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Abstract

We study several methods for full or partial
sharing of the decoder parameters of multilin-
gual NMT models. Using only the WMT 2019
shared task parallel datasets for training, we
evaluate both fully supervised and zero-shot
translation performance in 110 unique trans-
lation directions. We use additional test sets
and re-purpose evaluation methods recently
used for unsupervised MT in order to evalu-
ate zero-shot translation performance for lan-
guage pairs where no gold-standard parallel
data is available. To our knowledge, this is
the largest evaluation of multi-lingual transla-
tion yet conducted in terms of the total size of
the training data we use, and in terms of the
number of zero-shot translation pairs we eval-
uate. We conduct an in-depth evaluation of
the translation performance of different mod-
els, highlighting the trade-offs between meth-
ods of sharing decoder parameters. We find
that models which have task-specific decoder
parameters outperform models where decoder
parameters are fully shared across all tasks.

1 Introduction

Multi-lingual translation models, which can map
from multiple source languages into multiple tar-
get languages, have recently received significant
attention because of the potential for positive
transfer between high- and low-resource language
pairs, and because of the potential efficiency gains
enabled by translation models which share param-
eters across many languages (Dong et al., 2015;
Ha et al., 2016; Firat et al., 2016; Johnson et al.,
2016; Blackwood et al., 2018; Sachan and Neubig,
2018; Aharoni et al., 2019). Multi-lingual mod-
els which share parameters across tasks can also
perform zero-shot translation, translating between
language pairs for which no parallel training data
is available (Wu et al., 2016; Ha et al., 2016; John-
son et al., 2016).

Although multi-task models have recently been
shown to achieve positive transfer for some com-
binations of NLP tasks, in the context of MT,
multi-lingual models do not universally outper-
form models trained to translate in a single di-
rection when sufficient training data is available.
However, the ability to do zero-shot translation
may be of practical importance in many cases,
as parallel training data is not available for most
language pairs (Wu et al., 2016; Johnson et al.,
2016; Aharoni et al., 2019). Therefore, small
decreases in the performance of supervised pairs
may be admissible if the corresponding gain in
zero-shot performance is large. In addition, zero-
shot translation can be used to generate synthetic
training data for low- or zero- resource language
pairs, making it a practical alternative to the boot-
strapping by back-translation approach that has
recently been used to build completely unsuper-
vised MT systems (Firat et al., 2016; Artetxe et al.,
2018; Lample et al., 2018a,b). Therefore, under-
standing the trade-offs between different methods
of constructing multi-lingual MT systems is still
an important line of research.

Deep sequence to sequence models have be-
come the established state-of-the-art for machine
translation. The dominant paradigm continues to
be models divided into roughly three high-level
components: embeddings, which map discrete to-
kens into real-valued vectors, encoders, which
map sequences of vectors into an intermediate rep-
resentation, and decoders, which use the represen-
tation from an encoder, combined with a dynamic
representation of the current state, and output a
sequence of tokens in the target language condi-
tioned upon the encoder’s representation of the in-
put. For multi-lingual systems, any combination
of encoder and/or decoder parameters can poten-
tially be shared by groups of tasks, or duplicated
and kept private for each task.
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Figure 1: The decoder component of the transformer
model (Vaswani et al., 2017). We can share all parame-
ters across all target tasks, or we can create a unique set
of decoder parameters for each task (outer dashed line).
Alternatively, we can create unique attention parame-
ters for each task, while sharing the final feed-forward
layers (inner dotted lines). The possiblility of including
an embedding for the target task is visualized at the bot-
tom of the diagram. Illustration modeled after Sachan
and Neubig (2018).

Our work builds upon recent research on many-
to-one, one-to-many, and many-to-many transla-
tion models. We are interested in evaluating many-
to-many models under realistic conditions, includ-
ing:

1. A highly imbalanced amount of training data
available for different language pairs.

2. A very diverse set of source and target lan-
guages.

3. Training and evaluation data from many do-
mains.

We focus on multi-layer transformer models
(Vaswani et al., 2017), which achieve state-of-
the-art performance on large scale MT and NLP
tasks (Devlin et al., 2018; Bojar et al., 2018). We
study four ways of building multi-lingual trans-
lation models. Importantly, all of the models we
study can do zero-shot translation: translating be-
tween language pairs for which no parallel data
was seen at training time. The models use training
data from 11 distinct languages1, with supervised
data available from the WMT19 news-translation
task for 22 of the 110 unique translation direc-
tions2. This leaves 88 translation directions for
which no parallel data is available. We try to eval-
uate zero-shot translation performance on all of
these additional directions.

