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Abstract

This article describes the participation of the
UU TAILS team in the 2019 MEDIQA chal-
lenge intended to improve domain-specific
models in medical and clinical NLP. The chal-
lenge consists of 3 tasks: medical language
inference (NLI), recognizing textual entail-
ment (RQE) and question answering (QA).
Our team participated in tasks 1 and 2 and
our best runs achieved a performance accu-
racy of 0.852 and 0.584 respectively for the
test sets. The models proposed for task 1 relied
on BERT embeddings and different ensemble
techniques. For the RQE task, we trained a tra-
ditional multilayer perceptron network based
on embeddings generated by the universal sen-
tence encoder.

1 Introduction

Detecting semantic relations between sentence
pairs is a long-standing challenge for computa-
tional semantics. Given two snippets of text:
Premise P and Hypothesis H, textual entailment
recognition determines if the meaning of H can
be inferred from that of P (Dagan et al., 2013).
The significance of modeling text inference is ev-
ident since it evaluates the capability of Natu-
ral language Processing (NLP) to grasp meaning
and interprets the linguistic variability of the lan-
guage. Natural language inference (NLI) tasks,
also known as Recognizing Textual Entailment
(RTE) require a deep understanding of the se-
mantic similarity between the hypothesis and the
premise. Moreover, they overlap with other lin-
guistic problems such as question answering and
semantic text similarity. The recent years wit-
nessed regular organization of shared tasks tar-
geting the RTE/NLI task, which consequently led
to advances in the field. More complex mod-
els were developed that rely on deep neural net-
works, this was feasible with the availability of

large amounts of annotated datasets such as SNLI
and MultiNLI (Bowman et al., 2015; ?). However,
most models fail to generalize across different NLI
benchmarks (Talman and Chatzikyriakidis, 2018).
Additionally, they do not perform accurately on
domain-specific datasets. This is specifically true
in the medical and clinical domain. Compared to
open domain data, the language used to describe
biomedical events is usually complex, rich in clin-
ical semantics and contains conceptual overlap.
And hence, it is difficult to adapt any of the for-
mer models directly.
The MEDIQA challenge (Ben Abacha et al., 2019)
addresses the above limitations through its three
proposed tasks. The first task aims at identify-
ing inference relations between clinical sentence
pairs and introduces the medical natural language
inference benchmark dataset MedNLI (Romanov
and Shivade, 2018). Its creation process is sim-
ilar to the creation of the gold-standard SNLI
dataset with adaptation to the clinical domain.
Expert annotators were presented 4,638 premises
extracted from the MIMIC-III database (Johnson
et al., 2016) and were asked to write three hy-
potheses with a true, false and neutral descrip-
tion of the premise. The final dataset comprises
14,049 sentence pairs divided into 11,232, 1,395
and 1,422 for training, development and testing re-
spectively. An additional test batch was provided
by the challenge organizers with 405 unlabelled
instances. to the biomedical domain.
Similarly, the second task, Recognizing Question
Entailment (RQE), tackles the problem of finding
duplicate questions by labeling questions based
on their similarity (Ben Abacha and Demner-
Fushman, 2016). Extending the earlier NLI def-
inition, the authors define question entailment as
”Question A entails Question B if every answer
to B is also a correct answer to A exactly or par-
tially”. The dataset is specifically designed to
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find the most similar frequently asked question
(FAQ) to a given question. The training set was
constructed from the questions provided by fam-
ily doctors on the National Library of Medicine
(NLM) platform resulting in 8,588 question pairs
where 54.2% are positive pairs. For validation,
two sources of questions were used: validated
questions from the NLM collections and FAQs
retrieved from the National Institutes of Health
(NIH) website. The validation set has 302 pairs
of questions with 42.7% pairs positively labelled.
The test set for the challenge was balanced and
comprised of 230 question pairs.
The rest of the paper is organized as follows: Sec-
tion 2 briefly discusses related work. We limit
our summary to textual inference research in the
biomedical domain only. In Section 3, we describe
our proposed model and the implementation de-
tails for both tasks. In Section 4, we show the ex-
periment results of our proposed models. Finally,
we conclude our analysis of the challenge, as well
as some additional discussions of the future direc-
tions in Section 5.

