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Abstract

This paper describes the Air Force Research
Laboratory (AFRL) machine translation sys-
tems and the improvements that were devel-
oped during theWMT19 evaluation campaign.
This year, we refine our approach to train-
ing popular neural machine translation toolk-
its, experiment with a new domain adaptation
technique and again measure improvements in
performance on the Russian–English language
pair.

1 Introduction

As part of the 2019 Conference onMachine Trans-
lation (Bojar et al., 2019) news-translation shared
task, the AFRL Human Language Technology
team participated in the Russian–English portion
of the competition. We build on our strategies from
last year (Gwinnup et al., 2018), adding additional
language ID based data processing and optimizing
subword segmentation strategies. For Russian–
English we again submitted an entry comprising
our best systems trained with Marian (Junczys-
Dowmunt et al., 2018), Sockeye (Hieber et al.,
2017) with Elastic Weight Consolidation (EWC)
(Thompson et al., 2019), OpenNMT (Klein et al.,
2018), and Moses (Koehn et al., 2007) combined
using the Jane system combination method (Fre-
itag et al., 2014).

2 Data and Preprocessing

2.1 Data Preparation
We used and preprocess data as outlined in Gwin-
nup et al. (2018). For all systems trained, we
applied either byte-pair encoding (BPE) (Sen-
nrich et al., 2016) or SentencePiece (Kudo and
Richardson, 2018) subword strategies to address
the vocabulary-size problem.
For this year, we also employed a language ID

filtering step for the BPE-based systems. Using

the pre-built language ID model developed by the
authors of fastText (Joulin et al., 2016a,b), we de-
veloped a utility that examined the source and tar-
get sentence pairs and discarded that pair if either
side fell below 0.81 probability of the desired lan-
guage. We applied this filtering to all provided par-
allel corpora, removing 33.7% of lines. This pro-
cess was particularly effective when used to filter
the Paracrawl corpus where 57.1% of lines were
removed. Pre and post-filtering line counts for var-
ious corpora are shown in Table 1.

Corpus Total Retained

CommonCrawl 723,256 655,069
newscommentary 290,866 264,089
Yandex 1,000,000 901,307
ParaCrawl 12,061,155 5,173,675
UN2016 11,365,709 9,871,406

Total Lines 25,440,968 16,865,546

Table 1: Training corpus total and retained lines after
fastText filtering

testset wmt18preproc wmt19filt

newstest2014 33.0 34.1
newstest2015 28.6 29.6
newstest2016 28.4 29.4
newstest2017 30.8 31.8
newstest2018 26.9 27.9

Table 2: Test set comparison for non-filtered WMT18
training corpus and filtered WMT19 training corpus
measured by SacreBLEU.

A comparison with the organizer-provided par-
allel training data used in our WMT18 system

1We chose this value arbitrarily; future work will explore
varying this threshold.
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(which is largely the same as the provided paral-
lel data for WMT19 in the Russian–English lan-
guage pair) on baseline Marian transformer sys-
tems with identical training conditions show that
aggressive language ID based filtering yields an
approximate +1 BLEU point improvement as mea-
sured by SacreBLEU (Post, 2018). These results
are shown in Table 2.

2.2 Exploration of Byte-Pair Encoding
Merge Sizes

One of the problems faced when addressing the
closed-vocabulary problem is the granularity of the
subword units either produced by SentencePiece or
BPE. To that end, we examined varying the num-
ber of BPE merge operations in order to determine
an optimal setting tomaximize performance for the
Russian–English language pair.
For the OpenNMT-based systems, a vocabulary

size of 32k entries was employed during training
of a SentencePiece segmentation model2. This vo-
cabulary size was determined empirically from the
training data.
Alternatively, for the BPE-based systems, we

systematically examined varying sizes of BPE
merge operations and vocabulary sizes in 10k in-
crements from 30k to 80k. Results in Table 3 show
that 40kBPEmerge operations perform best across
all test sets decoded for this language pair. All
subsequent Marian experiments in this work uti-
lize this 40k BPE training corpus.

3 MT Systems

This year, we focused system-building efforts
on the Marian, Sockeye, OpenNMT, and Moses
toolkits, having explored a variety of parameters,
data, and conditions. While most of our exper-
imentation builds off of previous years’ efforts,
we did examine domain adaptation via continued
training, including Elastic Weight Consolidation
(EWC) (Thompson et al., 2019).

