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Abstract
This paper describes the University of Syd-
ney’s submission of the WMT 2019 shared
news translation task. We participated in the
Finnish→English direction and got the best
BLEU(33.0) score among all the participants.
Our system is based on the self-attentional
Transformer networks, into which we inte-
grated the most recent effective strategies from
academic research (e.g., BPE, back transla-
tion, multi-features data selection, data aug-
mentation, greedy model ensemble, rerank-
ing, ConMBR system combination, and post-
processing). Furthermore, we propose a novel
augmentation method Cycle Translation and
a data mixture strategy Big/Small paral-
lel construction to entirely exploit the syn-
thetic corpus. Extensive experiments show
that adding the above techniques can make
continuous improvements of the BLEU scores,
and the best result outperforms the baseline
(Transformer ensemble model trained with
the original parallel corpus) by approximately
5.3 BLEU score, achieving the state-of-the-art
performance.

1 Introduction

Neural machine translation (NMT), as a succinct
end-to-end paradigm, has resulted in massive leap
in state-of-the-art performances for many lan-
guage pairs (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Bahdanau et al., 2015;
Gehring et al., 2017; Wu et al., 2016; Vaswani
et al., 2017). Among these encoder-decoder net-
works, the Transformer (Vaswani et al., 2017),
which solely uses along attention mechanism
and eschews the recurrent or convolutional net-
works, leads to state-of-the-art translation qual-
ity and fast convergence speed (Ahmed et al.,
2017). Although many Transformer-based vari-
ants are proposed (e.g., DynamicConv (Wu et al.,
2019), sparse-transformer (Child et al., 2019)), our
preliminary experiments show that their perfor-
mances are unstable compared to the traditional

# cycle translated sample sentence pair
1 She stuck to her principles even when

some suggest that in an environment of-
ten considered devoid of such thing there
are little point.

2 She insists on her own principles, even
if some people think that it doesn’t make
sense in an environment that is often con-
sidered to be absent.

Table 1: Example of difference between original sen-
tence (line 1) and cycle translated result (line 2). Pre-
trained BERT model using all available English cor-
pora show that the Loss decreased from 6.98 to 1.52.

Transformer. Traditional Transformer therefore
was employed as our baseline system. In this pa-
per, we summarize the USYD NMT systems for
the WMT 2019 Finnish→English (FI→EN) trans-
lation task.

As the limitation of time and computation re-
sources, we only participated in one challenging
task FI→EN, which lags behind other language
pairs in translation performance (Bojar et al.,
2018). We introduce our system with three parts.

First, at data level, we find that the data qual-
ity of both parallel and monolingual is unbalanced
(i.e., contains a large number of low quality sen-
tences). Thus, we apply several features to se-
lect the data after pre-processing, for example, lan-
guage models, alignment scores etc. Meanwhile,
in order to fully utilize monolingual corpus, not
only back translation (Sennrich et al., 2015) is
adopted to back translate the high quality monolin-
gual sentences with target-to-source(T2S) model,
we also propose Cycle Translation to improve
the low-quality sentences, in turn resulting in cor-
responding high-quality back translation results.
Note that unlike text style transfer task (Shen et al.,
2017; Fu et al., 2018; Prabhumoye et al., 2018)
which transfers text to specific style (e.g., political
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Figure 1: The schematic structure of the three main stages of the USYD-NMT. They are data preparation stage,
model training stage and inference phrase. For brevity, here Mono, Para, and Valid represent the monolingual,
parallel and validation data respectively.

slant, gender), we aim to improve the fluency of
sentences, for instance, through cycle translation,
low quality sentence in Table 1 becomes more flu-
ent in terms of language model score. The top dia-
gram of Figure 1 depicts data preparation process
concretely.

As to model training in the middle part
of Figure 1, we empirically introduced
Big/Small parallel construction strategy to
construct training data for different models. The
intuition is all the data are advantageous and can
be fully exploited by different models, thus we
train 8 Transformer base models (Msmall × 8) by
using different small scale corpus constructed by
small parallel construction method and a Trans-
former big model (Mbig × 1) based on the big
parallel construction method. In the meantime, a
right-to-left model (Mr2l) is trained.

