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Abstract

We propose WMDO, a metric based on dis-
tance between distributions in the semantic
vector space. Matching in the semantic space
has been investigated for translation evalua-
tion, but the constraints of a translation’s word
order have not been fully explored. Building
on the Word Mover’s Distance metric and var-
ious word embeddings, we introduce a frag-
mentation penalty to account for fluency of
a translation. This word order extension is
shown to perform better than standard WMD,
with promising results against other types of
metrics.

1 Introduction

Current metrics to automatically evaluate machine
translations, such as the popular BLEU (Papineni
et al., 2002), are heavily based on string matching.
They claim to account for adequacy by checking
for overlapping words between the machine trans-
lation output and reference translation, and fluency
by rewarding matches in sequences of more than
one word. This way of viewing adequacy is very
limiting; comparing strings makes it harder to
evaluate any deviation from the semantics of the
original text in the reference or machine transla-
tion.

Meteor (Banerjee and Lavie, 2005) relaxes this
constraint by allowing matching of lemmas, syn-
onyms or paraphrases. However, this requires lin-
guistic resources to lemmatise the data or lexical
databases to fetch synonyms/paraphrases, which
do not exist for most languages.

Character-based metrics like chrF (Popovic,
2015) and CharacTER (Wang et al., 2016) also re-
lax the exact word match constraint by allowing
the matching of characters. However, they ulti-
mately still assume a surface-level similarity be-
tween reference and machine translation output.

Chen and Guo (2015) presented a number of
experiments where both translation and reference
sentences are compared in the embedding space
rather than at surface level. They however sim-
ply extract these two embedding representations
and measure the (cosine) similarity between them,
which may account for some overall semantic
similarity, but ignores other aspects of translation
quality.

A version of Meteor has been proposed that also
performs matches at the word embedding space
(Servan et al., 2016). Two words are considered
to match if their cosine distance in the embed-
ding space is above a certain threshold. In other
words, the embeddings are only used to provide
this binary decision, rather than to measure over-
all semantic distance between two sentences. In a
similar vein, bleu2vec and ngram2vec (Tttar and
Fishel, 2017) are a direct modification of BLEU
where fuzzy matches are added to strict matches.
The fuzzy match score is implemented via token
and n-gram embedding similarities. As we show
in Section 4, these metrics do not perform well.

MEANT 2.0 (Lo, 2017) also relies on matching
of words in the embedding space, but this is only
used to score the similarity between pairs of words
that have already been aligned based on their se-
mantic roles, rather than to find the alignments be-
tween words.

We suggest a more general way of using distri-
butional representations of words, where distance
in the semantic space is viewed as a global de-
cision between the entire machine and reference
translations. More specifically, we propose an
adaptation of a powerful and flexible metric that
operates on the semantic space: Word Mover’s
Distance (WMD) (Kusner et al., 2015). WMD is
an instance of the Earth Mover’s Distance trans-
portation problem that calculates the most efficient
way to transform one distribution onto another.
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Adjustments to EMD have been used previously
to create evaluation metrics based on word embed-
dings and word positions (Echizen’ya et al., 2019).
Likewise, using vector word embeddings as an in-
dicator of similarity and the word embeddings of
each text as a distribution, WMD gives the opti-
mal method of transforming the words of one doc-
ument to the words of another document. WMD
does not take word order into account and rather
focuses on semantic similarity of word meanings.

WMD has been recently used for the evalua-
tion of image captioning models (Kilickaya et al.,
2017; Madhyastha et al., 2019). It proved promis-
ing for image captioning evaluation, where word
order is less relevant. The same image can be de-
scribed similarly using different word orders as it
is constrained by the image itself. We note that in
machine translation evaluation, word order is more
important, since the order is constrained by that of
the source sentence.

In this paper, we propose WMDO – an extension
to WMD that incorporates word order. We show
that this metric outperforms the standard WMD
and performs on par or better than most state-of-
the-art evaluation metrics.