Target Language Specification Although the
embedding and encoder parameters of a multi-
lingual system may be shared across all languages
without any special modification to the model,
decoding from a multi-lingual model requires a
means of specifying the desired output language.
Previous work has accomplished this in different
ways:

• pre-pending a special target-language token
to the input (Wu et al., 2016)

• using an additional embedding vector for the
target language (Lample and Conneau, 2019)

• using unique decoders for each target lan-
guage (Luong et al., 2016; Firat et al., 2016)

• partially sharing some of the decoder param-
eters while keeping others unique to each
target language (Sachan and Neubig, 2018;
Blackwood et al., 2018)

However, to the best of our knowledge, no side-
by-side comparison of these approaches has been
conducted. We therefore train models which are
identical except for the way that decoding into dif-
ferent target languages is handled, and conduct

1CS, DE, EN, FI, FR, GU, KK, LT, RU, TR and ZH
2Note we do not consider auto-encoding, thus the number

of translation directions is 112 − 11 = 110.
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a large-scale evaluation. We use only the lan-
guage pairs and official parallel data released by
the WMT task organisers, meaning that all of our
systems correspond to the constrained setting of
the WMT shared task, and our experimental set-
tings should thus be straightforward to replicate.

2 Multi-Task Translation Models

This section discusses the key components of the
transformer-based NMT model, focusing on the
various ways to enable translation into many tar-
get languages. We use the terms source/target task
and language interchangeably, to emphasize our
view that multi-lingual NMT is one instantiation
of the more general case of multi-task sequence to
sequence learning.

2.1 Shared Encoders and Embeddings
In this work, we are only interested in ways of pro-
viding target task information to the model – infor-
mation about the source task is never given explic-
itly, and the encoder is always completely shared
across all tasks. The segmentation model and em-
bedding parameters are also shared between all
source and target tasks (see below for more de-
tails).

2.2 Multi-lingual Decoder Configurations
Figure 1 visualizes the decoder component of the
transformer model, with dashed and dotted lines
indicating the parameter sets that we can replicate
or share across target tasks.

2.2.1 Target Task Tokens (PREPEND)
Wu et al. (2016) showed that, as long as a mech-
anism exists for specifying the target task, it is
possible to share the decoder module’s parameters
across all tasks. In the case where all parameters
are shared, the decoder model must therefore learn
to operate in a number of distinct modes which are
triggered by some variation in the input. A simple
way to achive this variation is by pre-pending a
special "task-token" to each input. We refer to this
method as PREPEND.

2.2.2 Task Embeddings (EMB)
An alternative to the use of a special task token is
to treat the target task as an additional input fea-
ture, and to train a unique embedding for each tar-
get task (Lample and Conneau, 2019), which is
combined with the source input. This technique
has the advantage of explicitly decoupling target

task information from source task input, introduc-
ing a relatively small number of additional param-
eters. This approach can be seen as adding an ad-
ditional token-level feature which is the same for
all tokens in a sequence (Sennrich and Haddow,
2016). We refer to this setting as EMB.

2.2.3 Task-specific Decoders (DEC)
In general, any subset of decoder parameters may
be replicated for each target language, resulting in
parameter sets which are specific to each target
task. At one extreme, the entire decoder module
may be replicated for each target language, a set-
ting which we label DEC (Dong et al., 2015).

2.2.4 Task-specific Attention (ATTN)
An approach somewhere in-between EMB and
DEC is to partially share some of the decoder
parameters, while keeping others unique to each
task. Recent work proposed creating unique atten-
tion modules for every target task, while sharing
the other decoder parameters (Sachan and Neubig,
2018; Blackwood et al., 2018). The implementa-
tion of their approaches differ significantly – we
propose to create completely unique attention pa-
rameters for each task. This means that for each
of our 11 languages, we have unique context- and
self-attention parameters in each layer of the trans-
former decoder. We refer to this setting as ATTN.

