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Abstract

In this paper, we present Biomedical Multi-
Task Deep Neural Network (Bio-MTDNN) on
the NLI task of MediQA 2019 challenge (Ben
Abacha et al., 2019). Bio-MTDNN utilizes
”transfer learning” based paradigm where not
only the source and target domains are differ-
ent but also the source and target tasks are var-
ied, although related. Further, Bio-MTDNN
integrates knowledge from external sources
such as clinical databases (UMLS) enhanc-
ing its performance on the clinical domain.
Our proposed method outperformed the offi-
cial baseline and other prior models (such as
ESIM and Infersent on dev set) by a consider-
able margin as evident from our experimental
results.

1 Introduction

The task of natural language inference (NLI) in-
tends to determine whether a given hypothesis
can be inferred from a given premise. This task
also referred to as recognizing textual entailment
(RTE), is one of the most prevalent tasks among
NLP researchers . It has been one of the signifi-
cant components for several other language appli-
cations such as Information Extraction (IE), Ques-
tion Answering (QA) or Document Summariza-
tion. For example, Harabagiu and Hickl (2006)
argue that RTE can enable QA systems to iden-
tify correct answers by allowing filtering and re-
ranking them w.r.t a given question. Another ap-
proach is proposed by Ben Abacha and Demner-
Fushman (2016), whereby the authors employ
RTE in IE/QA domain to answer a given ques-
tion (queried by a consumer) by retrieving similar
questions that are already well responded by pro-
fessionals.

In order to address this simple yet challeng-
ing task of NLI, several open domain datasets

have been proposed, with Stanford Natural Lan-
guage Inference (SNLI) (Bowman et al., 2015)
and MultiNLI (Williams et al., 2018) being the
most popular ones. They serve as a standard
to assess recent NLI systems. However, there
have been only a few resources available in spe-
cialized domains such as biomedical or medicine.
Language inference in the medical domain is ex-
tremely complex and remains less explored by the
ML community. This scantiness of adequate re-
sources (in terms of datasets) can be attributed
to the fact that patient’s data is sensitive, is ac-
cessible to authorized medical professionals only,
and requires domain experts to annotate it, unlike
generic domains where one can rely on crowd-
sourcing based techniques to acquire annotations.

To this end, Ben Abacha et al. (2019) released
a new dataset made available through MIMIC-III
derived data repository, named MedNLI, for NLI
in the clinical domain which has been annotated
by experts. Along these lines, the MediQA 2019
challenge aims to foster the development of appro-
priate methods, techniques and standards for in-
ference/entailment in the medical domain, specif-
ically on MedNLI dataset through a shared task.
The task intends to recognize three inference rela-
tions between two sentences: Entailment, Neutral
and Contradiction.

Previous research associated with the present
task, such as work by Romanov and Shivade
(2018) analyzed several state-of-the-art open do-
main models for NLI on the MedNLI dataset. The
same has been utilized as a baseline for compar-
ison in the above mentioned shared task. Prior
to this, efforts have been made towards the auto-
matic construction of RTE datasets (Ben Abacha
and Demner-Fushman, 2016; Abacha et al., 2015),
application of active learning on small RTE
data (Shivade et al., 2015).

Our approach to solving the NLI task on the



489

MedNLI data is based on leveraging transfer learn-
ing paradigm integrated with direct incorpora-
tion of domain-specific knowledge from medi-
cal knowledge bases (KB). Unlike Romanov and
Shivade (2018) which utilizes transfer learning to
utilize standard NLI models (such as InferSent and
ESIM trained specifically on NLI task only) in
the clinical domain, we employ Mutli-task learn-
ing (MTL) framework with domain adaptation to
learn representations across multiple natural lan-
guage understanding (NLU) tasks. This approach
not only leverages vast amounts of cross-task data
but also benefits from a regularization effect that
leads to better generalization and facilitates adap-
tation to new tasks and domains. Besides domain
adaptation, we also directly infuse domain specific
knowledge from database of medical terminolo-
gies so as to enable the system to perform well in
the clinical domain.

The rest of the paper is organized as follows:
Section 2 describe the details of our approach.
Section 3 demonstrates the experimental results.
We conclude in Section 4.

2 Approach

This section elaborates on the various methods
we experimented with for the NLI task. In or-
der to establish a simple baseline first, we utilize
a feature-based system. The extracted features in-
clude word containment (Lyon et al., 2001) and
Jaccard similarity (unigram, bigram, and trigram)
based features. We also use similarity measure of
distributed sentence representations obtained us-
ing universal sentence encoder (Cer et al., 2018).
We consider Levenshtein, and Euclidean distance,
negations and cosine function as similarity mea-
sures. In order to find the n-grams, we utilize
NLTK and scispaCy tokenizer (Neumann et al.,
2019). We train a 3-class logistic regression clas-
sifier with above-mentioned features to output the
inference relations. Apart from this baseline, We
now elaborate on the transfer learning and exter-
nal knowledge integration based method in the fol-
lowing subsections.