3.1 Marian

As with last year’s efforts, we train multiple
Marian (Junczys-Dowmunt et al., 2018) models
with both University of Edinburgh’s “bi-deep”
(Miceli Barone et al., 2017; Sennrich et al., 2017)
and Google’s transformer (Vaswani et al., 2017)

2SentencePiece was used in part to provide diversity be-
tween our OpenNMT and other systems trained with BPE
data.

architectures. Network hyperparameters are the
same as detailed in Gwinnup et al. (2018). We
again use newstest2014 as the validation set dur-
ing training.
Utilizing the best-performing BPE parameters

from Section 2.2, we first trained a baseline system
in each of the two network architectures, noting the
Transformer system’s better performance of +0.82
BLEU on average across decoded test sets. An ad-
ditional six distinct transformer models were then
independently3 trained for use in ensemble decod-
ing. We then ensemble decoded test sets with all
eight models.
Marian typically assigns each model used in

ensemble decoding a feature weight of 1.0; thus
each model contributes equally to the decoding
process. Borrowing from our Moses training ap-
proach, we utilize a multi-iteration decode and op-
timize feature weights using the “Expected Cor-
pus BLEU” (ECB)metric with the Drem optimizer
(Erdmann and Gwinnup, 2015). We experimented
using newstest2014 and newstest2017 as tun-
ing sets – 2017 did not help performance, but us-
ing 2014 did improve performance by up to +0.9
BLEU4 over the non-tuned ensemble.
Scores for all the above-mentioned systems are

shown in Table 4. The best-performing ensemble
(ensemble tune14) was used in system combina-
tion.

3.2 Sockeye
For our Sockeye (Hieber et al., 2017) systems, we
experimented with continued training (Luong and
Manning, 2015; Sennrich et al., 2015) – a means to
specialize a model in a new domain after a period
of training on a general domain. One downside
of utilizing continued training is the model adapts
“too-well” to the new domain at the expense of
performance in the original domain (Freitag and
Al-Onaizan, 2016). One method to mitigate this
performance drop is to prevent certain parameters
of the network from changing with Elastic Weight
Consolidation (EWC) (Kirkpatrick et al., 2017).
Thompson et al. (2019) conveniently provides an
implementation of this technique in Sockeye.
That work illustrated a use case where the orig-

inal domain is news articles, while the new do-
main is text of patent applications – a marked dif-

3Identical training data and starting parameters except for
random seed.

4This may be due to the choice of newstest2014 for vali-
dation during training.
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System newstest2014 newstest2015 newstest2016 newstest2017 newstest2018

bpe30k 33.7 28.9 28.7 31.4 27.6
bpe40k 34.1 29.6 29.4 31.8 27.9
bpe50k 33.9 29.2 29.1 31.6 27.8
bpe60k 33.4 29.1 28.7 31.3 27.6
bpe70k 33.0 28.8 28.8 31.2 26.9
bpe80k 32.6 28.7 28.2 31.1 26.9

Table 3: Cased, detokenized BLEU for various test sets and BPE merge-value treatments. Best scores for each test
set are denoted with bold text.

System newstest2014 newstest2015 newstest2016 newstest2017 newstest2018

single bi-deep 32.7 29.0 28.7 31.3 27.0
single transformer 34.1 29.6 29.4 31.8 27.9
untuned ensemble 36.2 31.6 30.5 34.2 29.7
ensemble tune17 35.3 31.1 30.2 34.2 29.7
ensemble tune14 37.1 31.3 31.2 34.5 30.5

Table 4: Test set comparison for baseline bi-deep, transformer, untuned and tuned ensembles for various test sets
measured in cased, detokenized BLEU. Best scores for each test set are denoted with bold text.

ference in style and content. Here, we created a
news subdomain corpus from the newstest2014
through newstest2017 test sets. The intuition
is that more current events will be discussed in
these test sets than the remainder of the provided
training corpora, allowing better adaptation of new
events in the newest test sets (newstest2018 and
newstest2019.)
We first trained a baseline transformer system

using the best-performing BPE parameters from
Section 2.2, 512-dimension word embeddings, 6
layer encoder and decoder, 8 attention heads, la-
bel smoothing and transformer attention dropout
of 0.1. We then continue-train a model on the
adaptation set described above. We also followed
the Sockeye EWC training procedure, producing a
model more resilient to overfitting due to contin-
ued training. Results for these systems are shown
in Table 5.
We see that the baseline Sockeye transformer

model performs similarly to the baseline single-
model Marian transformer system shown in Table
4. The continued-training system (con’t train) sys-
tem predictably overfit on newstest2014 as ex-
pected, since that test set is a part of the adap-
tation set. Likewise, performance on the out-of-
domain newstest2018 also dropped as a result
of overfitting. The best-performing EWC system5

5EWC applied with weight-decay of 0.001 and learning-

actually improved performance on 2018 with less-
pronounced overfitting on 2014.

