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Abstract

Supervised Neural Machine Translation
(NMT) systems currently achieve impres-
sive translation quality for many language
pairs. One of the key features of a correct
translation is the ability to perform word
sense disambiguation (WSD), i.e., to translate
an ambiguous word with its correct sense.
Existing evaluation benchmarks on WSD
capabilities of translation systems rely heavily
on manual work and cover only few language
pairs and few word types. We present MU-
COW, a multilingual contrastive test suite
that covers 16 language pairs with more than
200 000 contrastive sentence pairs, automati-
cally built from word-aligned parallel corpora
and the wide-coverage multilingual sense in-
ventory of BabelNet. We evaluate the quality
of the ambiguity lexicons and of the resulting
test suite on all submissions from 9 language
pairs presented in the WMT19 news shared
translation task, plus on other 5 language pairs
using pretrained NMT models. The MUCOW
test suite is available at http://github.
com/Helsinki-NLP/MuCoW.

1 Introduction

Neural Machine Translation (NMT) has provided
impressive advances in translation quality, lead-
ing to a discussion whether translations produced
by professional human translators can still be
distinguished from the output of NMT systems,
and to what extent automatic evaluation measures
can reliably account for these differences (Has-
san Awadalla et al., 2018; Läubli et al., 2018; Toral
et al., 2018). One answer to this question lies in
the development of so-called test suites (Burchardt
et al., 2017) or challenge sets (Isabelle et al., 2017)
that focus on particular linguistic phenomena that
are known to be difficult to evaluate with simple
reference-based metrics such as BLEU. Existing
test suites focus e.g. on morphosyntactic and syn-

tactic divergences between source and target lan-
guage (Burchardt et al., 2017; Burlot and Yvon,
2017; Isabelle et al., 2017; Sennrich, 2017; Bur-
lot et al., 2018; Macketanz et al., 2018) or on dis-
course phenomena (Guillou and Hardmeier, 2016;
Bawden et al., 2018; Müller et al., 2018; Guillou
et al., 2018).

Another linguistic phenomenon that is challeng-
ing for translation is lexical ambiguity (Liu et al.,
2018; Marvin and Koehn, 2018), i.e., words of the
source language that have multiple translations in
the target language representing different mean-
ings. Recently, Rios Gonzales et al. (2017) intro-
duced a lexical ambiguity benchmark called Con-
traWSD that is based on contrastive translation
pairs: a sentence containing an ambiguous source
word is paired with the correct reference transla-
tion and with a modified translation in which the
ambiguous word has been replaced by a word of a
different sense. Contrastive evaluation makes use
of the ability of NMT systems to score given trans-
lations: a contrast is considered successfully de-
tected if the reference translation obtains a higher
score than an artificially modified translation.

However, all these test suites require significant
amounts of expert knowledge and manual work for
identifying the divergences and compiling the ex-
amples, which typically limits their coverage to
a small number of language pairs and directions.
For example, the test sets built by Rios Gonzales
et al. (2017) cover only 65 ambiguous words for
two language pair directions.

In this paper, we present a language-
independent method for automatically building
ContraWSD-style test suites. It involves the
following steps: (1) identify ambiguous source
words and their translations; (2) cluster the
translations into senses; (3) select sentences with
ambiguous words and create contrast pairs.

The setup proposed by Rios Gonzales et al.

http://github.com/Helsinki-NLP/MuCoW
http://github.com/Helsinki-NLP/MuCoW


471

177 input 26 documents 9 system
50 typing 21 petition 8 entered
29 entering 17 data 8 command
28 entry 14 submission 7 display
27 loading 13 the 7 to
26 enter 11 inputting . . .

Table 1: English words aligned with the German word
Eingabe and their alignment frequencies. Words with
frequency < 10 are discarded from further processing.

(2017) has shown a certain number of drawbacks.
First, it cannot be used in conjunction with online
systems (which do not provide an API for scor-
ing) or with rule-based systems. Second, it is un-
clear to what extent the score of an MT system
reflects its quality, as it might never have gener-
ated that particular sentence. Third, it requires
the explicit construction of contrastive sentences,
which is not trivial, especially for morphologically
rich languages. For these reasons, the WMT test
suite calls focus on translation test suites, where
the participants are asked to produce translations
of the source sentence instead of scoring given hy-
potheses. Following Rios et al. (2018) and Macke-
tanz et al. (2018), who proposed small-scale trans-
lation test suites targeting WSD, we participated
at WMT with modified versions of MUCOW. The
modifications only concern step (3).