3 Experiments

All experiments are conducted using the
transformer-base configuration of Vaswani
et al. (2017) with the relevant modifications for
each system discussed in the previous section. We
use a shared sentencepiece3 segmentation model
with 32000 pieces. We use all available parallel
data from the WMT19 news-translation task for
training, with the exception of commoncrawl,
which we found to be very noisy after manually
checking a sample of the data, and paracrawl,
which we use only for EN-FI and EN-LT4.

We train each model on two P100 GPUs with an
individual batch size of up to 2048 tokens. Gradi-
ents are accumulated over 8 mini-batches and pa-
rameters are updated synchronously, meaning that
our effective batch size is 2 ∗ 2048 ∗ 4 = 16384
tokens per iteration. Because the task pair for

3https://github.com/google/sentencepiece
4Turkish (TR) is included from the 2018 language pairs

because the task-organizers suggest the possibility of using
TR data to improve KK performance

https://github.com/google/sentencepiece
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# seen # available # epochs % budget

EN-CS 3,466,692 51,136,198 0.06 10.7
EN-DE 2,678,808 3,054,632 0.88 8.3
EN-FI 3,466,692 6,457,071 0.54 10.7
EN-GU 1,260,615 137,905 9.14 3.9
EN-KK 1,181,827 158,067 7.47 3.7
EN-LT 3,624,269 2,283,272 1.59 11.2
EN-RU 5,042,462 11,391,126 0.44 15.6
EN-TR 1,575,769 207,678 7.58 4.9
EN-ZH 5,846,104 14,549,833 0.40 18.1
DE-FR 4,097,000 1,980,332 2.06 12.7

TOTAL 32,240,238 91,356,114 - 100

Table 1: Training dataset statistics for our multilingual
NMT experiments. # seen is the total number of seg-
ments seen during training. # available is the num-
ber of unique segments available in the parallel training
datasets. # epochs is the number of passes made over
the available training data – when this is < 1, the avail-
able training data was only partially seen. % budget is
the percentage of the training budget allocated to this
pair of tasks.

each mini-batch is sampled according to our pol-
icy weights and (fixed) random seed, and each it-
eration consists of 8 unique mini-batches, a sin-
gle parameter update can potentially contain infor-
mation from up to 8 unique task pairs. We train
each model for 100,000 iterations without early
stopping, which takes about 40 hours per model.
When evaluating we always use the final model
checkpoint (i.e. the model parameters saved af-
ter 100,000 iterations). We use our in-house re-
search NMT system, which is heavily based upon
OpenNMT-py (Klein et al., 2017).

The sampling policy weights were specified
manually by looking at the amount of available
data for each pair, and estimating the difficulty of
each translation direction. The result of the sam-
pling policy is that lower resource language pairs
are upsampled significantly. Table 1 summarizes
the statistics for each language pair. Note that the
data in each row represents a pair of tasks, i.e.
the total number of segments seen for EN-CS is
split evenly between EN→CS, and CS→EN. Be-
cause we train for only 100,000 iterations, we do
not see all of the available training data for some
high-resource language pairs.

With the exception of the system which
prepends a target task token to each input, the in-
put to each model is identical. Each experimen-
tal setting is mutually exclusive, i.e. in the EMB

setting we do not prepend task tokens, and in the
ATTN setting we do not use task embeddings.

Figure 2 plots the validation performance dur-
ing training on one of our validation datasets. The
language embeddings from the EMB system are
visualized in figure 3.

3.1 Results

Figure 2: Word-level accuracy on WMT EN-DE 2014
dev set as training progresses. The model which has a
DE-specific decoder achieves the highest accuracy on
this dev set.

Figure 3: Language embeddings of the EMB system
projected with UMAP (McInnes et al., 2018).

We evaluate the performance of our models in
four ways. First, we check performance on the
supervised pairs using dev and test sets from the
WMT shared task. We then try to evaluate zero-
shot translation performance in several ways. We
use the TED talks multi-parallel dataset (Ye et al.,
2018) to create gold sets for all zero-shot pairs
that occur in the TED talks corpus, and evaluate
on those pairs. We also try two ways of evalu-
ating zero-shot translation without gold data. In
the first, we do round-trip translation SRC →
PIVOT → SRĈ, and measure performance on
the (SRĈ, SRC) pair – this method is labeled
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Evaluation Dataset

EN-CS newstest2018
EN-DE newstest2018
EN-FI newstest2018
EN-GU newsdev2019
EN-KK newsdev2019
EN-LT newsdev2019
EN-RU newstest2018
EN-TR newstest2018
EN-ZH newstest2018
DE-FR euelections_dev2019

Table 2: The WMT evaluation dataset used for each
language pair.