2 Related Work

In (Ben Abacha and Demner-Fushman, 2016), the
authors introduce a baseline model for the RQE
dataset. The feature-based model relies on nega-
tion, medical concepts overlap and lexical similar-
ity measures to detect entailment among medical
question pairs. Romanov and Shivade conducted
multiple experiments on the MedNLI dataset to
evaluate the transferability of existing methods
in adapting to clinical RTE tasks (Romanov and
Shivade, 2018). The best performing was the bidi-
rectional LSTM encoder of the inferSent. Their
findings also showed that transfer learning over
the larger SNLI set did not improve the results.
In a previous work, we tried to model textual en-
tailment found in biomedical literature by restruc-
turing an existing YES/NO question-answering
dataset extracted from PubMed(2019). The newly
formed dataset aligned with standard NLI datasets
format. Further on, we combined hand-crafted
features with the inferSent model to detect infer-
ence.
To the best of our knowledge, other than the work
previously mentioned, there has been minimal re-
search conducted directly on the textual entail-
ment task in the biomedical domain. Below, we
summarize scattered attempts to extract contradic-

tions and conflicting statements found in medi-
cal documents. Sarafraz et al. (2012), extracted
negated molecular events from biomedical litera-
ture using a hybrid of machine learning features
and semantic rules. Similiarly, De Silve et al.
(2017), extracted inconsistencies found in miRNA
research articles. The system extracts relevant
triples and scores them according to an apposite-
ness metric suggested by the authors. Alamri
et al. (2016), introduced a dataset of 259 con-
tradictory claims that answer 10 medical ques-
tions related to cardiovascular diseases. Their pro-
posed model relied on n-grams, negation, senti-
ment and directionality features while in (Taw-
fik and Spruit, 2018), the authors exploited se-
mantic features and biomedical word embeddings
to detect contradictions using the same dataset.
Zadrozny et al. (2018) suggested a conceptual
framework based on the mathematical sheaf model
to highlight conflicting and contradictory criteria
in guidelines published by accredited medical in-
stitutes. It transforms natural language sentences
to formulas with parameters, creates partial order
based on common predicates and builds sheaves
on these partial orders.

3 Exploratory Embedding Analysis

With the fast developmental pace of text embed-
ding methods, there is a lack of unified method-
ology to assess these different techniques in the
biomedical domain. We attempted to conduct a
comprehensive evaluation of different text repre-
sentations for both tasks, prior to submission of
round 2 of the challenge. We use the MedSentE-
val1 toolkit, a python-based toolkit that supports
different embedding techniques including tradi-
tional word embeddings like GloVe and FastText,
contextualized embeddings like Embeddings from
Language Models (ELMO) and Bidirectional En-
coder Representations from Transformers (BERT)
and dedicated sentence encoders such as inferSent
and Universal Sentence Encoder (USE). To evalu-
ate the sentence representations fairly, we adopt
a straightforward method that extracts embed-
dings from different techniques and feeds them
to a logistic regression classifier. Our analy-
sis showed that for the NLI task, embeddings
from the inferSent model achieved the best per-
formance. This is not surprising, and aligns

1https://github.com/nstawfik/
MedSentEval

https://github.com/nstawfik/MedSentEval
https://github.com/nstawfik/MedSentEval


495

with the results reported by the benchmark cre-
ator (Romanov and Shivade, 2018). Moreover, we
notice that embeddings acquired from language
models such as ELMO and BERT, were the sec-
ond best performing with minimal accuracy dif-
ference. For the RQE task, the transformer en-
coder of the USE model outperformed all other
methods by a clear margin followed by inferSent
trained with GloVe embeddings. This might be
contributed to the multi-type training data em-
ployed by USE with questions and entailment sen-
tence pairs among others. As observed in the Gen-
eral Language Understanding Evaluation (GLUE)
benchmark dataset, BERT-based models are cur-
rently the state-of-the art models for the NLI task.
Accordingly, we have tried to further investigate
the performance of BERT in the biomedical NLI
domain. We also employed USE and inferSent
sentence embeddings for task 2.