As a result, we make available two variants of
MUCOW, a multilingual contrastive word sense
disambiguation test suite for machine translation.
The scoring variant covers 11 language pairs with
a total of almost 240 000 sentence pairs. The
translation variant covers 9 language pairs with
a total of 15 600 sentences. The data and scor-
ing scripts are available at https://github.
com/Helsinki-NLP/MuCoW.

2 Building MUCOW

In this section, we describe the three steps needed
to create a MUCOW test suite and illustrate them
with some German→English examples.

2.1 Step 1: Identify ambiguous source words
and their translations

We first compile a list of source language words
that have a large number of distinct translations.
For this, we apply the eflomal word alignment tool
(Östling and Tiedemann, 2016) on a collection of
parallel corpora, keeping only those source words

Petition, Antrag,
Gesuch, Eingabe

petition, request,
postulation

Produktionsfaktor,
Ressource, Eingabe

factors of production,
input, resource

Eingabe (Computer),
Dateneingabe, Input

input, data entry

Table 2: Three bilingual German–English clusters for
the German word Eingabe, as obtained from BabelNet.
Intersected words with Table 1 are displayed in bold.
The second and third clusters are merged because of
the shared English word input.

that were aligned at least 10 times each with at
least two distinct target words. We use parallel
corpora from the OPUS collection (Tiedemann,
2012),1 counting only one-to-one word alignment
links. Table 1 provides an example.

2.2 Step 2a: Cluster target words via
BabelNet

For each source word of the previous step, those
target words that potentially share the same mean-
ing (for example synonyms) are clustered to-
gether. To this end, we exploit BabelNet (Nav-
igli and Ponzetto, 2012), a wide-coverage mul-
tilingual encyclopedic dictionary obtained auto-
matically from various resources (WordNet and
Wikipedia, among others). BabelNet 4.0 cov-
ers 284 languages with almost 16 million entries,
called Babel synsets. Each entry represents a
given meaning and includes a set of synonyms
(synset) in different languages. Conveniently, it
provides inter-resource mappings in multiple lan-
guages, which enables us to translate words and
senses between several languages.

We query BabelNet with each source word and
take the intersection of the alignment-inferred tar-
get words and the BabelNet-inferred target words.
Crucially, we group the remaining target words ac-
cording to the BabelNet sense clusters. Finally, we
combine those clusters that share at least one com-
mon target word. Table 2 shows an example.

1We use the following corpora: Books v1, EU Book-
shop Corpus v2, Europarl v7 (Koehn, 2005), MultiUN v1
(Eisele and Chen, 2010), News-Commentary v11, OpenSub-
titles v2018 (Lison and Tiedemann, 2016), SETIMES v2 (Ty-
ers and Alperen, 2010), Tatoeba v2, TED2013 v1.1 (Cettolo
et al., 2013).

https://github.com/Helsinki-NLP/MuCoW
https://github.com/Helsinki-NLP/MuCoW
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Figure 1: Precision (dashed) and recall (solid lines) val-
ues for different sense embeddings and thresholds.

2.3 Step 2b: Refine sense clusters with sense
embeddings

It is known that lexical resources such as Babel-
Net tend to suffer from overly fine granularity of
their sense inventory (Navigli, 2006; Palmer et al.,
2007). We therefore introduce an additional merg-
ing step: i) we associate each Babel synset with an
embedding, ii) compute pairwise cosine similari-
ties between synsets, iii) and merge them if their
embedding similarity is higher than a threshold γ.

Choosing a good Babel synset embedding and
an optimal threshold is a difficult task. We eval-
uated three Babel synset vector representations,
using the existing German→English ContraWSD
test suite as gold standard:

Nasari (Camacho-Collados et al., 2016) is a vec-
tor representation built by combining the
knowledge from Wikipedia and WordNet
with word embeddings.

SW2V (Mancini et al., 2017) is a neural model
that learns word and synset embeddings in
a shared vector space exploiting a shallow
graph-based disambiguation algorithm.

FastText-Centroid (FT-C): We also include a
synset embedding representation by look-
ing up the FastText word embeddings (Bo-
janowski et al., 2017) for all words in a synset
and computing their centroid.

Note that Nasari and SW2V embeddings
are tied to the (language-independent) BabelNet
synset IDs and can therefore be applied in a
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Figure 2: F1-scores (dashed) and F0.5-scores (solid
lines) for different sense embeddings and thresholds.

straightforward way to non-English target lan-
guages.2 As a baseline, we use the synset clusters
obtained from Section 2.2.

