentence +word tags | 0.9276 0.0485 0.2828 0.2413 0.3378
a en-cs SMT 0.5397 0.1506 0.8084 0.8203 0.7886
+word tags | 0.9356 0.0477 0.256 0.1825 0.3021
en-lv SMT 0.4006 0.1329 0.8832 0.9316 0.8059
+word tags | 0.9452 0.0342 0.2271 0.1768 0.2625
en-lv NMT 0.5779 0.1441 0.7831 0.8679 0.7768
+word tags | 0.9571 0.0398 0.2163 0.1778 0.2573
document enfr 0.2141 40.7359 0.9324 1.2074 0.7573
+word tags | 0.2254 41.6591 0.9535 1.0849 0.7783

Table 2: RTM train results in sentence- and document-level MTPP. rp is Pearson’s correlation.

ing models based on the results on the training
set to decrease the number of models combined
and improve the results. A criteria that we use is
to include results that are better than the best RR
model’s results. In general, the combined model is
better than the best model in the set and stacking
achieves better results than MIX.

3 Results

We tokenize and truecase all of the corpora us-
ing Moses’ (Koehn et al., 2007) processing tools.?
LMs are built using ken1m (Heafield et al., 2013).
The comparison of results on the training set are in
Table 2 and the results on the test set we obtained
after the competition are in Tables 3 and 5. Official
competition results of RTMs are similar.

We convert MQM annotation to word-level tags
to train GLMd models and obtain word-level pre-
dictions. Addition of the tagging features from the
word-level prediction improves the training results
significantly but does not improve the test results
at the same rate, which indicates overfitting. The
reason for the overfitting with the word-level fea-
tures is due to their high correlation with the tar-
get. Table 4 lists some of the top individual feature

https://github.com/moses—smt/
mosesdecoder/tree/master/scripts
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correlations for en-ru in Task1. Top 26 highly cor-
related features belong to word-level features.

We also obtained new results on QETI18
datasets and experimented adding features from
word-level predictions on the QET18 sentence-
level results. QETI18 results in Table 3 are im-
proved overall.

4 Conclusion

Referential translation machines pioneer a lan-
guage independent approach and remove the need
to access any task or domain specific information
or resource and can achieve top performance in au-
tomatic, accurate, and language independent pre-
diction of translation scores. We present RTM re-
sults with stacking.
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rptrain rp test feature

0.937 0.2369 avg number of 1s in tags
0.5941  0.1838 std of the number of 1s in tags
0.0773  0.055 translation average BLEU

Table 4: Word-level prediction features are highly cor-
related with the target in the training set for en-ru in
Task1.
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