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Abstract

Two techniques provide the fabric of the Cam-
bridge University Engineering Department’s
(CUED) entry to the WMT19 evaluation cam-
paign: elastic weight consolidation (EWC)
and different forms of language modelling
(LMs). We report substantial gains by fine-
tuning very strong baselines on former WMT
test sets using a combination of checkpoint
averaging and EWC. A sentence-level Trans-
former LM and a document-level LM based on
a modified Transformer architecture yield fur-
ther gains. As in previous years, we also ex-
tract n-gram probabilities from SMT lattices
which can be seen as a source-conditioned n-
gram LM.

1 Introduction

Both fine-tuning and language modelling are tech-
niques widely used for NMT. Fine-tuning is of-
ten used to adapt a model to a new domain (Lu-
ong and Manning, 2015), while ensembling neu-
ral machine translation (NMT) with neural lan-
guage models (LMs) is an effective way to lever-
age monolingual data (Gulcehre et al., 2015, 2017;
Stahlberg et al., 2018a). Our submission to the
WMT19 news shared task relies on ideas from
these two lines of research, but applies and com-
bines them in novel ways. Our contributions are:

e Elastic weight consolidation (Kirkpatrick
et al., 2017, EWC) is a domain adaptation
technique that aims to avoid degradation in
performance on the original domain. We re-
port large gains from fine-tuning our mod-
els on former English-German WMT test
sets with EWC. We find that combining fine-
tuning with checkpoint averaging (Junczys-
Dowmunt et al., 2016b,a) yields further sig-
nificant gains. Fine-tuning is less effective
for German-English.
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e Inspired by the shallow fusion technique

by Gulcehre et al. (2015, 2017) we ensemble
our neural translation models with neural lan-
guage models. While this technique is effec-
tive for single models, the gains are diminish-
ing under NMT ensembles trained with large
amounts of back-translated sentences.

To incorporate document-level context in a
light-weight fashion, we propose a modifi-
cation to the Transformer (Vaswani et al.,
2017) that has separate attention layers for
inter- and intra-sentential context. We re-
port large perplexity reductions compared to
sentence-level LMs under the new architec-
ture. Our document-level LM yields small
BLEU gains on top of strong NMT ensem-
bles, and we hope to benefit even more from
it in document-level human evaluation.

Even though the performance gap between
NMT and traditional statistical machine
translation (SMT) is growing rapidly on the
task at hand, SMT can still improve very
strong NMT ensembles. To combine NMT
and SMT we follow Stahlberg et al. (2017a,
2018b) and build a specialized n-gram LM
for each sentence that computes the risk of
hypotheses relative to SMT lattices.

While data filtering was central in last year’s
evaluation (Koehn et al., 2018b; Junczys-
Dowmunt, 2018b), in our experiments this
year we found that a very simple filter-
ing approach based on a small number of
crude heuristics can perform as well as dual
conditional cross-entropy filtering (Junczys-
Dowmunt, 2018a,b).

We confirm the effectiveness of source-side
noise for scaling up back-translation as pro-
posed by Edunov et al. (2018).
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2 Document-level Language Modelling

MT systems usually translate sentences in isola-
tion. However, there is evidence that humans
also take context into account, and judge trans-
lations from humans with access to the full doc-
ument higher than the output of a state-of-the-art
sentence-level machine translation system (Ldubli
et al.,, 2018). Common examples of ambiguity
which can be resolved with cross-sentence con-
text are pronoun agreement or consistency in lex-
ical choice. This year’s WMT competition en-
couraged submissions of translation systems that
are sensitive to cross-sentence context. We ex-
plored the use of document-level language models
to enhance a sentence-level translation system. We
argue that this is a particularly light-weight way
of incorporating document-level context. First,
the LM can be trained independently on mono-
lingual target language documents, i.e. no parallel
or source language documents are needed. Sec-
ond, since our document-level decoder operates
on the n-best lists from a sentence-level trans-
lation system, existing translation infrastructure
does not have to be changed — we just add an-
other (document-level) decoding pass. On a prac-
tical note, this means that, by skipping the second
decoding pass, our system would work well even
for the translation of isolated sentences when no
document context is available.