PREPEND EMB DEC ATTN

SUPERVISED 23.4 23.4 24.0 24.1
ZERO-SHOT-TED 10.6 7.8 12.6 12.4
ZERO-SHOT-PIVOT 16.9 18.1 14.0 15.1
ZERO-SHOT-PARALLEL-PIVOT 13.1 11.9 12.8 13.2

Table 3: Overall results for supervised and zero-shot
tasks. Tokenized BLEU scores are computed by con-
catenating all of the hypotheses for all translation di-
rections, and computing BLEU with respect to the
concatenated references. We use the sentencepiece-
segmented hypotheses and references to avoid issues
with tokenization of multi-lingual hypotheses and ref-
erences.

ZERO-SHOT PIVOT. In the second, we use par-
allel evaluation datasets from the WMT shared
tasks (consisting of (SRC, REF) pairs), and trans-
late SRC → PIVOT → TRĜ, then measure per-
formance on the resulting (TRĜ, REF) pairs (see
below for more details), where the pivot and tar-
get language pair is a zero-shot translation task
– this method is labeled ZERO-SHOT PARALLEL

PIVOT.
Table 2 lists the WMT evaluation dataset that

we use for each language pair. In the ZERO-SHOT

PIVOT setting, the reference side of the dataset is
used as input.

Table 3 shows global results for all parallel tasks
and all zero-shot tasks, by system. Global scores
are obtained by concatenating the segmented out-
puts for each translation direction, and computing
the BLEU score against the corresponding con-
catenated, segmented reference translations. The
results in table 3 are thus tokenized BLEU scores.

3.2 Parallel Tasks

In the following results, we report BLEU scores
on de-tokenized output, and compute scores using

PREPEND EMB DEC ATTN

CS-EN 20.2 20.2 20.9 20.9
EN-CS 12.4 12.7 13.7 13.3
DE-EN 26.2 26.1 27.4 27.1
EN-DE 23.2 23.4 25.7 25.2
FI-EN 13.7 13.5 14.4 14.2
EN-FI 8.3 8.0 9.4 9.2
GU-EN 15.4 15.4 15.7 15.4
EN-GU 8.1 7.8 5.1 7.3
KK-EN 14.4 14.0 14.3 13.9
EN-KK 5.6 5.2 1.9 4.6
LT-EN 18.6 18.9 19.3 19.0
EN-LT 12.8 13.0 14.4 13.7
RU-EN 20.8 20.6 21.3 21.3
EN-RU 15.5 15.9 17.0 16.7
TR-EN 14.8 15.0 15.2 15.1
EN-TR 10.3 10.0 10.9 11.3
ZH-EN 13.5 13.7 14.1 13.7
EN-ZH 24.2 24.4 25.6 25.4
FR-DE 18.6 18.4 19.9 19.3
DE-FR 21.2 22.1 21.7 22.6

Table 4: Results for all task pairs in the WMT 2019
news-translation shared task where parallel training
data is available.

sacrebleu 5. Therefore, we expect BLEU scores to
be equivalent to those used in the WMT automatic
evaluation.

We note that across all but the lowest-resource
tasks, the model with a unique decoder for each
language outperforms all others. However, for
EN→GU and EN→KK, the lowest-resource trans-
lation directions, the unique decoder model fails
completely, probably because the unique parame-
ters for KK and GU were not updated by a sufficient
number of mini-batches (approximately 15,600
for EN→GU and 14,800 for EN→KK).