In addition, in inference phrase, we comprehen-
sively consider the ensemble strategies at model
level, sentence level and word level. For model
level ensemble, while brutal ensemble top-N or
last-M models may improve translation perfor-
mance, it is difficult to obtain the optimal result.
Hence we employ Greedy Model Selection based

Ensembling (GMSE) (Partalas et al., 2008; Deng
et al., 2018). For sentence level ensemble, we
keep top n-best for multi-features reranking. And
for word aspect, we adopt the confusion network
decoding (Bangalore et al., 2001; Matusov et al.,
2006; Sim et al., 2007) with using the consen-
sus network minimum Bayes risk (MBR) crite-
rion (Sim et al., 2007). After combination, a post-
processing algorithm is employed to correct in-
consistent number and years between the source
and target sentences. The bottom part of Figure 1
shows the inference process.

Our omnivorous model achieved the best
BLEU (Papineni et al., 2002) scores among sub-
mitted systems, demonstrating the effectiveness
of the proposed approach. Theoretically, our ap-
proach is not specific to the Finnish→English lan-
guage pair, i.e., it is universal and effective for any
language pairs. The remainder of this article is or-
ganized as follows: Section 2 will describe each
component of the system. In Section 3, we intro-
duce the data preparing details. Then, the exper-
imental results are showed in Section 4. Finally,
we conclude in Section 5.
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model parameters M small M big
num stack 6 6
hidden size 512 1024
FFN size 2048 4096

num heads 8 16
p dropout 0.1 0.3

Table 2: Model differences between base and big.

2 Approach

2.1 Neural Machine Translation Models

Given a source sentence X = x1, ..., xT ′ , NMT
model factors the distribution over target sentence
Y = y1, ..., yT into a conditional probabilities:

p(Y |X; θ) =

T+1∏
t=1

p(yt|y0:t−1, x1:T ′ ; θ) (1)

where the conditional probabilities are parameter-
ized by neural networks.

The NMT model consists of two units: an en-
coder and a decoder. The encoder is assumed that
it can adequately represent the source sentence.
Then, the decoder can recursively predict each tar-
get word. Parameters of encoder, decoder and
attention mechanism are trained to maximize the
likelihood with a cross-entropy loss applied:

LML = log p(Y |X; θ)

=
T+1∑
t=1

log p(yt|y0:t−1, x1:T ′ ; θ)
(2)

Concretely, an self-attentional encoder-decoder
architecture (Vaswani et al., 2017) was selected
to capture the causal structure. For training
with different size of corpus, we employ the
Transformer base (M base) and Transformer big
(M big) in our structure, see Table 2.

2.2 Data Selection Features

Inspired by (Bei et al., 2018), where their system
shows data selection can obtain substantial gains,
we deliberately design criteria for parallel and
monolingual corpus. Both of them employ rule-
based features, count features, language model
features. And for parallel data, word alignment-
based features, T2S translation model score fea-
tures are applied. The feature types are described
in Table 3. Our BERT language model used here is

Category Features

NMT Features T2S score (Sennrich et al., 2016)

LM Features

BERT LM (Devlin et al., 2018)

Transformer LM (Bei et al., 2018)

N-gram LM (Stolcke, 2002)

Alignment Features IBM model 2 (Dyer et al., 2013)

Rule-based features Illegal characters (Bei et al., 2018)

Count Features
Word count

Word count ratio

Table 3: Features for data selection.

trained from scratch by the open-source tool1 with
target side data.

According to our observations, by using above
multiple data selection filters, issues like misalign-
ment, translation error, illegal characters, over
translation and under translation in terms of length
could be significantly reduced.

2.3 Cycle Translation for Low-quality Data

Although the data selection procedure has pre-
served relatively high quality monolingual data,
there are still a large batch of data is incomplete or
grammatically incorrect. To address this problem,
we proposed Cycle Translation (denoted as CT (·),
as Figure 2) to improve the mono-lingual data that
below the quality-threshold (According to our em-
pirical ablation study in section 4, the latter 50%
will be cycle translated in our submitted system).