2 Method

In this section we describe the original WMD dis-
tance metric and its extension to account for word
order.

2.1 WMD

Word Mover’s Distance (WMD) (Kusner et al.,
2015) makes use of vectorial relationships be-
tween word embeddings to compute distance be-
tween two text documents. In essence, WMD cap-
tures the minimal distance required to move words
from the first document to words in the second
document.

Let X ∈ Rn×d be a d-dimensional word em-
bedding matrix for a vocabulary of n words. Let
xi ∈ Rd be a d-dimensional representation of
ith word. Assume two documents A and B with
da and db as the normalized bag-of-words (BOW)
vectors, k-dimensional vectors for the respective
documents, where dja is the number of times word
j occurs in A (normalized by all words appearing
inA). Note that stop words are removed from doc-
uments; only content words are retained.

Kusner et al. (2015) propose the word travel
cost, that is the cost of moving words from T a

i to

T b
j , as the measure of word dissimilarity, using the

Euclidean distance between the embeddings cor-
responding to words. More precisely, the cost as-
sociated is defined as:

c(i, j) = ‖xi − xj‖22 , (1)

This allows documents with many closely re-
lated words to have smaller distances than docu-
ments with very dissimilar words. WMD defines
a transport matrix T ∈ Rn×n,

where Tij contains information about the pro-
portion of dai that needs to be transported to dbj .
Formally, WMD computes T that optimizes:

D(da, db) = min
T≥0

n∑
i,j=1

Tijc(i, j), (2)

such that:
∑n

j=1 Tij=d
a
i and

∑n
i=1 Tij=d

b
j , ∀ i, j.

Here, the normalized bag-of-words distribution of
the documents da and db contains a combined vo-
cabulary from da and db resulting in a square trans-
port matrix T of dimensionality n×n.

We note that Kusner et al. (2015) remove stop
words and retain only content words before com-
puting WMD, as stop words are generally less rel-
evant for capturing content specific similarity be-
tween documents. In our implementation, we in-
clude the stop words in order to capture a more
coherent distance.

2.2 WMD with word order
Evaluation of translation candidates generally
takes into account fluency as well as adequacy to
form a judgment. As described in previous sec-
tion, the standard WMD does not take word order
into account. We introduce a modified version
which includes a specialized penalty that is in-
tended to penalize for words occurring in a dif-
ferent order from the reference translation. This
modification adds a notion of fluency on top of the
original WMD metric, which is crucial in match-
ing the multifaceted approach of human transla-
tion evaluation.

The word order penalty is applied after calcula-
tion of the standard WMD score. Our proposal for
penalty is similar to the notion of fragmentation
penalty of Meteor (Banerjee and Lavie, 2005),
which separates word matches into chunks in or-
der to prevent the metric from doubly-penalising
a translation for having out of order consecutive
words. These chunks are defined as a group of un-
igrams which are adjacent in both reference and
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machine translation. The longer each chain of n-
grams is, the fewer the chunks, so if the entire ma-
chine translation matches the reference in consec-
utive order there is only one chunk. Figure 1 is
an illustration of the use of chunks. The matched
unigrams for “the president” and “spoke loudly”
are in the same order in both sentences, giving
two chunks for this translation, fragmented by the
word “then”.

the president spoke loudly

the president then spoke loudly

Figure 1: An example of chunks.

This type of word order penalty is necessary to
deal with examples such as that of Figure 2. The
sentence gets a perfect WMD score because all of
its words align exactly to another one in the vector
space, with no regard to its fluency. With a frag-
mentation penalty, this type of situation would see
the score get worse because of its different sen-
tence structure to the reference.

the sun is shining brightly

brightly shining is the sun

Figure 2: The WMD score for this sentence pair is 0.0.

The penalty is formulated as:

Penalty =
c

um
(3)

where c is the number of chunks and um is the
number of unigrams in the machine translation.