We compute precision and recall scores for all
three embedding methods with γ threshold values
ranging from 0.15 to 0.65 with a 0.05 step size.
An inferred synset was considered correct if all
its lexicalisations (if present) occurred in a single
gold synset, and no lexicalisations of a gold synset
were found in a different inferred synset. In other
words, an inferred synset was considered wrong
if it had been falsely merged or if it had falsely
been kept separate from another one. Figure 1
shows the precision and recall curves. All refine-
ment methods improve precision, whereas recall
only decreases at low thresholds. Figure 2 shows
F1 and F0.5 scores; we deem the latter more sensi-
ble in the present setting as high precision is more
important to us than high recall. The FT-C and
SW2V methods perform best at lower thresholds,
while Nasari works best at high thresholds.

An additional manual evaluation was carried
out with 50 random German words3 and four set-
tings that obtained high F1 or F0.5 scores. As
shown in Table 3, the SW2V method with a thresh-
old set at 0.3 obtained the highest precision value
by a large margin and therefore also the best F0.5

score. We chose this setting for all languages.
Source words that end up with a single synset as a
result of this step are discarded.

2For both embeddings, we use the pre-trained 300-
dimensional Babel synset representation trained on the
UMBC corpus.

3All words were associated with at least two synsets by
the baseline model, but only 18 out of them (36%) contained
two or more synsets according to a human annotator.
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Method Threshold Prec. Rec. F1 F0.5

Baseline 33% 48% 39% 35%
Nasari 0.55 54% 31% 39% 47%
SW2V 0.3 67% 28% 40% 52%

0.5 46% 42% 44% 45%
FT-C 0.35 54% 27% 36% 45%

0.45 50% 35% 41% 46%

Table 3: Manual evaluation results for selected param-
eter settings.

2.4 Step 3: Selecting sentences and creating
contrast pairs (Scoring variant only)

We use the synset lexicon built in the previous step
to guide the creation of contrast pairs. We extract
sentence pairs from the parallel corpora and group
them by source word and target word sense. We
restrict the extraction process to sentences longer
than 10 words and skip sentences in which the
source or target item occurs more than once. From
this set, we randomly choose 20 instances of each
sense from various corpus sources.

For each extracted sentence pair, a contrastive
sentence pair is produced by keeping the source
sentence identical, but replacing the target word in
the target sentence by another lexicalisation from
a different synset.

While this entirely automatic setup could give
rise to inconsistencies which would require man-
ual correction as in Rios Gonzales et al. (2017),
we argue that BabelNet constraints already pro-
vide some filtering (for example mostly keeping
number constant). Given our aim to scale up to a
large number of languages, the need for human in-
tervention would make the creation of a large scale
multilingual benchmark difficult and costly.

2.5 Statistics

We apply the three steps presented above to all to-
English translation directions that were part of the
Conference of Machine Translation (WMT) news
translation task over the last years. Table 4 sum-
marizes the statistics of these resources. The av-
erage number of senses per source word ranges
between 2.0 and 2.11 (2.36–2.4 for ContraWSD).
The lexicons for the Baltic languages are small due
to the small size of available parallel corpora.

3 Measuring machine translation WSD
capability with MUCOW

The aim of MUCOW is to examine the ability of
current machine translation systems to choose the

Corpus Lexicon Test suite

Language Sentence Source Target Target Sentence
pair pairs words synsets words pairs

CS–EN 44M 107 223 412 11470
DE–EN 35M 259 548 1086 33077
ES–EN 81M 515 1090 2398 72295
ET–EN 14M 34 68 89 2500
FI–EN 31M 176 367 610 16326
FR–EN 68M 456 963 2152 64369
LT–EN 2.5M 10 20 31 922
LV–EN 1.6M 5 10 12 318
RO–EN 52M 129 263 496 14258
RU–EN 38M 113 234 396 12378
TR–EN 46M 107 220 420 11795

Table 4: Sizes of the parallel corpora used for lexicon
extraction, the inferred and filtered ambiguity lexicons,
and the resulting test suite corpora.

Lg. pair Model ContraWSD MUCOW BLEU

DE–EN LSTM 77.55 60.50 30.3
Transformer 86.42 66.98 33.3
Nematus 86.72 68.80 35.1

CS–EN Nematus 78.77 30.9
RO–EN Nematus 62.86 33.3
RU–EN Nematus 72.36 30.8
TR–EN Nematus 62.69 20.1

Table 5: Comparison of MUCOW and ContraWSD ac-
curacy scores and BLEU scores computed on the WMT
news2017 test set (news2016 for RO–EN).

correct target sense of ambiguous source words.
Here, we give some baseline results obtained with
supervised NMT systems. Following Rios Gon-
zales et al. (2017), we score both reference and
contrastive translations with the same NMT sys-
tem. A correct decision is detected when the score
of the reference is higher than the scores from all
contrastive translations. The final test suite score
corresponds to the accuracy over all decisions.