3.3 Zero-shot Translation Tasks
In order to test our models in the zero-shot set-
ting, we adapt an evaluation technique that has re-
cently been used for unsupervised MT – we trans-
late from the source language into a pivot lan-
guage, then back into the source language, and
evaluate the score of the resulting source-language
hypotheses against the original source (Lample

5BLEU+case.mixed+
lang.<src-lang>-<trg-lang>+
numrefs.1+smooth.exp+tok.<trg-lang>+
version.1.2.19
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PREPEND EMB DEC ATTN

RU→CS→RU 20.9 23.8 20.8 21.0
RU→DE→RU 14.6 11.9 16.4 15.6
RU→EN→RU* 21.7 22.2 23.9 23.2
RU→FI→RU 11.2 17.0 12.1 11.6
RU→FR→RU 13.8 15.4 14.1 15.1
RU→GU→RU 10.3 9.6 3.5 5.1
RU→KK→RU 5.8 19.6 1.0 2.2
RU→LT→RU 16.9 22.0 16.5 16.6
RU→TR→RU 7.9 10.2 7.4 7.7
RU→ZH→RU 8.8 10.5 9.1 8.5

Table 5: Zero-shot translation results for RU→*→RU
Note that BLEU scores are computed by translating
SRC → PIVOT → SRĈ, and computing the score be-
tween SRC and SRĈ. Systems which do not pass the
language identification filter are struck-through and re-
moved from global evaluation. Note that parallel train-
ing data was available for RU→EN.

PREPEND EMB DEC ATTN

# Failed Pivot Tasks 3 31 1 1

Table 6: Out of 110 pivot translation tasks, how many
failed the language identification check?

et al., 2018a). This technique allows us to eval-
uate for all possible translation directions in our
multi-directional model.

Aware of the risk that the model simply copies
through the original source segment instead of
translating, we assert that at least 95% of pivot
translations’ language code is correctly detected
by langid6, and pairs which do not meet this
criteria for any system are removed from the
evaluation for all systems (not just for the sys-
tem that failed). For all models except EMB

only RU→KK→RU FI→LT→FI, and ZH→GU→ZH

failed this test, but for the EMB model 31 of the
110 translation directions failed (see tables 6 and
77. This result indicates that models which use
language embeddings may have a more "fuzzy"
representation of the output task, and are much
more prone to copying than other approaches
to multi-lingual MT. However, even for the lan-
guages which passed the language identification
filter, we suspect that some copying is occurring

6https://github.com/saffsd/langid.py
7We conduct round trip translation on all 110 directions,

but we only use directions that are (1) not available in the
parallel training data, and (2) pass the language identification
test to compute the global zero-shot translation performance

for the EMB system, because of the mismatch in
results between the ZERO-SHOT PIVOT task and
the SUPERVISED, ZERO-SHOT TED, and ZERO-
SHOT PARALLEL PIVOT tasks (see table 3). Table
7 (in appendix) contains the results for all possible
translation directions and all models in the ZERO-
SHOT PIVOT evaluation setting.

3.3.1 Zero-Shot Evaluation on TED Talks
Corpus

We conduct an additional evaluation on some of
the language pairs from the TED Talks multi-
parallel corpus (Ye et al., 2018), which has re-
cently been used for the training and evaluation of
multi-lingual models. We filter the dev and test
sets of this corpus to find segments which have
translations for all of EN, FR, RU, TR, DE, CS, LT,
FI, and are at least 20 characters long, resulting
in 606 segments. Because this corpus is prepro-
cessed, we first de-tokenize and de-escape punc-
tuation using sacremoses8. We then evaluate
zero-shot translation for all possible pairs which
do not occur in our parallel training data, aggre-
gate results are shown in the third row of table 3.

3.4 Discussion

Our results show that a models with either (1) a
completely unique decoders for each target lan-
guage or (2) unique decoder attention parameters
for each target language clearly outperform mod-
els with fully shared decoder parameters in our
setting.

It is plausible that the language-independence
of encoder output could be correlated with the
amount of sharing in the decoder module. Be-
cause most non-English target tasks only have par-
allel training data in English, a unique decoder for
those tasks only needs to learn to decode from En-
glish, not from every possible source task. How-
ever, our results show that the ATTN model, which
partially shares parameters across target languages
only slightly outperforms the DEC model globally,
because of the improved performance of the ATTN

model on the lowest-resource tasks (Table 4, Table
7 (in appendix)).