Bidirectional Encoder Representations from
Transformers BERT is a neural model devel-
oped by Google, that makes heavy use of lan-
guage representation models designed to pre-train
deep bidirectional representations (Devlin et al.,
2018). It is trained in an unsupervised manner
over an enormous amount of publicly available
plain text data. Language Modeling (LM) serves
as an unsupervised pre-training stage that can gen-
erate the next word in a sentence with knowledge
of previous words in a sentence. BERT is differ-
ent from other LM-based models because it targets
a different training objective, it uses masked lan-
guage modeling instead of traditional LM. It re-
places words in a sentence randomly and inserts a
”masked” token. The transformer generates pre-
dictions for the masked words by jointly condi-
tioning on both left and right context in all layers.

Universal Sentence Encoder USE is referred
to as ”universal” since, in theory, it is supposed
to encode general properties of sentences given
the large size of datasets it is trained on (Cer
et al., 2018). The multi-task learning encoder
uses several annotated and unannotated datasets
for training. Training data consisted of supervised
and unsupervised sources such as Wikipedia arti-
cles, news, discussion forums, dialogues and ques-
tion/answers pairs. It has two variants of the en-
coding architectures; The transformer model is de-
signed for higher accuracy, but the encoding re-
quires more memory and computational time. The

Deep Averaging Network (DAN) model on the
other hand is designed for speed and efficiency,
and some accuracy is compromised. When in-
tegrated in any downstream task, USE should be
able to represent sentences efficiently without the
need for any domain specific knowledge. This is
a great advantage when limited training resources
are available for specific tasks.

4 Methods

4.1 Task 1: Natural Language Inference
(NLI)

Experimental Settings We take advantage of
two newly released BERT models trained on dif-
ferent biomedical data. The following mod-
els were initialized from the original bert-base-
uncased setting pre-trained with 12 transformer
layers, hidden unit size of d=768, 12 attention
heads and 110M parameters.

• SciBERT2 trained on a random sample of
1.14M scientific articles available in the se-
mantic scholar repository. The training data
consists of full-text papers from the biomed-
ical and computer sciences domain with
a 2.5B and 0.6B word count, respectively
(Beltagy et al., 2019).

• ClinicalBERT3 trained on approximately 2M
clinical records. The training data consists
of intensive care notes distributed among
15 types available in the MIMIC database
(Alsentzer et al., 2019).

We combined both training and evaluation records
to form a new training set of 12627 sentence
pairs. The original test set was used for evalu-
ation and development. We experimented with
all models in pytorch, using the HuggingFace4

re-implementation of the original BERT python
package. We convert the SciBERT models to
make it compatible with PyTorch. We use the fine-
tuning script to train the model on the MEDNLI
dataset in an end-to-end fashion. We trained a total
of 30 models with variations of the model config-
uration. All models with accuracy less than 0.786

2The pre-trained weights for for the SciBERT model
are available at https://github.com/allenai/
scibert

3The pre-trained weights for the ClinicalBERT
model are available at https://github.com/
EmilyAlsentzer/clinicalBERT

4https://github.com/huggingface/
pytorch-pretrained-BERT

https://github.com/allenai/scibert
https://github.com/allenai/scibert
https://github.com/EmilyAlsentzer/clinicalBERT
https://github.com/EmilyAlsentzer/clinicalBERT
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
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Hyperparameter Value
Learning rate 3e-5, 2e-5, 5e-5
Sequence length 64, 128
Number of Epochs 3
Batch Size 8, 16

Table 1: Hyperparameters values for training BERT
models

on development data were discarded. The thresh-
old value was set to the best accuracy achieved for
the MedNLI dataset as reported in the paper. Ta-
ble 1 list the hyperparameters for this set of exper-
iments, the values for other parameters were kept
the same as the original BERT model.

