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Abstract

This paper presents the submissions by Team
Dr.Quad to the ACL-BioNLP 2019 shared task
on Textual Inference and Question Entailment
in the Medical Domain. Our system is based
on the prior work Liu et al. (2019) which uses
a multi-task objective function for textual en-
tailment. In this work, we explore different
strategies for generalizing state-of-the-art lan-
guage understanding models to the specialized
medical domain. Our results on the shared task
demonstrate that incorporating domain knowl-
edge through data augmentation is a power-
ful strategy for addressing challenges posed by
specialized domains such as medicine.

1 Introduction

The ACL-BioNLP 2019 (Ben Abacha et al., 2019)
shared task focuses on improving the following
three tasks for medical domain: 1) Natural Lan-
guage Inference (NLI) 2) Recognizing Question
Entailment (RQE) and 3) Question-Answering re-
ranking system. Our team has made submissions
to all the three tasks. We note that in this work we
focus more on the task 1 and task 2 as improve-
ments in these two tasks reflect directly on the task
3. However, as per the shared task guidelines, we
do submit one model for the task 3 to complete our
submission.

Our approach for both task 1 and task 2 is
based on the state-of-the-art natural language un-
derstanding model MT-DNN (Liu et al., 2019),
which combines the strength of multi-task learn-
ing (MTL) and language model pre-training. MTL
in deep networks has shown performance gains
when related tasks are trained together resulting
in better generalization to new domains (Ruder,
2017). Recent works such as BERT (Devlin et al.,
2018), ELMO (Peters et al., 2018) have shown

∗ equal contribution

the efficacy of learning universal language repre-
sentations in providing a decent warm start to a
task-specific model, by leveraging large amounts
of unlabeled data. MT-DNN uses BERT as the en-
coder and uses MTL to fine-tune the multiple task-
specific layers. This model has obtained state-
of-the-art results on several natural language un-
derstanding tasks such as SNLI (Bowman et al.,
2015), SciTail (Khot et al., 2018) and hence forms
the basis of our approach. For the task 3, we use
a simple model to combine the task 1 and task 2
models as shown in §2.5.

As discussed above, state-of-the-art models us-
ing deep neural networks have shown significant
performance gains across various natural language
processing (NLP) tasks. However, their general-
ization to specialized domains such as the medical
domain still remains a challenge. Romanov and
Shivade (2018) introduce a new dataset MedNLI,
a natural language inference dataset for the med-
ical domain and show the importance of incor-
porating domain-specific resources. Inspired by
their observations, we explore several techniques
of augmenting domain-specific features with the
state-of-the-art methods. We hope that the deep
neural networks will help the model learn about
the task itself and the domain-specific features will
assist the model in tacking the issues associated
with such specialized domains. For instance, the
medical domain has a distinct sublanguage (Fried-
man et al., 2002) and it presents challenges such
as abbreviations, inconsistent spellings, relation-
ship between drugs, diseases, symptoms.

Our resulting models perform fairly on the un-
seen test data of the ACL-MediQA shared task.
On Task 1, our best model achieves +14.1 gain
above the baseline. On Task 2, our five-model en-
semble achieved +12.6 gain over the baseline and
for Task 3 our model achieves a a +4.9 gain.
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2 Approach

In this section, we first present our base model
MT-DNN (Liu et al., 2019) which we use for both
Task 1 and Task 2 followed by a discussion on
the different approaches taken for natural language
inference (NLI) (§2.3), recognizing question en-
tailment (RQE) (§2.4) and question answer (QA)
(§2.5).

Data Pre-Processing Data Augmentation

BERT Encoder 

Premise / CHQ Hypothesis / FAQ

Pairwise Text
Classification

EnsembleDataset Prior

Post-Process

Model

Pre-Process

NLI / RQE

RQE only

NLI only

Figure 1: System overview for NLI and RQE task
.

2.1 Task 1 and Task 2 Formulation
Formally, we define the problem of textual
entailment as a multi-class classification task.
Given two sentences a =a1, a2..., an and b =
b1, b2, ..., bm, the task is to predict the correct la-
bel. For NLI, a refers to the Premise and b refers
to the Hypothesis and the label set comprises of
entailment, neutral, contradiction. For RQE, a
refers to the CHQ and b refers to the FAQ and the
label set comprises of True, False.

2.2 Model Architecture
A brief depiction of our system is shown in Fig-
ure 1. We represent components which were used
for both NLI and RQE in Orange. An exam-
ple of this is the Data Pre-processing component.
The RQE only components are shown in yellow
(eg. Data Augmentation). The components which
were used only for the NLI modules are shown in
Pink (eg. Dataset Prior). We base our model on
the state-of-the-art natural language understanding
model MT-DNN (Liu et al., 2019). MT-DNN is
a hierarchical neural network model which com-
bines the advantages of both multi-task learning
and pre-trained language models. Below we de-
scribe the different components in detail.

Train Validation Test
Entailment 3744 465 474
Contradiction 3744 465 474
Neutral 3744 465 474

Table 1: The number of train and test instances in each
of the categories of the NLI dataset.

Encoder: Following BERT (Devlin et al.,
2018), each sentence pair is separated by a [SEP]
token. It is then passed through a lexicon encoder
which represents each token as a continuous rep-
resentation of the word, segment and positional
embeddings. A multi-layer bi-directional trans-
former encoder (Vaswani et al., 2017) transforms
the input token representations into the contextual
embedding vectors. This encoder is then shared
across multiple tasks.