Three models are examined for
German→English: a 6-layer bi-LSTM model and
a Transformer model4 trained on the provided
training data from WMT17 plus backtranslations
from Sennrich et al. (2016b), and the University
of Edinburgh’s WMT17 submission, a deep
LSTM model with additional synthetic data
trained with Nematus (Sennrich et al., 2017b).5

The upper half of Table 5 reports ContraWSD

4Sentences are encoded using Byte-Pair Encoding (Sen-
nrich et al., 2016c), with 32,000 merge operations for each
language. For the Bi-LSTM model we use embedding layers
and hidden units of 512 dimensions. For the Transformer, we
use the base version (Vaswani et al., 2017).

5data.statmt.org/wmt17_systems/

data.statmt.org/wmt17_systems/
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and MUCOW accuracy scores as well as BLEU
scores computed on the WMT17 test set. The
ranking of the three models is consistent across
the three tasks. Interestingly, the Transformer
model (trained on far less data than the Nematus
model) scores much better on the two test suites
than the BLEU score would suggest, confirming
the findings by Tang et al. (2018).

The University of Edinburgh also makes avail-
able their NMT models for other WMT16 and
WMT17 language pairs.6 MUCOW accuracy
scores of these models are shown in the lower half
of Table 5 together with the WMT test set BLEU
scores reported by the authors (Sennrich et al.,
2016a, 2017a).

Even though we only assess the confidence of
an NMT system in detecting the right sense of a
single word within a sentence, the results show
that WSD is still an issue in MT – even in state-
of-the-art-systems – that requires further study.

4 Translation test suites for WMT 2019

As mentioned in Section 1, the WMT test suite
call requires a different setup that does not rely on
scoring capabilities of the participating systems.
Therefore, we modified step (3) of our method
to conform with these requirements, analogously
to the modification of ContraWSD by Rios et al.
(2018). As a beneficial side effect, we were also
able to include language pairs with non-English
target languages.7 The changes to step (3) are the
following:

• The sentence pairs were filtered more aggres-
sively. We only kept sentence pairs in which
both the source and target words were tagged
as NOUNs by the respective UDPipe part-of-
speech tagger (Straka and Straková, 2017).

• Source sentences stemming from one of
the WMT training corpora were excluded.
We only used sentences from the following
OPUS corpora: Books, Tatoeba, TED2013,
EUBookstore and OpenSubtitles2018.

• We only kept synsets for which we found at
least 4 example sentences, and we retained at
most 10 example sentences per sense.

6data.statmt.org/wmt{16,17}_systems/
7We limited our work to from-English language pairs

due to time restrictions, but the method would be generic
enough to also work for French–German, German–French,
and German–Czech.

Language Source Target In-dom Out-dom Sen-
pair words synsets synsets synsets tences

DE–EN 217 461 329 132 4268
FI–EN 109 231 91 140 2117
LT–EN 6 12 5 7 99
RU–EN 67 138 59 79 1223

EN–CS 98 200 29 171 1843
EN–DE 176 362 220 142 3337
EN–FI 48 97 22 75 830
EN–LT 4 8 3 5 69
EN–RU 97 199 40 163 1814

Table 6: Sizes of the MUCOW data sets compiled for
WMT19.

• If as a result of the above filters, all but one
senses of a source word were removed, we
removed the source word entirely.

• We distinguished between in-domain and
out-of-domain synsets. A synset is consid-
ered out-of-domain if more than half of its
example sentences come from OpenSubti-
tles2018. The intuition behind this distinc-
tion is that most participating systems will be
tuned towards the news domain and thus will
not handle features of colloquial speech reli-
ably.

• We disregarded the automatically generated
contrastive sentences.

We built the translation variant of MUCOW for
9 translation directions of the news task. Table 6
shows some statistics.

The resulting test suites contain sentences of the
source language together with the following meta-
data: the ambiguous source word, the list of cor-
rect target words (the correct target synset), the
list of incorrect target words (the incorrect target
synset), and information about the domain of the
synsets. Table 7 shows an example. The source
language sentences were sent (without metadata)
to the WMT participants as part of the test set, and
we received the translations for evaluation.