4.1.1 BERT Ensemble Model
Rather than using only a single model for predic-
tions, ensemble techniques can be considered as a
useful method to boost the overall performance. A
key factor in ensembling is how to blend the re-
sults. We experimented with different systems in
terms of size and fusion technique in order to in-
crease performance accuracy:

• Drop-out Averaging: All BERT models are
added into the candidate ensemble set. Itera-
tively, we randomly drop one model at a time.
With each dropout, we test the ability of the
new ensemble set to improve the overall per-
formance by calculating the ensemble’s accu-
racy for the development set by averaging the
output probabilities for each class. The pro-
cess has been repeated until no improvements
were observed and the best performing set is
chosen as the final ensemble set.

• STACKING BERT 1: A meta learner trained
on the predictions generated from all base
models and optimally combine them to form
the final decision. We train three classifiers,
by using five-fold cross validation, includ-
ing a K-Nearest Neighbor (KNN), a linear
Support Vector Machine (SVM) and Naive
Bayesian (NB). The classifiers were imple-
mented through the scikit-learn library 5and
we also apply the grid search method for pa-
rameter tuning (Pedregosa et al., 2011).

• STACKING BERT 2: We create a second
level ensemble stacking. In this level, we
train a logistic regression classifier on top of

5 https://scikit-learn.org/

the combined predictions generated from the
first level stacking stacking BERT phase.

4.2 Task 2: Recognizing Question Entailment
(RQE)

Experimental Settings We use the transformer-
based architecture of the USE encoder as it was
proven to yield better results. USE was imple-
mented through its TF hub module 6. For all pairs,
each input question was embedded separately and
then their combined embedding vector is formed
as (u, v, | u− v |, u ∗ v), which is a concatenation
of the premise and hypothesis vectors and their re-
spective absolute difference and hadamard prod-
uct. We experiment with both logistic regression
and multilayer perceptron on top of the generated
input representations. The MLP consists of a sin-
gle hidden layer of 50 neurons using the adam op-
timizer and a batch size of 64.

5 Results & Discussion

5.1 Task 1: Natural Language
Inference(NLI)

The best performing single BERT model achieved
0.828 for the evaluation set. Table 2 shows results
of each model ensemble used for the NLI task. For
the first run, we only averaged predictions gener-
ated by the ClinicalBERT model. The drop-out
ensembling resulted in 12 models in total. For the
second run, we used KNN classification over pre-
dictions from all trained BERT models. The re-
maining 3 runs use a second level logistic regres-
sion classifier while varying the first level classifi-
cation model. We can observe consistent improve-
ment from successive ensembling from one to two
stacking levels. Our five runs showed substantial
improvement in the performance over the original
baseline with accuracy gain ranging from 10.6%
to 13.8%. By the end of the challenge, 42 teams
submitted a total of 143 runs to the NLI task. our
top performing submission ranked the 12th over all
teams 7. Its corresponding model could be viewed
as a three-stage architecture with 2 level stacking
ensemble as illustrated in figure 1.
All runs submitted relied solely on BERT text rep-

6The TF version of the USE model is available
at https://tfhub.dev/google/universal-
sentence-encoder-large/3

7 Leaderboard for the NLI task: https:
//www.aicrowd.com/challenges/mediqa-
2019-natural-language-inference-
nli/leaderboards (accessed 1st of June 2019)

https://scikit-learn.org/
https://tfhub.dev/google/universal-sentence-encoder-large/3
https://tfhub.dev/google/universal-sentence-encoder-large/3
https://www.aicrowd.com/challenges/mediqa-2019-natural-language-inference-nli/leaderboards
https://www.aicrowd.com/challenges/mediqa-2019-natural-language-inference-nli/leaderboards
https://www.aicrowd.com/challenges/mediqa-2019-natural-language-inference-nli/leaderboards
https://www.aicrowd.com/challenges/mediqa-2019-natural-language-inference-nli/leaderboards
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Submission Model Accuracy
Dev Test

1 Drop-out BERT AVG: 12 models with averaging ensemble 0.836 0.820
2 Stacking BERT 1: KNN 0.846 0.840
3 Stacking BERT 2: KNN followed by LR 0.847 0.847
4 Stacking BERT 2: (KNN/SVM/NB) followed by LR 0.849 0.852
5 Stacking BERT 2: Linear SVM followed by LR 0.846 0.823

Table 2: Results of our team runs on the MEDIQA challenge for the NLI task.