System newstest2014 newstest2018

baseline 33.4 27.6
con’t train 89.3 24.3
best EWC 48.5 29.5

Table 5: Sockeye system scores for newstest2014
(in-domain) and newstest2018 (out-of-domain) test
sets for various training conditions measured in Sacre-
BLEU.

For system combination outlined later in Section
4, we decoded test sets with an ensemble of the
four highest-scoring model checkpoints from the
best EWC training run.

3.3 OpenNMT-T

Our first Open-NMT system was trained using the
Transformer architecture with the default “Trans-
formerBig” settings as described in Vaswani et al.
(2017): 6 layers of 1024 units, 16 attention heads.
Dropout rates of 0.3 for layers and 0.1 for atten-
tion heads and relu’s. Training data for this sys-
tem utilized the training corpus from our WMT17
Russian–English system (Gwinnup et al., 2017)
consisting of provided parallel and backtranslated

rate of 0.00001
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data. This data was then processed with a joint 32k
word vocabulary SentencePiece model.

3.4 OpenNMT-G

For our second OpenNMT system, we first trained
language-specific, 32k word vocabularies using
SentencePiece. WMTnews test data from all years
except 2014 and 2017 were used to train Senten-
cePiece. These data, with the addition of the lan-
guage ID filtered ParaCrawl corpus outlined in
Section 2.1, were used for training the system.
WMT news test data from 2014 was used for val-
idation. OpenNMT-tf was used to create the sys-
tem, using the stock “Transformer” model.

3.5 Moses

As in previous years, we trained a phrase-based
Moses (Koehn et al., 2007) system with the same
data as the Marian system outlined in Section 3.1
in order to provide diversity for system combina-
tion. This system employed a hierarchical reorder-
ingmodel (Galley andManning, 2008) and 5-gram
operation sequence model (Durrani et al., 2011).
The 5-gram English language model was trained
with KenLM on all permissable monolingual En-
glish news-crawl data. The BPE model used
was applied to both the parallel training data and
the language modeling corpus. System weights
were tuned with the Drem (Erdmann and Gwin-
nup, 2015) optimizer using the “Expected Corpus
BLEU” (ECB) metric.

4 System Combination

Jane system combination (Freitag et al., 2014) was
employed to combine outputs from the best sys-
tems from each approach outlined above. Indi-
vidual component system and final combination
scores are shown in Table 6 for cased, detokenized
BLEU and BEER 2.0 (Stanojević and Sima’an,
2014) .

5 Submission Systems

We submitted the final 5-system combination out-
lined in Section 4 and the four-checkpoint EWC
ensemble detailed in Section 3.2 to the Russian–
English portion of the WMT19 news task evalu-
ation. Selected newstest2019 automatic scores
from the WMT Evaluation Matrix6 are shown in
Table 7.

6http://matrix.statmt.org

System BLEU BEER

1. Marian 30.47 0.5995
2. Sockeye EWC 29.43 0.5968
3. OpenNMT-T 26.22 0.5737
4. OpenNMT-G 30.05 0.6017
5. Moses 27.33 0.5836

Syscomb-5 32.12 0.6072

Table 6: System combination and input system scores
measured in cased, detokenized BLEU and BEER on
the newstest2018 test set.

System BLEU BEER

afrl-syscomb19 37.2 0.627
afrl-ewc 34.3 0.613

Table 7: Final submission system scores measured in
cased BLEU and BEER on the newstest2019 test set.

6 Conclusion

We presented a series of improvements to our
Russian–English systems, including improved
preprocessing and domain adaptation. Clever
remixing of older techniques from the phrase-
based MT era enabled improvements in ensem-
bled neural decoding. Lastly, we performed sys-
tem combination to leverage benefits from these
new techniques and favorite approaches from pre-
vious years.
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