2.1 Transfer Learning

Given the vast amounts of data available in the
open-domain NLU tasks, we leverage them to at-
tack the NLI task on MedNLI. Given a source do-
main DS , a corresponding source task TS , as well
as a target domain DT and a target task TT , the

objective of transfer learning is to learn the target
conditional probability distribution P (YT |XT ) in
DT with the information gained from DS and TS
where DS 6= DT and/or TS 6= TT . X and Y are
feature and label space respectively.

We consider the scenario when DS 6= DT

(DS being open-domain andDT being clinical do-
main) and TS 6= TT , with two possibilities for tar-
get task TT . In the first scenario, we consider a sin-
gle related TT and in the second scenario we lever-
age multi-task framework where we augment the
TT with multiple but related NLU tasks. For both
the scenarios, we utilize the method of sequential
transfer where a model is pre-trained on the large
source domain data and fine-tuned on limited tar-
get domain data (clinical here). Next, we describe
the neural network based models that we utilize.

2.1.1 Bi-CNN-MI
We leverage Bi-CNN-MI model (Yin and Schütze,
2015) to realize the single transfer task scenario.
This DNN model is trained on a similar NLU task
of paraphrase identification (PI) which is formal-
ized as a binary classification task: for given two
sentences, determine whether they both convey
roughly the same meaning.

Bi-CNN-MI compares two sentences on mul-
tiple levels of granularity (word, short n-gram,
long n-gram and sentence) and learns correspond-
ing sentence representations using a convolutional
neural network (CNN) based Siamese network.
It also captures the sentence interactions between
two sentences by computing an interaction matrix
at each level of granularity. This model has been
reported to outperform various earlier approaches
on PI (Yin and Schütze, 2015).

We leverage this model for sequential transfer
by learning the model parameters on the PI task
and fine-tuning them on MedNLI dataset. Note
that the classification task in MedNLI can also
benefit by capturing interactions at various levels
of granularity making it related to PI task but at
the same time different from PI as the objective of
MedNLI is not only to determine if a pair of sen-
tences convey the same meaning but also segregate
if they oppose each other or are unrelated.

2.1.2 MT-DNN
In the second scenario of transfer learning, we
augment the target task TT by various related NLU
tasks and train the model to perform on all of
them. This approach not only leverages exten-
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Figure 1: Architecture Diagram for Bio-MTDNN. Pr(R|P,H) denotes the probability of inference relation (R)
between Premise (P) and Hypothesis (H).

sive amounts of data on multiple tasks but also
enables the regularization effect leading to bet-
ter generalization ability. Essentially, we want to
use the knowledge acquired by learning from re-
lated tasks to do well on a target task. For this
approach, we utilize MT-DNN (Liu et al., 2019)
which combines MTL with pre-trained language
model (BERT) to improve the text representations.

The MT-DNN model combines four types of
NLU tasks: single-sentence classification (sen-
timent classification, grammatical acceptability),
pairwise text classification (NLI on several cor-
pus and PI), text similarity scoring (STS-B), and
relevance ranking (QNLI). Note, the pairwise text
classification task is the NLI task that we origi-
nally intended to address in MedNLI.

The model architecture of MT-DNN involves
lower layers that are shared across all tasks, while
the top layers represent task-specific outputs. The
input X, comprising of premise P and hypothesis
H is concatenated and represented as a sequence
of embedding vectors (Layer L1). The transformer
encoder (BERT) then captures contextual informa-
tion in the second layer (L2). This is the shared se-
mantic representation that is trained by the multi-
task objectives.

MT-DNN trained on all of the above-mentioned
tasks on open-domain datasets is then fine-tuned
by MedNLI dataset. In this fine-tuning step, we
update the shared weights and weights associated
with only the pairwise text classification task. Es-
sentially, we first try to capture the knowledge

from several related tasks in NLU followed by
adapting the model to the clinical domain.

2.2 Knowledge from External Sources

Medical texts often hold relations between enti-
ties which require domain-specific knowledge for
the analysis. For example, the knowledge that
pneumonia is a lung disease may not be evident
from the clinical text directly. In such a scenar-
ios, incorporation of external knowledge which
conveys such relationships can help. We utilize
UMLS database (restricted to the SNOMED-CT
terminology) represented as a graph where clini-
cal concepts are nodes, connected by edges repre-
senting relations, such as synonymy, parent-child,
etc. Next we discuss the details of the mechanism
to incorporate this external knowledge, thus elab-
orating our Bio-MTDNN model architecture.