2.4 Back Translation for monolingual corpus

Back-translation (Sennrich et al., 2015; Bojar
et al., 2018), translating the large scale mono-
lingual corpus to generate synthetic parallel data
by Target-to-Source pretrained model, has been
widely utilized to improve the translation quality
since adding the synthetic data into parallel data
can enhance the in-domain information over the
original corpus distributions, allowing the transla-
tion model to be more robust and deterministic.

2.5 Greedy Model Selection Based Ensemble

Model ensemble is a typical boosting technique,
which refers to combining multiple models to re-
duce stochastic differences in the output that may
not be avoided at a single run. Also normally, en-
semble model outperforms the the best single one.

1https://github.com/huggingface/
pytorch-pretrained-BERT

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
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Figure 2: The Cycle Translation process, into which
we feed the low quality monolingual data x, and then
correspondingly obtain the improved data CT (x) (de-
noted as S2T (T2S(x)) in figure). Note that models
marked in red and green represent the T2S and S2T
model trained byMsmall with the processed given par-
allel corpus, the red arrows indicate the data flows of
the opposite language type of the inputs. The dotted
double-headed arrow between the input x and the final
output CT (x) means that they share the semantics but
differs in fluency.

In neural machine translation, we generally en-
semble several checkpoints saved during a single
model training. However, our preliminary experi-
ments show that both top-N or last-M ensembling
approaches could only bring very insignificant im-
provements but consume a lot of GPU resources.

To overcome this issue, we adopt greedy model
selection based ensembling(GMSE), which tech-
nically follows the instruction of (Deng et al.,
2018).

2.6 Reranking n-best Hypotheses

As the NMT decoding being generally from left
to right, this leads to label bias problem (Laf-
ferty et al., 2001). To alleviate this problem, we
rerank the n-best hypotheses through training a k-
best batch MIRA ranker (Cherry and Foster, 2012)
with multiple features on validation set. The fea-
ture pool we integrated include left-to-right (L2R)
translation model, (right-to-left) R2L translation
model, (target-to-source) T2S translation model,
language model, IBM model 2 alignment score,
and word count ratio. After multi-feature rerank-
ing, the best hypothesis of each model (Mbig × 1,
Msmall× 8 and R2L model) was retained for sys-
tem combination.

2.6.1 Left-to-right NMT model
The L2R feature refers to the original translation
model that could generate the n-best list. During
reranking training, we keep the original perplexity
score evaluated by this L2R model as L2R feature.

𝑀_𝑏𝑖𝑔 𝑀_𝑠𝑚𝑎𝑙𝑙1 𝑀_𝑠𝑚𝑎𝑙𝑙8 𝑀_𝑅2𝐿…

1best 1best … 1best 1best

Pooling 1 Best List

ConMBR System Combination

Src sentence

Tgt output

Multiple Systems

Figure 3: The System Combination process, into which
we feed each system/model with the source sentence
x, in turn obtain corresponding 1-best resultMbig(x),
Msmall1(x), ... ,Msmall2(x),MR2L(x) (Note that
the 1-best result here of each system was already
reranked). After pooling all system results, we can per-
form the ConMBR system combination decoding and
obtain the final target side results.

2.6.2 Right-to-Left NMT Model

The R2L NMT model using the same training data
but with inverted target sentences (i.e., reverse tar-
get side characters “a b c d”→“d c b a”). Then,
inverting the hypothesis in the n-best list such that
each sequence can be given a perplexity score by
R2L model.

2.6.3 Target-to-Source NMT Model

The T2S model was initially trained for back-
translation, we can employ this model to assess
the translation adequacy as well by adding the T2S
feature to reranking feature pool.

2.6.4 Language Model

Besides above features, we employ language mod-
els as an auxiliary feature to give the fluent sen-
tences better scores such that the results are easier
to understand by human.

2.6.5 Word Count Ratio

To alleviate over-translation or under-translation
in terms of length, we set the optimal ratio of
Lfi : Len to 0.76 according to the corpus-based
statistics. We use the deviation between the ratio
of each sentence pair and this optimal ratio as the
score.
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src Siltalan edellinen kausi liigassa oli

:::::::
2006-07

pred Siltala’s previous season in the
league was

:::::
2006

::
at

:::
07

+post Siltala’s previous season in the
league was

::::::::
2006-07

Table 4: Example of the effectiveness of post-
processing in handling inconsistent number translation.