4 Related Work

Dong et al. (2015); Firat et al. (2016); Ha et al.
(2016); Johnson et al. (2016) and others have

8https://github.com/alvations/sacremoses
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shown that multi-way NMT systems can be cre-
ated with minimal modification to the approach
used for single-language-pair systems. Johnson
et al. (2016) showed that simply prepending a
target-task token to source inputs is enough to en-
able zero-shot translation between language pairs
for which no parallel training data is available.

Our work is most similar to Sachan and Neubig
(2018), where many different strategies for shar-
ing decoder parameters are investigated for one-
to-many translation models. However, their eval-
uation setting is constrained to one-to-many mod-
els which translate from English into two target
languages, whereas our setting is more ambitious,
performing multi-way translation between 11 lan-
guages. Blackwood et al. (2018) showed that us-
ing separate attention parameters for each task can
improve the performance of multi-task MT mod-
els – this work was the inspiration for the ATTN

setting in our experiments.
Several recent papers focus specifically upon

improving the zero-shot performance of multi-
lingual MT models (Chen et al., 2017; Arivazha-
gan et al., 2019; Gu et al., 2019; Lu et al., 2018;
Al-Shedivat and Parikh, 2019; Sestorain et al.,
2019).

Concurrently with this work, (Aharoni et al.,
2019) evaluated a multiway MT system on a large
number of language pairs using the TED talks cor-
pus. However, they focus upon EN-* and *-EN,
and do not test different model variants.

5 Conclusions and Future Work

We have presented results which are consistent
with recent smaller-scale evaluations of multi-
lingual MT systems, showing that assigning
unique attention parameters to each target lan-
guage in a multi-lingual NMT system is optimal
when evaluating such a system globally. However,
when evaluated on the individual task level, mod-
els which have unique decoder parameters for ev-
ery target task tend to outperform other configura-
tions, except when the amount of available train-
ing data is extremely small. We have also intro-
duced two methods of evaluating zero-shot trans-
lation performance when parallel data is not avail-
able, and we conducted a large-scale evaluation of
translation performance across all possible trans-
lation directions in the constrained setting of the
WMT19 news-translation task.

In future work, we hope to continue studying

how multi-lingual translation systems scale to re-
alistic volumes of training data and large numbers
of source and target tasks.

References
Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019.

Massively multilingual neural machine translation.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
3874–3884, Minneapolis, Minnesota. Association
for Computational Linguistics.

Maruan Al-Shedivat and Ankur Parikh. 2019. Con-
sistency by agreement in zero-shot neural machine
translation. In Proceedings of NAACL.

Naveen Arivazhagan, Ankur Bapna, Orhan Firat,
Roee Aharoni, Melvin Johnson, and Wolfgang
Macherey. 2019. The missing ingredient in zero-
shot neural machine translation. arXiv preprint
arXiv:1903.07091.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2018. Unsupervised neural ma-
chine translation. In Proceedings of the Sixth Inter-
national Conference on Learning Representations.

Graeme Blackwood, Miguel Ballesteros, and Todd
Ward. 2018. Multilingual neural machine transla-
tion with task-specific attention. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 3112–3122, Santa Fe, New Mex-
ico, USA. Association for Computational Linguis-
tics.
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PREPEND

CS

15.7 19.6 11.4 11.1 8.7 3.6 16.6 17.4 7.8 7.5
EMB 9.3 19.9 24.4 12.4 9.3 3.3 28.4 15.8 10.2 7.5
DEC 17.7 21.3 11.5 13.3 3.3 0.7 14.0 17.8 6.7 7.5

ATTN 17.5 21.6 11.6 13.8 4.5 1.8 14.4 17.4 7.2 7.6

PREPEND 22.3

DE

27.1 16.4 25.3 11.2 5.3 18.3 18.1 12.4 12.3
EMB 41.5 27.6 38.0 25.1 19.4 8.5 40.7 23.6 29.9 19.6
DEC 23.4 29.8 15.6 25.8 4.0 0.9 16.2 19.1 11.2 12.2

ATTN 22.8 29.0 15.9 26.3 6.4 2.7 17.1 18.0 11.2 12.1

PREPEND 35.4 37.1

EN

24.6 34.5 22.1 9.3 29.2 32.9 23.3 25.6
EMB 36.5 37.4 25.9 35.0 21.5 9.3 30.4 33.9 24.2 26.6
DEC 35.8 37.5 25.8 32.6 10.1 1.6 29.7 33.2 22.8 26.3