Our document-level LMs are trained on the
concatenations of all sentences in target language
documents, separated by special sentence bound-
ary tokens. Training a standard Transformer
LM (Vaswani et al., 2017) on this data already
yields significant reductions in perplexity com-
pared to sentence-level LMs. However, the at-
tention layers have to capture two kinds of de-
pendencies — the long-range cross-sentence con-
text and the short-range context within the sen-
tence. Our modified Intra-Inter Transformer ar-
chitecture (Fig. 1) splits these two responsibili-
ties into two separate layers using masking. The
“Intra-Sentential Attention” layer only allows to
attend to the previous tokens in the current sen-
tence, i.e. the intra-sentential attention mask acti-
vates the tokens between the most recent sentence
boundary marker and the current symbol. The
“Inter-Sentential Attention” layer is restricted to
the tokens in all previous complete sentences, i.e.
the mask enables all tokens from the document
beginning to the most recent sentence boundary
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Figure 1: Our modified Intra-Inter Transformer archi-
tecture with two separate attention layers.

marker. As usual (Vaswani et al., 2017), during
training the attention masks are also designed to
prevent attending to future tokens. Fig. 2 shows
an example of the different masks. Note that as
illustrated in Fig. 1, both attention layers are part
of the same layer stack which allows a tight inte-
gration of both types of context. An implication
of this design is that they also use the same posi-
tional embedding — the positional encoding for the
first unmasked item for intra-sentential attention
may not be zero. For example, ‘Lonely’ has the
position 10 in Fig. 2 although it is the first word in
the current sentence.

We use our document-level LMs to rerank n-
best lists from a sentence-level translation sys-
tem. Our initial document is the first-best sentence
hypotheses. We greedily replace individual sen-
tences with lower-ranked hypotheses (according
to the translation score) to drive up a combination
of translation and document LM scores. We start
with the sentence with the minimum difference be-
tween the first- and second-best translation scores.



| Vinyl destination :

who is actually buying records ? < /s > Lonely , middle-aged men love ‘???’
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Figure 2: Intra-sentential and inter-sentential attention masks for an English example from news-test2017.
Document-level context helps to predict the next word (‘vinyl’).

We stop when the translation score difference to
the first-best translation exceeds a threshold. !

3 Experimental Setup

Our experimental setup is essentially the same
as last year (Stahlberg et al., 2018b): Our pre-
processing includes Moses tokenization, punctu-
ation normalization, truecasing, and joint sub-
word segmentation using byte pair encoding (Sen-
nrich et al., 2016¢) with 32K merge opera-
tions. We compute cased BLEU scores with
mteval-vl13a.pl that are directly compara-
ble with the official WMT scores.” Our mod-
els are trained with the TensorFlow (Abadi et al.,
2016) based Tensor2Tensor (Vaswani et al., 2018)
library and decoded with our SGNMT frame-
work (Stahlberg et al., 2017b, 2018c). We
delay SGD updates (Saunders et al., 2018) to
use larger training batch sizes than our tech-
nical infrastructure’ would normally allow with
vanilla SGD by using the MultistepAdam
optimizer in Tensor2Tensor. We use Trans-
former (Vaswani et al., 2017) models in two con-
figurations (Tab. 1). Preliminary experiments are
carried out with the ‘Base’ configuration while
we use the ‘Big’ models for our final system.
We use news—-test2017 as development set to
tune model weights and select checkpoints and
news—test2018 as test set.

3.1 ParaCrawl Corpus Filtering

Junczys-Dowmunt (2018a,b) reported large gains
from filtering the ParaCrawl corpus. This year,
the WMT organizers made version 3 of the
ParaCrawl corpus available. We compared two
different filtering approaches on the new data
set. First, we implemented dual cross-entropy
filtering (Junczys-Dowmunt, 2018a,b), a sophis-
ticated data selection criterion based on neural

"Tensor2Tensor implementation: https://github.
com/fstahlberg/ucam-scripts/blob/master/
t2t/t2t_refine_with_glue_lm.py

http://matrix.statmt.org/

3The Cambridge HPC service (http://www.hpc.

cam.ac.uk/) allows parallel training on up to four phys-
ical P100 GPUs.
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Base Big
T2T HParams set trans._base | trans._big
# physical GPUs 4 4
Batch size 4,192 2,048
SGD delay factor 2 4
# training iterations | 300K M
Beam size 4 8

Table 1: Transformer setups.

language model and neural machine translation
model scores in both translation directions. In ad-
dition, we used the “naive” filtering heuristics pro-
posed by Stahlberg et al. (2018b):

Language detection (Nakatani, 2010) in both
source and target language.

No words contain more than 40 characters.
Sentences must not contain HTML tags.
The minimum sentence length is 4 words.

The character ratio between source and target
must not exceed 1:3 or 3:1.

Source and target sentences must be equal af-
ter stripping out non-numerical characters.

e Sentences must end with punctuation marks.