This penalty is weighted by a value δ. and is
formulated as:

Weight = δ × Penalty (4)

We also observed that, in many cases, the sim-
ple penalty in Equation 4 can further be aug-
mented with a modification that rewards sentences
which are largely contiguous. We modify Equa-
tion 4 such that sentences with fewer chunks are
rewarded and sentences with more chunks are pe-
nalized. We empirically found that 1

2 is optimal
for such a realization. With this modification, our
fluency based word mover’s distance (WMDO) is

defined as:

WMDO = WMD− δ(1
2
− Penalty) (5)

We also observe that, in most cases, the optimal
weight seems to be 0.2.

3 Experimental settings

We performed experiments to verify the perfor-
mance of the proposed metric, comparing the met-
ric’s results against human annotations to measure
a level of correlation. We used the PyEMD wrap-
per (Mayner, 2019) for calculating the WMD,
based on (Pele and Werman, 2008, 2009). We
did not remove any stopwords as these are impor-
tant to fluency. We also use Cosine rather than
Euclidean distance to calculate distance between
word embeddings as magnitude of the vectors is
not as important in such high dimensions.

3.1 Datasets

We used the WMT17 segment-level into-English
datasets for our experiments (Bojar et al., 2017).
This has data from seven different source lan-
guages, with 560 different texts each. Every text
carries a reference translation and a machine trans-
lation, with a human annotation labelling how
closely the machine translation relates to the ref-
erence.

3.2 Word embeddings

Many pre-trained word embeddings are available
for English. Since word2vec embeddings have
been shown to work well with WMD, this was
our starting point as the embeddings used to de-
velop the metric. We used a freely-available pre-
trained model of 300 dimensions trained on ap-
proximately 100 billion words from news articles
(Mikolov et al., 2013). This model had a vocab-
ulary size of 3 million. While large, there were
still many instances of out-of-vocabulary (OOV)
words in the WMT17 dataset alone. Some of
this can be attributed to incomplete translations;
many of the missing words were foreign words in
the source language. Other instances were proper
nouns which had not been seen in the pre-trained
embeddings vocabulary, as well as numerical val-
ues for the same reason.

To tackle OOV, we tried several different ap-
proaches. One was to assign a single random vec-
tor as an OOV vector, using the same vector for
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every instance of a missing word. For these exper-
iments, we used the vector of all 0s, as this seemed
the most neutral. Another was to have a random
vector for each OOV word and store it in a dictio-
nary, calling on the same value whenever the OOV
word is encountered again. In the same vein, one
setting was to generate this vector by taking an av-
erage of five random vectors in the embedding.

An alternative approach we also pursued was
to use a different set of embeddings. FastText
(Mikolov et al., 2018) is a type of embedding
which is able to produce embeddings for words not
part of the vocabulary. This utilises vectors from
of substrings of characters contained in the miss-
ing word, adding them together so even vectors for
misspelled words or a concatenation of words can
be produced. Again, a pre-trained model, also of
300 dimensions and trained on news articles was
used here. We also fine-tuned this model to pro-
duce another set of embeddings, using monolin-
gual training data from the WMT19 news transla-
tion task. The experiments with these embeddings
were done with and without the FastText character
n-gram method of solving OOVs.

All of these approaches were used to test the
metric against human scores, the results of which
can be seen in Section 4.

4 Results

The results of these experiments are shown in Ta-
bles 1 to 4. Each row in a table corresponds to
an experimental setting, while each column repre-
sents one of the seven language pairs. The value
of each cell represents the Pearson correlation with
of the metric’s score with the given human score,
with a higher value suggesting better agreement
with the gold standard human evaluation.

Table 1 shows the results of the different OOV
strategies, all using the pre-trained word2vec em-
bedding and the standard WMD metric. Out of
these strategies, the same random vector for all
OOVs came out top by a small margin.