ATTN 36.9 36.6 25.9 34.4 15.7 6.2 30.3 33.9 23.6 26.8

PREPEND 12.1 11.0 14.3

FI

7.2 5.6 2.6 13.1 9.2 6.6 6.2
EMB 19.9 7.9 14.7 8.2 6.2 4.2 23.8 11.1 12.0 6.8
DEC 11.2 11.7 15.4 9.8 3.0 0.5 10.7 9.9 6.2 5.8

ATTN 12.2 11.5 15.0 10.0 4.2 1.7 10.9 9.8 6.5 5.8

PREPEND 25.6 32.7 31.9 17.8

FR

17.1 7.8 20.5 22.9 16.0 15.3
EMB 26.0 32.0 36.5 20.4 12.4 5.0 24.5 22.5 15.6 14.1
DEC 25.7 32.9 33.9 18.4 5.9 1.5 20.2 23.6 14.4 15.1

ATTN 26.0 33.2 34.3 19.5 8.5 4.5 21.0 24.6 15.5 15.4

PREPEND 5.1 5.7 8.2 4.2 4.0

GU

2.0 5.3 5.2 3.5 3.9
EMB 5.3 4.6 7.6 5.4 4.4 1.6 6.2 3.6 4.2 3.7
DEC 3.5 3.5 5.5 3.2 3.2 0.5 3.6 3.4 2.9 2.7

ATTN 4.9 5.1 7.6 4.4 4.5 1.0 4.6 4.5 4.0 4.0

PREPEND 4.9 4.8 7.1 3.4 2.8 4.3

KK

4.6 4.9 4.4 3.9
EMB 3.4 3.4 6.4 3.8 3.5 1.9 3.9 3.6 4.5 2.4
DEC 1.7 1.8 2.2 1.6 1.5 1.1 1.5 1.7 1.7 1.2

ATTN 3.9 4.0 5.3 3.2 3.2 2.3 3.6 3.9 4.3 3.2

PREPEND 18.8 14.5 17.9 13.8 10.4 9.9 4.7

LT

16.8 10.0 9.0
EMB 30.5 12.0 18.3 30.7 10.8 10.6 6.8 18.2 19.7 13.7
DEC 16.7 13.6 18.9 12.8 11.6 3.7 0.9 16.1 8.0 8.5

ATTN 17.0 13.9 18.8 12.5 12.4 5.5 1.9 15.7 8.7 9.2

PREPEND 20.9 14.6 21.7 11.2 13.8 10.3 5.8 16.9

RU

7.9 8.8
EMB 23.8 11.9 22.2 17.0 15.4 9.6 19.6 22.0 10.2 10.5
DEC 20.8 16.4 23.9 12.1 14.1 3.5 1.0 16.5 7.5 9.1

ATTN 21.0 15.6 23.2 11.6 15.2 5.1 2.2 16.6 7.7 8.5

PREPEND 9.1 8.2 13.3 7.4 7.4 8.8 5.6 8.9 7.1

TR

6.4
EMB 12.7 7.2 12.6 14.6 7.5 6.7 4.1 17.3 6.6 6.4
DEC 7.2 7.6 13.1 6.5 6.8 2.5 0.7 6.4 5.6 5.3

ATTN 7.3 8.1 13.4 6.6 7.3 3.9 1.9 6.7 5.6 5.3

PREPEND 20.4 19.6 29.0 17.1 17.4 18.2 8.4 20.2 19.5 17.4

ZH
EMB 20.1 16.9 29.4 19.6 17.8 11.9 6.6 22.8 18.3 16.7
DEC 19.2 19.4 30.2 16.6 17.6 7.2 2.2 19.5 20.1 16.3

ATTN 19.8 20.4 30.0 16.7 18.2 11.0 5.0 18.6 19.4 17.1

Table 7: Pivot-based translation results in all directions, for all models. Rows indicate source language, columns
indicate pivot language. For example, cell (1, 2) contains the results for CS→DE→CS. Runs which did not pass
the language identification filter are struck-through. The MT-matrix (http://matrix.statmt.org/matrix) was the in-
spiration for this rendering.

http://matrix.statmt.org/matrix