5 WMT 2019 test suite results

In order to assess the translation output of the
WMT participants, we check whether any of the
correct or incorrect target words listed in the meta-
data file can be identified in the tokenized and low-
ercased translation output.

Although the sentences have been selected to
contain the uninflected base form both in the

data.statmt.org/wmt{16,17}_systems/


475

Example containing ambiguous word Correct translations Incorrect translations

It occurred to me that my watch might be broken. Armbanduhr, Uhr Wache
I hope you didn’t get distracted during your watch. Wache Armbanduhr, Uhr

In winter, the dry leaves fly around in the air. Luft, Luftraum, Aura Miene, Ausdruck
He remained silent for a moment, with a thoughtful but contented air. Miene, Ausdruck Luft, Luftraum, Aura

Harry had to back out of the competition because of a broken arm. Arm Waffe
So does the cop who left his side arm in a subway bathroom. Waffe Arm

Drain the pasta and return the pasta to the pot. Blumentopf, Kochtopf,
Topf, Nachttopf

Marihuana, Gras

Where did those idiots get all of this pot anyhow? Marihuana, Gras Blumentopf, Kochtopf,
Topf, Nachttopf

Table 7: Examples of test suite instances of the English–German WMT test suite. The ambiguous (English) source
word is highlighted in bold, and correct and incorrect (German) translations – as inferred by the MuCoW procedure
– are given. Senses classified as out-of-domain are shown in italics. Note that some example sentences may further
restrict the set of correct translations.

Language Average coverage Average coverage
pair (tokenized) (with lemma backoff)

DE–EN 83.06% 84.51%
FI–EN 81.52% 82.14%
LT–EN 92.75% 93.48%
RU–EN 82.23% 82.85%

EN–CS 61.77% 74.87%
EN–DE 66.52% 69.26%
EN–FI 52.27% 67.55%
EN–LT 64.86% 79.71%
EN–RU 58.88% 73.29%

Table 8: Average coverage of target words among
WMT19 primary submissions.

source and target languages, we cannot assume
that all translation systems will output base forms.
Hence, if neither correct nor incorrect target words
can be identified, we lemmatize the translation
output and search the target words again in the
lemmatized version.8 Depending on the target lan-
guage, lemmatization allowed us to substantially
increase the coverage (see Table 8).

We report precision, recall and F1-score for in-
domain senses and out-of-domain senses, except
for Lithuanian, where not enough examples are
available. Precision and recall are computed as
follows:9

Precision =
# examples with correct target words

# examples with either correct
or incorrect target words

8We used the Turku neural lemmatizer with pretrained
models (Kanerva et al., 2019). For Lithuanian, as no pre-
trained model was available, we trained one using the respec-
tive available data from the Universal Dependencies project.

9Examples that contained both correct and incorrect target
words were counted as incorrect.

Recall =
# examples with correct target words

# total examples

For each language pair, EN→CS, EN↔DE,
EN↔FI, EN↔RU and EN↔LT, results are shown
respectively in Tables 9 to 13. Overall, we observe
that systems perform quite well in WSD, achiev-
ing high precision overall. For some translation
directions, there is a big gap between in-domain
and out-of-domain synsets, showing clearly that
systems tuned towards news translation struggle
to identify the right sense when tested on a differ-
ent domain. At the same time, online systems are
more robust to domain mismatch, which is likely
due to their use of a much larger variety of training
data. Interestingly, the Czech–English task shows
opposite results, with online systems performing
better on in-domain synsets than research systems.

Interestingly enough, having English as source
side yields better overall precision comparing with
English as target side. One possible explanation
could be found in the difficulty to obtain better
encoder representations for morphologically rich
languages. Recall is better with English on the tar-
get side due to higher coverage (Table 8).

It would have been instructive to compare the
MUCOW results with automatic or manual evalu-
ation scores on the official WMT19 test set, but
unfortunately, such scores were not available in
time for all systems.

6 Conclusion

In this paper, we have presented MUCOW, an au-
tomatically built WSD test suite for machine trans-
lation that relies on large parallel corpora, the mul-
tilingual lexical resource BabelNet and language-
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independent synset embeddings. We used the pro-
posed benchmark to assess the WSD ability of
NMT systems following two evaluation protocols:
scoring both reference and contrastive translations
with pretrained NMT models, and as translation
test suite for the WMT19 news shared task.

