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Abstract

This paper describes the DFKI-NMT submis-
sion to the WMT19 News translation task.
We participated in both English-to-German
and German-to-English directions. We trained
standard Transformer models and adopted
various techniques for effectively training
our models, including data selection, back-
translation, in-domain fine-tuning and model
ensemble.  We show that these training
techniques improved the performance of our
Transformer models up to 5 BLEU points. We
give a detailed analysis of the performance of
our system.

1 Introduction

This paper describes the DFKI-NMT submission
to the WMT19 News translation task. We partici-
pated in both English-to-German and German-to-
English directions. We trained Transformer mod-
els (Vaswani et al., 2017) using Sockeye! (Hieber
et al., 2017). Compared to RNN-based translation
models (Bahdanau et al., 2014), Transformer mod-
els can be trained very fast due to parallelizable
self-attention networks. We applied several very
useful techniques for effectively training our mod-
els.

Data Selection The parallel training data provided
for German-English is quite large (38M sentence
pairs). Most of the parallel data is crawled from
the Internet and is not in News domain. Out-of-
domain training data can hurt the translation per-
formance on News test sets (Wang et al., 2017) and
also significantly increase training time. There-
fore, we trained neural language models on a large
monolingual News corpus to perform data selec-
tion (Schamper et al., 2018).

Back-translation Large monolingual data in the
News domain is provided for both German and

"https://github.com/awslabs/sockeye
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English, which can be back-translated as addi-
tional parallel training data for our system (Sen-
nrich et al., 2016a; Fadaee and Monz, 2018). The
back-translated parallel data is in the News do-
main, which is a big advantage compared to out-
of-domain parallel training data provided for the
News task.

In-domain Fine-tuning The Transformer models
were finally fine-tuned using the small in-domain
parallel data provided for the News task (Luong
and Manning, 2015; Schamper et al., 2018). Note
that the large back-translated parallel data is also
in-domain, but it has relatively low quality due to
translation errors.

Model Ensemble We trained two Transformer
models with different sizes, Transformer-base and
Transformer-big. Our final submission is an en-
semble of both models (Schamper et al., 2018).
The ensemble of both models outperformed a sin-
gle base or big model most likely because the two
models can capture somewhat different features
for the translation task.

2 System Details

2.1 Data Selection

The parallel data provided for the German-to-
English and English-to-German tasks includes Eu-
roparl v9, ParaCrawl v3, Common Crawl cor-
pus, News Commentary v14, Wiki Titles vl and
Document-split Rapid corpus. We also used old
test sets (newstest2008 to newstest2017) for train-
ing our systems. We consider News Commen-
tary v14 and old test sets as in-domain data and
the rest as out-of-domain data. Compared to the
in-domain data (356k sentence pairs), the size of
the out-of-domain data (38M sentence pairs) is
quite large, which makes the training process rel-
atively slow and may also hurt the translation per-
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(a)Transformer translation model

(b)Transformer language model

Figure 1: Structures of Transformer translation models and Transformer language models used in our experiments.

formance due to domain dismatch. Therefore, we
performed data selection on out-of-domain data.

Inspired by Schamper et al. (2018)’s work
which used KenLM (Heafield, 2011) for data se-
lection, we trained two neural language models
based on self-attention networks using the 2018
part of the large monolingual News crawl corpus
for English and German, respectively. Because
these neural language models are trained on the
News domain, we can use them to score out-of-
domain data. Sentences with higher probabilities
are more likely to be in News domain. Equation 1
is used to score each sentence pair in the out-of-
domain corpus. In Equation 1, P; is the language
model probability of the source sentence; N is
the length of the source sentence; F; is the lan-
guage model probability of the target sentence; IV,
is the length of the target sentence. We selected
the top 15M scored sentence pairs from out-of-
domain data for training our systems.

log Ps  log P
Ns Nt

The neural language models trained for data

(1)
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selection in our experiments are based on self-
attention networks which can be trained very fast.
Figure 1 (a) shows the structure of the standard
Transformer translation model (Vaswani et al.,
2017) and we removed the encoder and the at-
tention layer in the decoder from the Transformer
translation model to create our Transformer lan-
guage model as shown in Figure 1 (b). For train-
ing efficiency, we used byte pair encoding (Sen-
nrich et al., 2016b) to learn a vocabulary of 50k
for English and German respectively.

2.2 Back-translation

We back-translated the 2018 part of the large
monolingual in-domain News crawl data as ad-
ditional training data for our translation systems.
Fadaee and Monz (2018) showed that it is more
beneficial to back-translate sentences that contain
difficult words. In our experiments, we consider
words which occur less than 1000 times in the
bilingual training data as difficult words. Then
we randomly selected 10M sentences which con-
tain difficult words for back-translation. The mod-



in-domain  out-of-domain  back-translated

356k 15M 10M
Stage 1 v v
Stage2 V' v v
Stage3 v

Table 1: Training data used in different training stages.

en-de de-en
base big | base big
Stage1 |73 7.6 | 6.6 6.8
Stage2 [ 03 04 |08 14
Stage3 | 18.5 185 | 124 124

Table 2: Training epochs for different training stages.

els used for back-translating monolingual data
are baseline Transformers (Vaswani et al., 2017)
trained on the bilingual data after data selection
as described before. During back-translation, we
used greedy search instead of beam search for ef-
ficiency.