Table 2 looks at the effect of using different em-
beddings on results and OOV rate, including with
and without the n-gram method of FastText to re-
solve OOVs. We can see that the pre-trained Fast-
Text vectors with the OOV resolution strategy of
the same vector for all OOV had the best perfor-
mance, but only marginally over a random vec-
tor for each OOV. A different vector choice might
be better for different embeddings, but for the

purposes of further experiments with this dataset
the zero vector was used. It also shows that
the FastText embeddings perform better than the
word2vec embedding with the same OOV resolu-
tion strategy, suggesting a difference in quality of
vectors.

Table 3 presents the experimental results of
WMD and the WMD word order metrics for dif-
ferent values of δ. These experiments used the pre-
trained FastText vectors with a zero vector for all
OOV. It shows that the WMD word order metric
performs better than the standard WMD metric in
the majority of language pairs.

Combining these results, we find that the best
performing iteration of our metric for all language
pairs is the word order version of WMD, with δ
at 0.2. This is using the pre-trained FastText em-
bedding, with the zero vector used for each OOV
word. However, it should be noted that some lan-
guage pairs perform slightly better with a higher
or lower δ; this is reflected in the next table with
the “ideal” parameter.

We compare this to the rest of the results from
the WMT17 metrics task in Table 4; it shows that
our metric performs at a similar level or better than
most evaluation metrics. Of the metrics which
do better than WMDO. Blend and AutoDA are
trained metrics, which are not the most practical
when applied to larger datasets as they rely on hu-
man annotated training data. MEANT is a met-
ric that does very well for most language combi-
nations. It also uses word embeddings to score
matching words, but it is not clear whether the
benefit comes from this or from other components
in the metric. Overall, this metric has a very large
number of steps that rely on linguistic resources,
and its code is not available.

5 Analysis

We plot two examples of the distributions of hu-
man and WMDO metric scores in Figures 3 and
4. The results for Finnish-English were fairly
strong, but those for Latvian-English had a few
more anomalies.

The metric performs sufficiently with reference
and machine translated outputs which were largely
of a similar length, as the influence of each word
was not overbearing on the metric’s end result.
This can be seen in the results for Finnish to En-
glish, which are quite consistent.

Our metric struggled more with bad translations
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cs-en de-en fi-en lv-en ru-en tr-en zh-en
Same vector for all OOV 0.513 0.531 0.689 0.505 0.562 0.561 0.595
Random vector per OOV 0.513 0.531 0.687 0.501 0.560 0.557 0.591
Average of 5 random vectors 0.500 0.534 0.678 0.492 0.563 0.557 0.572

Table 1: Performance of OOV strategies with standard WMD and word2vec.

cs-en de-en fi-en lv-en ru-en tr-en zh-en OOV (%)
Word2vec (same vector for all OOV) 0.513 0.531 0.689 0.505 0.562 0.561 0.595 0.10
FastText (same vector for all OOV) 0.521 0.536 0.704 0.530 0.571 0.566 0.607 0.22
FastText (random vector per OOV) 0.521 0.536 0.702 0.530 0.571 0.566 0.607 0.22
FastText (n-grams) 0.511 0.542 0.700 0.526 0.572 0.577 0.583 0
FastText finetuned (n-grams) 0.485 0.525 0.671 0.513 0.546 0.538 0.597 0

Table 2: Performance of different embeddings on standard WMD, including OOV rate.

cs-en de-en fi-en lv-en ru-en tr-en zh-en
WMD 0.521 0.536 0.704 0.530 0.571 0.566 0.607
WMDO, δ = 0.05 0.528 0.544 0.709 0.537 0.580 0.585 0.616
WMDO, δ = 0.1 0.531 0.546 0.710 0.541 0.585 0.600 0.621
WMDO, δ = 0.2 0.530 0.542 0.705 0.543 0.585 0.620 0.623
WMDO, δ = 0.3 0.525 0.534 0.696 0.540 0.579 0.631 0.621
WMDO, δ = 0.4 0.518 0.525 0.686 0.535 0.572 0.637 0.616