We find that state-of-the-art and fine-tuned
NMT systems still present some drawbacks on
handling ambiguous words, especially when eval-
uated on out-of-domain data and when the encoder
has to deal with a morphologically rich language.
It will be particularly instructive to see how well
the WSD test suite results correlate with human
evaluation scores and with recently proposed eval-
uation metrics that are based on semantic repre-
sentations of the translations (Gupta et al., 2015;
Shimanaka et al., 2018).

As future work we plan to further extend the test
suite including more languages and parallel data,
and make use of the contrastive sentences as ad-
versarial examples during training.
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Ondřej Bojar, Stig-Arne Grönroos, Maarit Ko-
ponen, Tommi Nieminen, and François Yvon.
2018. The WMT’18 morpheval test suites for
English-Czech, English-German, English-Finnish
and Turkish-English. In Proceedings of the Third
Conference on Machine Translation: Shared Task
Papers, pages 546–560, Belgium, Brussels. Associ-
ation for Computational Linguistics.

Franck Burlot and François Yvon. 2017. Evaluating
the morphological competence of machine transla-
tion systems. In Proceedings of the Second Confer-
ence on Machine Translation, pages 43–55. Associ-
ation for Computational Linguistics.
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In-domain synsets Out-of-domain synsets All synsets

Submission Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

CUNI-Trf-T2T-2018 96.76 84.75 90.36 79.85 71.71 75.56 82.77 74.01 78.15
CUNI-Trf-T2T-2019 95.60 85.66 90.36 79.58 71.57 75.36 82.38 74.04 77.99
CUNI-DocTrf-T2T 95.60 85.66 90.36 79.58 71.57 75.36 82.38 74.04 77.99
CUNI-DocTrf-Marian 96.00 85.71 90.57 72.45 68.51 70.42 76.61 71.69 74.07
uedin 96.30 83.27 89.31 72.96 67.85 70.31 77.02 70.70 73.72
online-Y 97.57 84.86 90.77 61.57 63.73 62.63 67.93 68.03 67.98
parfda 95.02 75.27 84.00 68.16 58.44 62.93 72.85 61.57 66.74
online-X 95.70 87.81 91.59 57.35 58.89 58.11 64.54 64.83 64.68
online-A 95.88 83.21 89.10 58.36 58.25 58.30 65.17 63.33 64.24
online-B 97.93 83.16 89.94 57.02 57.24 57.13 64.46 62.63 63.53

Table 9: Results for English–Czech.

In-domain synsets Out-of-domain synsets All synsets

Submission Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

German–English:
Facebook FAIR 80.78 85.80 83.21 52.77 72.56 61.10 73.55 82.99 77.99
online-B 77.88 83.81 80.73 45.50 66.51 54.04 69.58 80.31 74.56
online-G 77.62 83.76 80.57 45.62 65.43 53.76 69.48 80.02 74.38
online-Y 76.82 84.51 80.48 41.93 61.71 49.93 68.10 79.97 73.56
dfki-nmt 77.64 83.35 80.39 41.08 63.02 49.74 68.31 79.42 73.45
RWTH Aachen 77.62 84.30 80.83 36.96 60.92 46.01 67.30 80.02 73.11
MSRA.MADL 77.95 84.36 81.03 36.73 56.26 44.44 67.78 79.08 73.00
UCAM 76.79 84.04 80.25 35.38 55.71 43.28 66.54 78.77 72.14
MLLP-UPV 77.26 83.24 80.14 35.85 54.92 43.38 67.02 77.93 72.06
online-A 75.77 83.08 79.26 37.47 63.15 47.04 65.87 79.40 72.00
NEU 75.26 83.50 79.16 32.49 55.93 41.11 64.49 78.58 70.84
JHU 74.94 83.68 79.07 31.56 51.38 39.10 64.31 77.79 70.41
uedin 74.26 81.62 77.77 32.21 45.89 37.85 64.28 74.70 69.10
PROMT NMT 70.05 81.34 75.27 32.02 43.94 37.05 61.20 73.70 66.87
online-X 67.04 80.29 73.07 31.98 62.47 42.31 57.77 77.07 66.04
TartuNLP-c 71.11 77.22 74.04 29.29 46.31 35.88 60.68 71.48 65.64