Submission Model Accuracy
Dev Test

1 USE embeddings with LR Classifier 0.770 0.584
2 USE embeddings with MLP Classifier (1 hidden layer with 50) 0.778 0.580

Table 3: Results of our team runs on the MEDIQA challenge for the RQE task.

resentations without any external features. Ini-
tially, we assumed that training our models with
more than just embedding features should help
classification and improve overall performance.
We used the predictions generated by the drop-
out averaging ensemble as extra features to fur-
ther fine-tune a second-level BERT model. The
model hyperparameters settings were the same as
the best performing single base model. We did
not find this experiment to yield any gains in the
evaluation phase, compared to ensemble models,
with only 0.815 accuracy for the development set.
This was also affirmed post submission, with the
release of the gold-labels. The accuracy for the
test set was only 0.812.

5.2 Task 2: Recognizing Question Entailment
(RQE)

Table 3 shows our two submitted runs for task
2. Even though our approach for this task was
much simpler than task 1, we still managed to
achieve a considerably good accuracy outperform-
ing the baseline by 4.3%. The final results show
that our team ranked the 23rd among all 54 par-
ticipants8. Due to time constraints we were un-
able to fully investigate all models described in
section 3, nor conduct a suitably thorough hyper-
parameter search for the MLP. However, we were
able to conduct more evaluations post submission.
We trained the inferSent Bi-LSTM encoder on the

8Leaderboard for the RQE task: https:
//www.aicrowd.com/challenges/mediqa-
2019-recognizing-question-entailment-
rqe/leaderboards (accessed 1st of June 2019)

MedNLI data using GloVe embeddings. We then
used the trained model to generate embeddings for
the RQE data, and used the same MLP architecture
to generate predictions. Despite the similarity of
both tasks and the potential benefit from transfer
learning, the model achieved an accuracy of 0.623
and 0.532 for dev and test set respectively.

Figure 1: Overview of the ensemble architecture of the
best run for the NLI task.

https://www.aicrowd.com/challenges/mediqa-2019-recognizing-question-entailment-rqe/leaderboards
https://www.aicrowd.com/challenges/mediqa-2019-recognizing-question-entailment-rqe/leaderboards
https://www.aicrowd.com/challenges/mediqa-2019-recognizing-question-entailment-rqe/leaderboards
https://www.aicrowd.com/challenges/mediqa-2019-recognizing-question-entailment-rqe/leaderboards
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6 Conclusion

In this paper, we presented our solution for tex-
tual entailment detection in the clinical domain.
Our proposed approach for the NLI task relies
on BERT contextual embeddings features and ma-
chine learning algorithms such as KNN, SVM and
LR for ensembling. We use two different pre-
trained BERT weights to train the base models and
generate corresponding probabilities for the test
set. Then, we adopt a 5-fold stacking strategy to
learn and combine predictions. In the third and
final level of the ensemble, we use a logistic re-
gression over the outputs from level-1 stacking, to
predict the final class labels. A future extension
of our model is to use BERT in feature extraction
mode instead of fine-tuning the end-to-end model
on the MedNLI dataset. This would allow the se-
lection of layers from which to extract embeddings
and/or the combination of multiple layers. In the
former scenario, different neural networks could
be used to generate the base model predictions be-
fore applying ensemble techniques.
For the RQE task, we train an MLP classifier on
top of USE embeddings. The results obtained
were promising, given the simplicity of the model.
More complex and deeper networks could be em-
ployed with the combination of USE embeddings.
We also experimented with transfer learning by
training the inferSent model on MedNLI before
fine-tuning on the RQE corpus. While this ap-
proach did not improve the results, we aim at fur-
ther investigating other inferSent architectures and
training on clinical word embedding.
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