Data Sentences
filtered parallel corpus 5,831,606
reconstructed mono 82,773,126
filtered synthetic parallel 75,940,978
small construction(×8) 11,663,212
big construction 151,751,856

Table 5: Data statistics after data preparation

2.7 System Combination
As is shown in Figure 3, in order to take full ad-
vantages of different models(Mbig×1,Msmall×8
and R2L model), we adopted word-level combi-
nation where confusion network was built. Con-
cretely, our method follows Consensus Network
Minimum Bayes Risk (ConMBR) (Sim et al.,
2007), which can be modeled as

EConMBR = argminE′L(E′, Econ) (3)

where Econ was obtained as backbone through
performing consensus network decoding.

2.8 Post-processing
In addition to general post-processing strate-
gies (i.e., de-BPE, de-tokenization and de-
truecase 2), we also employed a post-processing
algorithm (Wang et al., 2018) for inconsistent
number, date translation, for example, “2006-07”
might be segmented as “2006 -@@ 07” by BPE,
resulting in the wrong translation “2006 at 07”.
Our post-processing algorithm will search for the
best matching number string from the source sen-
tence to replace these types of errors, see Table 4.

3 Data Preparation

We used all available parallel corpus 3 for
Finnish→English except the “Wiki Headlines”

2https://github.com/moses-smt/
mosesdecoder/tree/master/scripts

3both parallel and monolingual corpus can be ob-
tained from: http://www.statmt.org/wmt19/
translation-task.html

due to the large number of incomplete sentences,
and for monolingual target side English data,
we selected all besides the “Common Crawl”
and “News Discussions”. The criteria is inspired
by (Marie et al., 2018), who won the first place in
this direction at WMT18. Table 5 shows the final
corpus statistics. More details are as follows:

Parallel Data: We use the criteria in sec-
tion 2.2, the overall criteria are following:

• Remove duplicate sentence pairs.

• Remove sentence pairs containing illegal
characters.

• Retain sentence pairs between 3 and 80 in
length.

• Remove sentence pairs that are too far from
the best ratio(Lfi : Len=0.76)

• Remove pairs containing influent English
sentences according to a series of LM fea-
tures.

• Remove inadequate translation sentence pairs
according toMT2S score.

• Remove sentence pairs with poor alignment
quality according to IBM model 2.

After data selection, there are approximately
5.8M parallel sentences.

Monolingual Data: For our Finnish→English
system, back translation was performed for mono-
lingual English data. Before back-translation,
we filter them according to the aforementioned
criteria in section 2.2 and concurrently, the scores
of each sentence is obtained. After monolingual
selection, there are 82M sentences remained,
which is still a gigantic scale. We cycle translate
the last 25%, 50% and 75% of it in terms of the
LM scores to empirically identify the optimal
threshold and improve the fluency of monolingual
corpora. In doing so, all monolingual corpus is
kept at relatively high quality.

Synthetic Parallel Data: The synthetic parallel
data also needs to be filtered by alignment score
and word count ratio to alleviate poor translation.
Further filtration retains 75M synthetic data.

On the other hand, previous works have shown
that the maximum gain can be obtained by mixing

https://github.com/moses-smt/mosesdecoder/tree/master/scripts
https://github.com/moses-smt/mosesdecoder/tree/master/scripts
http://www.statmt.org/wmt19/translation-task.html
http://www.statmt.org/wmt19/translation-task.html
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# Models news-test18 news-test19 ∆ave

1 Baseline(original parallel + ensemble) 21.8 27.3 −
2 Msmall(selected parallel) 22.6 27.9 +0.70

3 +synthetic 23.9 28.8
4 +GMSE 24.2 29.2
5 +reranking 24.6 29.5
6 +post processing 24.8 29.6 +2.65

7 Cycle translation + B/S construction 25.3 30.9 +3.55

8 +GMSE 25.9 31.7
9 +reranking 26.3 32.4
10 +system combination 26.6 32.8
11 +post processing 26.7 33.0 +5.30

Table 6: FI→EN Results on newstest2018 and newstest2019. The submitted system is the last one.