English–German:
Facebook FAIR 83.43 76.99 80.08 56.29 55.10 55.69 74.48 70.05 72.19
Microsoft-sentence-level 83.18 77.14 80.05 52.81 51.92 52.36 73.31 69.27 71.23
online-B 83.37 74.78 78.85 51.92 50.66 51.28 73.04 67.30 70.05
Microsoft-document-level 81.76 75.68 78.60 47.21 48.11 47.65 70.54 67.29 68.88
online-Y 81.29 75.30 78.18 46.37 48.21 47.27 69.87 67.12 68.47
online-G 81.44 73.76 77.41 46.61 45.44 46.02 70.21 65.09 67.55
dfki-nmt 80.70 74.37 77.41 44.95 42.04 43.44 69.54 64.39 66.87
MLLP-UPV 79.90 73.60 76.62 44.03 39.63 41.72 68.90 63.01 65.82
lmu-ctx-tf-single 79.55 72.51 75.86 43.93 41.99 42.94 68.23 63.13 65.58
NEU 78.39 73.50 75.86 41.91 41.53 41.72 66.83 63.75 65.25
eTranslation 80.44 71.00 75.43 43.47 40.48 41.92 68.69 61.65 64.98
MSRA.MADL 80.53 71.97 76.01 41.79 35.63 38.46 68.88 60.67 64.51
UCAM 78.21 72.70 75.35 40.41 37.28 38.78 66.61 61.77 64.10
online-A 79.21 72.05 75.46 40.48 36.44 38.35 67.37 61.09 64.07
Helsinki-NLP 78.34 72.52 75.32 39.06 36.65 37.82 66.24 61.57 63.82
PROMT NMT 78.08 72.40 75.13 36.99 34.16 35.52 65.61 60.77 63.10
JHU 77.80 71.48 74.50 37.77 29.35 33.04 66.47 58.08 61.99
UdS-DFKI 78.27 70.54 74.21 35.68 30.16 32.69 65.72 58.10 61.68
online-X 71.01 72.71 71.85 34.36 40.47 37.17 59.07 63.16 61.05
TartuNLP-c 77.32 66.29 71.38 33.02 26.13 29.17 64.34 53.85 58.63
en de task 64.54 23.14 34.06 38.41 5.64 9.84 59.43 16.62 25.97

Table 10: Results for German–English and English–German.
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In-domain synsets Out-of-domain synsets All synsets

Submission Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Finnish–English:
online-G 78.00 84.17 80.97 71.47 81.65 76.22 74.14 82.71 78.19
online-Y 79.30 82.89 81.05 63.40 81.73 71.41 69.78 82.25 75.51
GTCOM-Primary 81.87 84.81 83.31 57.28 77.64 65.92 67.36 81.05 73.57
MSRA.NAO 82.21 83.79 82.99 57.26 77.86 65.99 67.42 80.70 73.46
USYD 80.05 83.43 81.71 56.18 71.50 62.92 66.20 77.09 71.23
parfda 77.89 78.66 78.27 55.16 66.01 60.10 64.71 71.86 68.10
online-B 77.55 82.01 79.72 52.10 66.97 58.61 62.88 74.07 68.02
online-A 76.16 78.70 77.41 52.85 69.02 59.87 62.46 73.57 67.56
Helsinki-NLP 76.65 78.53 77.58 48.52 62.86 54.77 60.37 70.37 64.99
online-X 68.92 76.68 72.59 51.39 67.75 58.45 58.63 71.81 64.56
TartuNLP-c 75.35 79.77 77.49 45.32 53.13 48.92 58.70 65.68 61.99
apertium-unconstrained 63.97 67.15 65.52 38.46 52.86 44.53 48.96 59.69 53.80

English–Finnish:
online-G 93.71 75.25 83.47 80.62 68.54 74.09 84.01 70.36 76.58
online-Y 94.74 72.00 81.82 75.06 66.08 70.28 80.03 67.75 73.38
MSRA.NAO 95.62 76.12 84.76 68.47 66.60 67.52 75.44 69.42 72.31
GTCOM-Primary 94.81 73.00 82.49 66.24 67.97 67.09 73.25 69.49 71.32
online-X 84.14 65.95 73.94 62.22 61.95 62.08 67.56 63.11 65.26
NICT 90.32 72.54 80.46 57.62 59.35 58.48 66.06 63.42 64.71
online-B 88.75 74.74 81.14 59.02 56.38 57.67 67.12 61.85 64.38
Aalto-ORMFC 88.81 66.15 75.82 64.94 54.79 59.44 71.17 58.04 63.93
Helsinki-NLP 84.56 61.50 71.21 59.65 52.51 55.85 65.93 55.11 60.03
online-A 86.75 77.42 81.82 52.31 46.79 49.39 62.59 55.95 59.08
TartuNLP-c 93.29 70.20 80.12 53.83 43.49 48.11 65.24 51.61 57.63
Helsinki-NLP-rule-based 71.60 75.62 73.56 48.88 47.36 48.11 55.59 55.21 55.40
apertium-unconstrained 81.71 34.72 48.73 45.61 20.88 28.65 55.16 24.75 34.17

Table 11: Results for Finnish–English and English–Finnish.