Tab. 2 indicates that our systems benefit from
ParaCrawl even without filtering (rows 1 vs. 2).
Our best ‘Base’ model uses both dual and naive fil-
tering. However, the difference between filtering
techniques diminishes under stronger ‘Big’ mod-
els with back-translation (rows 6 and 7).

4 Results

4.1 Back-translation

Back-translation (Sennrich et al., 2016b) is a well-
established technique to use monolingual target
language data for NMT. The idea is to automat-
ically generate translations into the source lan-
guage with an inverse translation model, and
add these synthetic sentence pairs to the train-
ing data. A major limitation of vanilla back-
translation is that the amount of synthetic data


https://github.com/fstahlberg/ucam-scripts/blob/master/t2t/t2t_refine_with_glue_lm.py
https://github.com/fstahlberg/ucam-scripts/blob/master/t2t/t2t_refine_with_glue_lm.py
https://github.com/fstahlberg/ucam-scripts/blob/master/t2t/t2t_refine_with_glue_lm.py
http://matrix.statmt.org/
http://www.hpc.cam.ac.uk/
http://www.hpc.cam.ac.uk/

Model ParaCrawl Naive BLEU
filtering | testl5 testl6 testl7 testl8
1 | Base No 29.3 34.1 27.8 41.9
2 | Base Full 30.0 353 28.2 43.1
3 | Base Full v 30.3 35.6 28.6 43.5
4 | Base Dual x-ent filtering 30.2 35.5 28.7 43.6
5 | Base Dual x-ent filtering v 30.6 35.7 28.8 43.8
6 | Big (with back-translation) | Full v 32.4 38.5 31.2 46.6
7 | Big (with back-translation) | Dual x-ent filtering v 32.7 38.1 31.1 46.6

Table 2: Comparison of ParaCrawl filtering techniques. The rest of the training data is over-sampled to roughly
match the size of the filtered ParaCrawl corpus. In the ‘Dual x-ent filtering’ experiments we selected the 15M best
sentences according the dual cross-entropy filtering criterion of Junczys-Dowmunt (2018a).

news-2016 news-2017 news-2018 Noise BLEU
(35M sentences) (20M sentences) (37M sentences) testlS testl6 testl7 testl8
1 30.2 35.7 28.7 43.8
2 v 30.8 36.2 29.8 443
3 v 30.4 35.8 29.4 432
4 v v 30.3 35.9 29.5 43.1
5 v v 31.0 36.6 29.7 44.8
6 v v 30.7 36.6 29.5 44.7
7 v v v 30.6 36.6 29.5 44 4
8 v Ve v 31.3 374 30.0 45.2
9 v v v v 31.3 37.3 30.3 45.2

Table 3: Using different corpora for back-translation. We back-translated with a ‘base’ model for news-2017
and the big single Transformer model of Stahlberg et al. (2018b) for news-2016 and news-2018.

Fine-tuning | Checkpoint | BLEU (test18)
averaging | En-De | De-En

1 | No 46.7 46.5
2 | No v 46.6 46.4
3 | Cont’d train. 471 46.6
4 | Cont’d train. v 47.3 46.8
5 | EWC 47.1 46.4
6 | EWC v 47.8 46.8

Table 4: Fine-tuning our models on former WMT test
sets using continued training and EWC.

has to be balanced with the amount of real par-
allel data (Sennrich et al., 2016b,a; Poncelas et al.,
2018). Edunov et al. (2018) had overcome this
limitation by adding random noise to the synthetic
source sentences. Tab. 3 shows that using noise
improves the BLEU score by between 0.5 and 1.5
points on the news—-test2018 test set (rows 2-4
vs. 5-7).* Our final model uses a very large num-
ber (92M) of (noisy) synthetic sentences (row 9),
although the same performance could already be
reached with fewer sentences (row 8).

4.2 Fine-tuning with EWC and Checkpoint
Averaging
Fine-tuning (Luong and Manning, 2015) is a do-
main adaptation technique that first trains a model
*We use Sergey Edunov’s addnoise.py script

available at https://gist.github.com/edunov/
d67d09a38e7540908408ed86489645dd
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until it converges on a training corpus A, and then
continues training on a usually much smaller cor-
pus B which is close to the target domain. Sim-
ilarly to Schamper et al. (2018); Koehn et al.
(2018a), we fine-tune our models on former WMT
test sets (2008-2016) to adapt them to the target
domain of high-quality news translations. Due
to the very small size of corpus B, much care
has to be taken to avoid over-fitting. We exper-
imented with different techniques that keep the
model parameters in the fine-tuning phase close to
the original ones. First, we fine-tuned our mod-
els for about 1K-2K iterations (depending on the
performance on the news—test2017 dev set)
and dumped checkpoints every 500 steps. Av-
eraging all fine-tuning checkpoints together with
the last unadapted checkpoint yields minor gains
over fine-tuning without averaging (rows 3 vs. 4
in Tab. 4). However, we obtain the best results
by combining checkpoint averaging with another
regularizer — elastic weight consolidation (Kirk-
patrick et al., 2017, EWC) — that explicitly pe-
nalizes the distance of the model parameters 6 to
the optimized but unadapted model parameters 07
The regularized training objective according EWC
is:

L(0) = Lp(0) + A Y Fi(6; — 6%,)° (1)


https://gist.github.com/edunov/d67d09a38e75409b8408ed86489645dd
https://gist.github.com/edunov/d67d09a38e75409b8408ed86489645dd

Perplexity (per subword)
Model Context German English
testl5 testl6 testl7 testl8 | testlS testl6 testl7 testl8
Standard (Big) Sentence-level 36.23  35.69 36.17 3477 | 3994 37.19 3534 42.38
Standard(Big) Document-level | 26.63  27.85 2543  28.36 | 43.37 3455 3127 39.74
Intra-Inter (Big) | Document-level | 23.54 2239  22.05 22.56 | 3425 31.16 29.31 34.47

Table 5: Language model perplexities of different neural language models. ‘Intra-Inter’ denotes our modified
Transformer architecture from Sec. 2. The standard model has 448M parameters, Intra-Inter has 549M parameters.

English-German German-English
Base Big (with EWC) Base Big (with EWC)
Single | Single 4-Ensemble || Single | Single 4-Ensemble
1 | Using back-translation? No Yes Yes No Yes Yes
2 | NMT 43.8 47.8 48.8 40.7 474 483
3 | + Sentence-level LM 44.7 47.8 48.8 41.4 47.6 48.3
4 + PBSMT (MBR-based) 45.1 48.0 49.1 42.1 47.6 48.5
5 + Document-level Intra-Inter LM | 45.7 47.6 49.3 42.1 473 48.6

Table 6: Using different kinds of language models for translation on news-test2018. The PBSMT baseline
gets 26.7 BLEU on English-German and 27.5 BLEU on German-English.

where Lp(f) is the normal cross-entropy train-
ing loss on task B and F; E[VQLA(HZ-)] is
an estimate of task A Fisher information, which
represents the importance of parameter 6; to A.
On English-German, fine-tuning with EWC and
checkpoint averaging yields an 1.1 BLEU im-
provement (rows 1 vs. 6 in Tab. 4). Gains are gen-
erally smaller on German-English.

4.3 Language modelling

We introduced our new Intra-Inter Transformer
architecture for document-level language mod-
elling in Sec. 2. Tab. 5 shows that our architec-
ture achieves much better perplexity than both a
sentence-level language model and a document-
level vanilla Transformer model. Tab. 6 summa-
rizes our translation results with various kinds of
language models. Adding a Transformer sentence-
level LM to NMT helps for the single Base model
without back-translation, but is less effective on
top of (ensembles of) Big models with back-
translation (row 2 vs. 3). Extracting n-gram prob-
abilities from traditional PBSMT lattices as de-
scribed by Stahlberg et al. (2017a) and using them
as source-conditioned n-gram LMs yields gains
even on top of our ensembles (row 4). Our
document-level Intra-Inter language models im-
prove the ensembles and the single En-De Base
model, but hurt performance slightly for the single
Big models (row 5).

5 Related Work

Regularized fine-tuning Our approach to fine-
tuning is a combination of EWC (Kirkpatrick
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et al., 2017) and checkpoint averaging (Junczys-
Dowmunt et al., 2016b,a). In our context,
both methods aim to avoid catastrophic forget-
ting5 (Goodfellow et al., 2013; French, 1999) and
over-fitting by keeping the adapted model close to
the original, and can thus be seen as regularized
fine-tuning techniques. Khayrallah et al. (2018);
Dakwale and Monz (2017) regularized the output
distributions during fine-tuning using techniques
inspired by knowledge distillation (Bucilu et al.,
2006; Hinton et al., 2014; Kim and Rush, 2016).
Barone et al. (2017) applied standard L2 regular-
ization and a variant of dropout to domain adap-
tation. EWC as generalization of L2 regulariza-
tion has been used for NMT domain adaptation
by Thompson et al. (2019); Saunders et al. (2019).
In particular, Saunders et al. (2019) showed that
EWC is not only more effective than L2 in reduc-
ing catastrophic forgetting but even yields gains on
the general domain when used for fine-tuning on a
related domain.