2.3 Model and Training

We trained two Transformer models for each
translation task as Transformer-base and
Transformer-big. The settings of Transformer-
base is the same as the baseline Transformer in
Vaswani et al. (2017)’s work. For Transformer-
big, we changed word embedding size into 1024
and kept other parameters unchanged. A joint
vocabulary of 50k for German and English is
learned by byte pair encoding (BPE) (Sennrich
et al., 2016b).> We set dropout to 0.1 for both
Transformer-base and Transformer-big. We used
adam (Kingma and Ba, 2014) for optimization.
We used newstest2018 as the validation set for
model training. The training processes for both
Transformer-base and Transformer-big consist of
three stages.

Stage 1 We first trained the Transformers using
bilingual training data, including all in-domain
data and selected out-of-domain data as described
in section 2.1. Note that the back-translated data
was not used in this stage. Each training batch
contains 8192 words and the validation frequency
is 2000 batches. We set the initial learning rate to
be 2.00e-04. We reduced the learning rate by a fac-
tor of 0.70 whenever the validation score does not

2 For preprocessing, we used Moses (Koehn et al., 2007)
scripts normalize-punctuation.perl, tokenizer.perl, lower-
case.perl. We trained a recaser using train-recaser.perl to
recase translations.
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en-de de-en
base  big base  big
Stage 1 4424 45.03 | 45.34 45.75
Stage 2 46.42 47.10 | 47.84 48.65
Stage 3 47.80 48.83 | 48.65 49.33
Ensemble 49.45 49.75
Table 3: Case-insensitive BLEU scores on new-
stest2018. “Ensemble” means ensemble both

Transformer-base and Transformer-big after Stage 3.

improve 8 times. We stopped the training process
after 5 times of learning rate reduction.

Stage 2 We used all bilingual training data used
in the first training stage together with the back-
translated monolingual data to continue training
the models which had converged in the first train-
ing stage. We kept the batch size to be 8192
words and changed the validation frequency to
1000 batches. We set the initial learning rate to
be 1.00e-05 and stopped the training process when
the validation score does not improve 8 times.

Stage 3 For fine-tuning, we used the small paral-
lel in-domain data as described in section 2.1 to
continue training the models which had converged
in the second training stage. We changed batch
size to be 1024 words and validation frequency to
be 100 batches. We set the initial learning rate to
be 1.00e-06 and stopped the training process when
the validation score does not improve 8 times.

Table 1 shows training data used in different
training stages. The models trained in the first
training stage were used to back-translate mono-
lingual data as described in section 2.2. In Stage 2,
we continued training the models which had con-
verged in Stage 1 instead of training models with
random initialization in order to reduce the train-
ing time of Stage 2.

2.4 Results and Analysis

Table 2 shows the numbers of training epochs
for different training stages and Table 3 shows
the performance of our systems after different
training stages. As we can see, back-translation
(Stage 2) and in-domain fine-tuning (Stage 3) both
improved the translation quality on a significant
level. An ensemble of Stage 3 Transformer-base
and Transformer-big achieved further improve-
ments. We also tried to ensemble different check-
points of Transformer-big, but achieved little im-
provement, likely because different checkpoints of



Example 1

Src wei@ @ dez@ @ aun@ @ projekt ist element@ @ ar

Ref past@ @ ure fence project is fundamental

Ours electric sound project is elementary

Example 2

Src jetzt nimmt sich das weille haus von trump die freiheits@ @ statue vor
Ref now trump &apos;s white house is targeting the statue of liberty

Ours now trump &apos;s white house takes the statue of liberty

Table 4: Translation examples. “@ @ means segmented by byte pair encoding.

the same model are very similar.

In addition, we give some translation exam-
ples in Table 4 to analyze when and why our
translation system makes mistakes. The trans-
lations in Table 4 are produced by our best
system, i.e., ensemble of Transformer-base and
Transformer-big after training stage 3. In Exam-
ple 1, “wei@@ dez@@ aun@ @ projekt” (pas-
ture fence project) is wrongly translated into “elec-
tric sound project”, likely because “weidezaun-
projekt” is a unknown word and does not oc-
cur in the training data. Although BPE can
help to relieve data sparsity by using smaller
and more frequent sub-word units, the automatic
BPE segmentation “wei@@ dez@@ aun@@
projekt” is a bad segmentation with linguistically
meaningless sub-word pieces. A better segmen-
tation “weide@ @(pasture) zaun@ @(fence) pro-
jekt” may help to reduce data sparsity and get bet-
ter translation. Example 2 does not contain rare
words, but “nimmt vor” is still wrongly translated
into “takes”. This is likely because “nimmt vor”
has different translations in the training data and
the correct translation here “targeting” is relatively
uncommon. We find many translation mistakes of
our system are caused by rare words or uncom-
mon usages of words as shown in Table 4, which
we will work on in the future.

3 Conclusion

This paper describes the DFKI-NMT submission
to the WMT19 English-to-German and German-
to-English News translation tasks. We trained
standard Transformer models and adopted vari-
ous techniques for effectively training our mod-
els, including data selection, back-translation, in-
domain fine-tuning and model ensemble. We show
that effective training techniques can improve the
performance of standard Transformer models up
to 5 BLEU points.
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