In-domain synsets Out-of-domain synsets All synsets

Submission Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Russian–English:
online-G 92.15 89.63 90.87 66.95 80.87 73.26 78.57 85.38 81.84
Facebook FAIR 89.98 89.80 89.89 56.67 77.30 65.40 72.12 84.07 77.64
online-B 89.55 87.58 88.55 56.41 74.07 64.04 71.81 81.34 76.28
online-A 87.93 87.58 87.76 50.97 73.16 60.08 68.09 81.15 74.05
online-Y 88.68 87.07 87.87 50.90 70.75 59.21 68.52 79.78 73.72
MSRA.SCA 86.22 85.33 85.77 50.27 72.45 59.35 66.76 79.57 72.60
NEU 87.19 86.48 86.83 47.89 72.15 57.57 65.97 80.23 72.40
afrl-syscomb19 86.85 85.42 86.13 44.40 65.41 52.90 64.26 76.78 69.96
eTranslation 87.71 84.15 85.89 43.82 62.73 51.60 64.41 74.91 69.27
rerank-re 87.71 84.15 85.89 43.23 61.99 50.94 64.14 74.62 68.99
online-X 82.39 87.90 85.06 35.99 65.06 46.35 57.66 78.71 66.56
TartuNLP-u 84.11 87.50 85.77 37.35 53.09 43.85 60.38 72.71 65.97
afrl-ewc 87.04 82.24 84.58 33.75 45.63 38.80 59.92 66.86 63.20
NICT 78.62 69.11 73.56 30.17 24.42 26.99 56.29 47.59 51.58

English–Russian:
online-G 95.56 89.58 92.47 75.11 74.85 74.98 80.05 78.58 79.31
Facebook FAIR 95.49 88.28 91.75 67.68 71.54 69.56 74.40 76.01 75.20
online-B 95.08 91.10 93.05 62.12 69.05 65.40 70.31 75.16 72.66
USTC-MCC 95.30 90.08 92.62 59.35 71.08 64.69 68.02 76.54 72.03
NEU 94.43 89.21 91.75 59.31 70.98 64.62 67.74 76.18 71.71
online-Y 95.37 91.38 93.33 57.47 69.02 62.72 66.80 75.51 70.89
online-A 91.14 89.40 90.26 55.29 68.28 61.10 64.00 74.35 68.79
PROMT NMT 93.48 91.49 92.47 56.78 63.76 60.07 66.18 71.61 68.79
online-X 93.65 89.92 91.75 52.53 67.35 59.02 62.53 74.12 67.83
TartuNLP-u 90.91 84.01 87.32 51.44 56.17 53.70 61.41 64.11 62.73
rerank-er 94.98 78.91 86.20 55.54 33.78 42.01 68.17 45.36 54.47
NICT 89.19 25.52 39.68 46.99 5.88 10.46 63.90 10.33 17.78

Table 12: Results for Russian–English and English–Russian.
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All synsets All synsets

Submission Prec. Recall F1 Submission Prec. Recall F1

Lithuanian–English: English–Lithuanian:
tilde-c-nmt 80.41 97.50 88.14 MSRA.MASS 78.69 85.71 82.05
NEU 79.59 98.73 88.14 online-B 79.31 80.70 80.00
tilde-nc-nmt 79.38 97.47 87.50 tilde-nc-nmt 80.70 79.31 80.00
GTCOM-Primary 77.32 97.40 86.21 tilde-c-nmt 81.82 76.27 78.95
online-B 75.51 98.67 85.55 MSRA.MASS 78.95 78.95 78.95
MSRA.MASS 73.47 98.63 84.21 online-A 83.02 73.33 77.88
online-A 73.96 95.95 83.53 GTCOM-Primary 78.57 77.19 77.88
online-G 72.92 95.89 82.84 NEU 76.79 76.79 76.79
online-X 60.22 90.32 72.26 eTranslation 79.25 72.41 75.68
JUMT 71.62 67.95 69.74 TartuNLP-c 81.25 65.00 72.22
TartuNLP-c 64.86 65.75 65.31 online-X 70.37 71.70 71.03

online-G 71.15 68.52 69.81

Table 13: Results for Lithuanian–English and English–Lithuanian.
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