Table 3: Performance of different WMD implementations with pre-trained FastText and same vector strategy.
Bolded value signify the best performing metric for each language pair.

cs-en de-en fi-en lv-en ru-en tr-en zh-en
AUTODA 0.499 0.543 0.673 0.533 0.584 0.625 0.583
BEER 0.511 0.530 0.681 0.515 0.577 0.600 0.582
BLEND 0.594 0.571 0.733 0.577 0.622 0.671 0.661
BLEU2VEC SEP 0.439 0.429 0.590 0.386 0.489 0.529 0.526
CHRF 0.514 0.531 0.671 0.525 0.599 0.607 0.591
CHRF++ 0.523 0.534 0.678 0.520 0.588 0.614 0.593
MEANT 2.0 0.578 0.565 0.687 0.586 0.607 0.596 0.639
MEANT 2.0-NOSRL 0.566 0.564 0.682 0.573 0.591 0.582 0.630
NGRAM2VEC 0.436 0.435 0.582 0.383 0.490 0.538 0.520
SENTBLEU 0.435 0.432 0.571 0.393 0.484 0.538 0.512
TREEAGGREG 0.486 0.526 0.638 0.446 0.555 0.571 0.535
UHH TSKM 0.507 0.479 0.600 0.394 0.465 0.478 0.477
WMD 0.521 0.536 0.704 0.530 0.571 0.566 0.607
WMDO , δ = 0.2 0.530 0.542 0.705 0.543 0.585 0.620 0.623
WMDO , δ = IDEAL 0.531 0.546 0.710 0.543 0.585 0.637 0.623

Table 4: Performance of different metrics in the WMT17 shared task against the two proposed metrics. Our
metrics are highlighted in blue. Trained/ensemble metrics are highlighted in grey. Bolded values signify the best
performing non-trained metric for each language pair.
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Figure 3: WMDO against human scores for fi-en

Figure 4: WMDO against human scores for lv-en

of sentences which were shorter, as each chunk be-
came more pronounced in the penalty, which com-
pounded the bad WMD scores of the nonsensical
translation. This was especially evident with poor
translations which were comprised largely of re-
tained foreign words. An example of this is from
the Latvian to English set; one of the machine
translations was “Pann uzkars oil” for the refer-
ence “Heat oil in a frying-pan”. The penalty could
be adjusted in the future to account for sentence
length.

6 Conclusions

We have proposed a novel method of evaluating
machine translations, focusing on word embed-
dings and the semantic space. Our metric imple-
menting a word order weighting achieved strong
performance in relation to other state-of-the-art
metrics and the standard WMD metric. From this
we can conclude that semantic spaces are a viable
approach to assessing machine translations.

In terms of experimental settings, we found that
using the n-gram approach of FastText did not sig-
nificantly outperform initialising a random vector
for each OOV word, although the higher quality
FastText embeddings proved to be more accurate

than the older word2vec embeddings. These set-
tings, along with the value of δ, may vary for dif-
ferent datasets. This may be because the WMT17
dataset had a large number of foreign words,
which would not make much sense to use n-grams
to piece back together. In addition, the finetuned
FastText embedding might have had suboptimal
training parameters, leading to its poorer perfor-
mance. It can also be seen that different values of
δ work better on certain language pairs; this may
have to be a value tuned per language pair rather
than a catch-all value.

This work within semantic spaces can also be
extended to other translation tasks; as compar-
isons of two segments are performed within the
currently monolingual vector space, future trans-
lation evaluations could make use of cross-lingual
word embeddings, which carry vectors for differ-
ent languages in the same space. This could poten-
tially allow translation evaluations to be done di-
rectly from the source text to the machine transla-
tion, without the human evaluation in between by
using a vector space combining the source and tar-
get language. Work into cross-lingual embeddings
has been growing in recent years (Conneau et al.,
2017) and this metric could be used to leverage
the potential of this area in the future of automatic
translation evaluation. We will provide an open
source implementation of WMDO (Chow, 2019).
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