Document-level MT Various techniques have
been proposed to provide the translation system
with inter-sentential context, for example by ini-
tializing encoder or decoder states (Wang et al.,
2017a), using multi-source encoders (Bawden
et al., 2018; Jean et al., 2017), as additional de-
coder input (Wang et al., 2017a), with memory-
augmented neural networks (Tu et al., 2018; Maruf
and Haffari, 2018; Kuang et al., 2017), hierar-

3Catastrophic forgetting occurs when the performance on
the specific domain is improved after fine-tuning, but the per-
formance of the model on the general domain has decreased
drastically.



chical attention (Miculicich et al., 2018; Maruf
et al., 2019), deliberation networks (Xiong et al.,
2018), or by simply concatenating multiple source
and/or target sentences (Tiedemann and Scherrer,
2017; Bawden et al., 2018). Context-aware exten-
sions to Transformer encoders have been proposed
by Voita et al. (2018); Zhang et al. (2018). Tech-
niques also differ in whether they use source con-
text only (Jean et al., 2017; Wang et al., 2017a;
Voita et al., 2018; Zhang et al., 2018), target con-
text only (Tu et al., 2018; Kuang et al., 2017),
or both (Bawden et al., 2018; Maruf and Haf-
fari, 2018; Miculicich et al., 2018; Tiedemann and
Scherrer, 2017; Maruf et al., 2019). Several stud-
ies on document-level NMT indicate that auto-
matic and human sentence-level evaluation met-
rics often do not correlate well with improvements
in discourse level phenomena (Bawden et al.,
2018; Laubli et al., 2018; Miiller et al., 2018).
Our document-level LM approach is similar to the
work of Xiong et al. (2018) in that cross-sentence
context is only used in a second pass to improve
translations from a sentence-level MT system. Our
method is light-weight as, similarly to Tiedemann
and Scherrer (2017), we do not modify the archi-
tecture of the core NMT system.

NMT-SMT hybrid systems Popular examples
of combining a fully trained SMT system with
independently trained NMT are rescoring and
reranking methods (Neubig et al., 2015; Stahlberg
et al.,, 2016b; Khayrallah et al., 2017; Grund-
kiewicz and Junczys-Dowmunt, 2018; Avramidis
et al., 2016; Marie and Fujita, 2018; Zhang
et al.,, 2017), although these models may be
too constraining if the neural system is much
stronger than the SMT system. Loose combina-
tion schemes include the edit-distance-based sys-
tem of Stahlberg et al. (2016a) or the minimum
Bayes-risk approach of Stahlberg et al. (2017a) we
adopted in this work. NMT and SMT can also be
combined in a cascade, with SMT providing the
input to a post-processing NMT system (Niehues
et al., 2016; Zhou et al., 2017) or vice versa (Du
and Way, 2017). Wang et al. (2017b, 2018) in-
terpolated NMT posteriors with word recommen-
dations from SMT and jointly trained NMT to-
gether with a gating function which assigns the
weight between SMT and NMT scores dynami-
cally. The AMU-UEDIN submission to WMT16
let SMT take the lead and used NMT as a fea-
ture in phrase-based MT (Junczys-Dowmunt et al.,

English-German German-English
Team BLEU Team BLEU
MSRA 449 MSRA 42.8
Microsoft 439 Facebook FAIR 40.8
NEU 43.5 NEU 40.5
UCAM 43.0 UCAM 39.7
Facebook FAIR 427 RWTH 39.6
JHU 42.5 MLLP-UPV 39.3
eTranslation 419 DFKI 38.8

8 more... 4 more...

Table 7: English-German and German-English primary
submissions to the WMT19 shared task.

Year Best in This work A
competition

2017 28.3 32.8 +4.5

2018 48.3 49.3 +1.0

2019 449 43.0 -1.9

Table 8: Comparison of our English-German system
with the winning submissions over the past two years.

2016b). In contrast, Long et al. (2016) translated
most of the sentence with an NMT system, and
just used SMT to translate technical terms in a
post-processing step. Dahlmann et al. (2017) pro-
posed a hybrid search algorithm in which the neu-
ral decoder expands hypotheses with phrases from
an SMT system.

6 Conclusion

Our WMTI19 submission focused on regular-
ized fine-tuning and language modelling. With
our novel Intra-Inter Transformer architecture for
document-level LMs we achieved significant re-
ductions in perplexity and minor improvements in
BLEU over very strong baselines. A combination
of checkpoint averaging and EWC proved to be an
effective way to regularize fine-tuning. Our sys-
tems are competitive on both English-German and
German-English (Tab. 7), especially considering
the immense speed with which our field has been
advancing in recent years (Tab. 8).
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