2.2.1 Bio-MTDNN
We propose Bio-MTDNN model which integrates
domain knowledge on top of the MT-DNN model
in a way similar to how interactions are captured in
Bi-CNN-MI model. Specifically, we calculate the
interaction matrix IεRN×M between all pairs of
tokens Pi and Hj in the input premise (length N)
and hypothesis (length M) respectively. The value
in each cell is the length of the shortest path lij be-
tween the corresponding concepts of the premise
and the hypothesis in SNOMED-CT. This matrix
is then utilized to generate knowledge attended
representations, P̃ and H̃ . Each token P̃i of the
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premise is a weighted sum of the embeddingHe
j of

the relevant tokens Hj of the hypothesis, weights
derived from the interaction matrix. Finally, the
two knowledge directed representations (averaged
over the token representations) of the premise P̃
and hypothesis H̃ are composed together using
elementary operations (concatenation, multiplica-
tion and subtraction) and fed to a single feed for-
ward layer. This composed representation is then
concatenated with the L2 layer of MT-DNN before
passing it to the task-specific layers.

In the above process, the creation of knowledge
directed representations relies upon the input to-
ken embeddings of premise (P e

j ) and hypothesis
(He

j ). One of the simplest options for token em-
beddings is to use GloVe embeddings (Penning-
ton et al., 2014). However, these embeddings are
not specific to the clinical domain and may re-
sult in many tokens being mapped to the embed-
ding of the unknown (UNK) token. To allevi-
ate this issue, we learned a non-linear transforma-
tion (Sharma et al., 2018) that maps words from
PubMed (Pyysalo et al., 2013) to GloVe subspace.
We train the DNN using the common words in
both the embeddings. We obtain the transformed
embeddings for all the words in the PubMed that
are not present in the GloVe by using inference
step of the learned DNN.

Note that, here we cannot utilize the embed-
dings learned in the first layer (L1) of MT-DNN
as they incorporate segment embeddings of the
premise and hypothesis concatenated together.
Thus, the L1 layer of MT-DNN learns the interac-
tions between premise and hypothesis in an end-
to-end manner. However, what we are trying is to
learn these interactions which are directed by the
knowledge obtained from UMLS enabling Bio-
MTDNN to incorporate external information.

3 Experiments and Results

3.1 Setup and Implementation Details
For the feature-based system we used Logis-
tic Regression classifier from the scikit-learn li-
brary (Pedregosa et al., 2011). We use pub-
licly available implementations for Bi-CNN-Mi1

and MT-DNN2. For external knowledge integra-
tion, the required medical concepts in SNOMED-
CT were identified in the premise and hypothesis
sentences using MetaMap by Aronson and Lang

1https://github.com/chantera/bicnn-mi
2https://github.com/namisan/mt-dnn

Model Dataset
Dev Test

MT-DNN
+ External Knowledge

81.2 81.3

MT-DNN 80.1 80.5
Infersent 73.5 -

ESIM 73.1 -
Official Baseline 71.4
Features Baseline 51.9 49.4

Bi-CNN-MI 54.1 53.6

Table 1: Experimental Results

(2010). We used glove and PubMed word embed-
dings and used DNN (Sharma et al., 2018) for non-
linear projection. In all experiments we report the
average result (on the dev set) of 5 different runs,
with the same hyperparameters and different ran-
dom seeds. For the best performing systems, we
also report the results on the test set.

3.2 Results and Discussions

Table 1 mentions the experimental results for all
the systems. Bio-MTDNN performs best among
all the systems with 81.2% accuracy on the dev set.
Integration of external knowledge in Bio-MTDNN
helped the system to outperform the MT-DNN per-
formance (with 80.1% accuracy). The multi-task
learning framework boosted the performance of
both the systems. We submitted results from Bio-
MTDNN for the challenge which obtained 81.3%
accuracy on the test set.

In order to compare against other transfer learn-
ing based approaches (Romanov and Shivade,
2018), we also mention the results of Infersent and
ESIM (note that for both these models, DS 6= DT

and TS = TT , unlike the scenarios we consid-
ered). It can be observed that Bio-MTDNN out-
performs both ESIM and Infersent with signifi-
cant margins. This can be attributed to the exter-
nal knowledge incorporation and ability of MTL
framework which empowers the model to learn
better shared representations. However, contrary
to the expectations, Bi-CNN-MI model performs
very poorly on the dev dataset with only 54.1%
accuracy, only slightly better than feature based
baseline which achieves 51.9 % accuracy. This
may be attributed to the possibility that the knowl-
edge gained by Bi-CNN-MI when trained on PI
task (although a related task to NLI) is not suffi-
cient for the model to be able to segregate contra-
dicting premise and hypothesis.
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4 Conclusion

In this paper, we introduce Bio-MTDNN , which
is a knowledge directed, multi-task learning based
language inference model for biomedical text min-
ing. While MT-DNN was built for general purpose
language understanding, Bio-MTDNN effectively
leverages domain specific knowledge from UMLS
as demonstrated by our experimental study. We
presented our results on the MedNLI dataset un-
der MediQA challenge. Incorporation of knowl-
edge from external sources such as UMLS gives
performance advantage to Bio-MTDNN. Our pro-
posed system outperformed the official baseline
and other prior models (ESIM and Infersent on dev
set) by a great margin.
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