# CT Ratio Val. ∆

1 [0%] 22.62 -
2 [25%] 23.18 +0.56
3 [50%] 23.70 +1.08
4 [75%] 23.07 +0.45

Table 7: Different experimental settings that employed
different cycle translation thresholds. Val. denotes that
the results are reported on validation set.

the sampled synthetic and original corpus in a
ratio of 1:1 (Sennrich et al., 2015, 2016). The
size of the synthetic corpus is generally larger
than the parallel corpus, thus partial sampling is
required to satisfy the 1-1 ratio. However, such
sampling leads to waste of enormous synthetic
data. To address this issue, we argue that a better
construction strategy can be introduced to make
full use of the synthetic corpus, subsequently
leading to better translation quality.

Small Parallel Construction: We randomly
sampled approximate 5.8M corpus from the
shuffled synthetic data for 8 times and mix them
with parallel data respectively.

Big Parallel Construction: The aim of big
construction is to fully utilize the synthetic data.
To achieve this, we repeated the parallel corpus 13
times and then mixed it with all synthetic corpora.

4 Experiments

The metric we employed is detokenized case-
sensitive BLEU score. news-test2018 is uti-
lized as validation set and test set is officially

released news-test2019. Training set, val-
idation set and test set are processed consis-
tently. Both Finnish and English sentences are
performed tokenization and truecasing with Moses
scripts (Koehn et al., 2007). In order to limit the
size of vocabulary of NMT models, we adopted
byte pair encoding (BPE) (Sennrich et al., 2016)
with 50k operations for each side. All the model
we trained are optimized with Adam (Kingma and
Ba, 2014). Larger beam size may worsen trans-
lation quality (Koehn and Knowles, 2017), thus
we set beam size=10 for each model. All models
were trained on 4 NVIDIA V100 GPUs.

In order to find the optimal threshold in cy-
cle translation procedure, we first report our ex-
perimental results on validation data set with dif-
ferent thresholds, which ranges from [0%, 25%,
50%, 75%]. Intuitively, the quality improvement
of monolingual sentences afforded by cycle trans-
lation could bring better synthetic parallel data,
subsequently leading to more accurate translation
model. Thus, this ablation experiment was trained
with synthetic parallel corpus only with differ-
ent cycle translation ratios on Transformer base
model. As is shown in Table 7, when cycle trans-
lation threshold is 50%, the model could achieve
the relatively best performance. We therefore set
the cycle translation ratio to 50% in our following
main experiment.

Our main experiment is shown in Table 6, our
baseline system is developed with the Msmall

configuration using the original parallel corpus
and last-20 ensemble strategy. Unsurprisingly,
the baseline system relatively performs the worst
in Table 6. The Msmall configuration trained
with selected parallel data improves BLEU by
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+0.7 points. According to exp.[3-6], adding
these components can lead to continuous im-
provements. Notably, with Cycle Translation and
Big/Small parallel construction strategy, our sys-
tem could obtains +3.55 significant improvement.
And exp.[8-11] show that with performing GMSE,
multi-features reranking, ConMBR system combi-
nation and post-processing, our system further im-
proved the BLEU score from 30.9 to 33.0 on the
official data set news-test2019, which sub-
stantially outperforms the baseline by 5.3 BLEU
score.

5 Conclusion and Future Work

This paper presents the University of Sydney’s
NMT systems for WMT2019 Finnish→English
news translation task. We leveraged multi-
dimensional strategies to improve translation qual-
ity in three levels: 1) At data level, in addition to
using various data selection criteria, we proposed
cycle translation to improve monolingual sentence
fluency. 2) For model training, we trained mul-
tiple models with R2L corpus and big/small par-
allel construction corpus respectively. 3) As for
inference, we prove the effectiveness of multi-
features rescoring, ConMBR system combination
and post-processing. We find that cycle transla-
tion and B/S construction approach bring the most
significant improvement for our system.

In future work, we will apply the beam+noise
method (Edunov et al., 2018) to generate robust
synthetic data during back translation, we assume
that this method combined with our proposed cy-
cle translation strategy can bring greater improve-
ment. Also, we would like to investigate hyper-
parameter optimization for neural machine trans-
lation to avoid empirical settings.
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