Decoder: We use the Pairwise text classifica-
tion output layer (Liu et al., 2019) as our de-
coder. Given a sentence pair (a,b), the above
encoder first encodes them into u and v respec-
tively. Then a K-step reasoning is performed
on these representations to predict the final label.
The initial state is given by s =

∑
j αjuj where

αj =
exp(wTuj)∑
i exp(w1

Tui)
. On subsequent iterations k ∈

[1,K−1], the state is sk = GRU(sk−1,xk) where
xk =

∑
j βjvj and βj = softmax(sk−1w2

Tv).
Then a single-layer classifier predicts the label at
each iteration k:

P k = softmax(w3
T [sk;xk; |sk − xk|; sk.xk])

Finally, all the scores across the K iterations are
averaged for the final prediction. We now describe
the modifications made to this model for each re-
spective task.

2.3 Natural Language Inference

This task consists of identifying three inference re-
lations between two sentences: Entailment, Neu-
tral and Contradiction

Data: The data is based off the MedNLI dataset
introduced by Romanov and Shivade (2018). The
statistics of the dataset can be seen in Table 1.

Data Pre-Processing: On manual inspection of
the data, we observe the presence of abbreviations
in the premise and hypothesis. Since lexical over-
lap is a strong indicator of entailment by virtue of
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pre-trained embeddings on large corpora, the pres-
ence of abbreviations makes it challenging. There-
fore, we expand the abbreviations using the fol-
lowing two strategies:

1. Local Context: We observe that often an ab-
breviation is composed of the first letters of
contiguous words. Therefore, we first con-
struct potential abbreviations by concatenat-
ing first letter of all words in an sequence, af-
ter tokenization. For instance, for the premise
shown below we get {CXR, CXRS, XRS,
CXRSI, XRSI, RSI, etc}. This is done for
both the premise and the hypothesis. We then
check if this n-gram exists in the hypothesis
(or the premise). If yes, then we replace that
abbreviation with all the words that make up
the n-gram. Now the model has more scope
of matching two strings lexically. We demon-
strate an example below:

Premise: Her CXR was clear and it did not
appear she had an infection.
Hypothesis: Chest X-Ray showed infil-
trates.

Premise Modified: Her Chest X-Ray was
clear and it did not appear she had an infec-
tion.

2. Gazetteer: If either the premise/hypothesis
does not contain the abbreviation expansion
or contains only partial expansion, the Local
Context technique will fail to expand those
abbreviations. Hence, we use an external
gazetteer extracted from CAMC1 to expand
commonly occurring medical terms. There
were 1373 entries in the gazetteer, cover-
ing common medical and clinical expansions.
For instance,
Premise: On arrival to the MICU , patient is
hemodynamically stable .
Premise Modified: On arrival to the Medi-
cal Intensive Care Unit , patient is hemody-
namically stable .

We first performed the local context replace-
ment as they are more specific to a given premise-
hypothesis pair. If there was no local context
match, then we did a gazetteer lookup. It is to be
noted that one abbreviation can have multiple ex-
pansions in the gazatteer and thus we hypothesized

1https://www.camc.org/

that local context should get preference while ex-
panding the abbreviation.

Training Procedure: For training the MT-DNN
model, we use the same hyper-parameters pro-
vided by the authors (Liu et al., 2019). We train
model for 4 epochs and early stop when the model
reaches the highest validation accuracy.

Baselines: We use the following baselines simi-
lar to Romanov and Shivade (2018).

• CBOW: We use a Continuous-Bag-Of-Words
(CBOW) model as our first baseline. We take
both the premise and the hypothesis and sum
the word embeddings of the respective state-
ments to form the input layer to our CBOW
model. We used 2 hidden layers and used
softmax as the decision layer.

• Infersent: Inferesent is a sentence encoding
model which encodes a sentence by doing
a max-pool on all the hidden states of the
LSTM across time steps. We follow the au-
thors of Romanov and Shivade (2018) by us-
ing shared weights LSTM cell to get the sen-
tence representation of the premise(U) and
the hypothesis(V). We feed these represen-
tations U and V to an MLP to perform a
3 way prediction. For our experiments, we
use the pre-trained embeddings trained on
the MIMIC dataset by Romanov and Shivade
(2018). We used the same hyperparameters.

• BERT: Since MT-DNN is based off of the
BERT (Devlin et al., 2018) model as the en-
coder, we also compare results using just
the pre-trained BERT. We used bert-base-
uncased model which was trained for 3
epochs with a learning rate of 2e-5 and a
batch size of 16 with a maximum sequence
length of 128. WE used the last 12 pre-
trained layers of the model.

2.3.1 Results and Discussion
In this section we discuss the results of all of our
experiments on the NLI task.

Ablation Study: First, we conduct an ablation
study to study the effect of abbreviation expan-
sion. Table 2 shows the results of the two ab-
breviation expansion techniques for the Infersent
model. We observe the best performance with
the Gazetteer strategy. This is because most sen-
tences in the dataset did not have the abbreviation
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Model Ablation Accuracy
Infersent 78.8 +/- 0.06
Infersent + Local-Context 78.8 +/- 0.02
Infersent + Local-Context + Gazetteer 78.5 +/- 0.36
Infersent + Gazetteer 79.1 +/ 0.14

Table 2: The results reported in the table is mean and
variance of the models averaged on 3 runs using differ-
ent random seeds.

matched through the local context match. Since
expanding abbreviations helped increase lexical
overlap, going forward we use the expanded ab-
breviation data for all our experiments henceforth.
Table 3 shows the confusion matrix for the In-
fersent model. The rows represent the ground truth
and the columns represent the predictions made by
us. We can see that the model is most confused
about the entailment and neutral classes. 82 times
the model predicts neutral for entailment and 85
times vice versa. In order to address this issue, we
add a prior on the dataset as a post processing step.

Contradiction Entailment Neutral
Contradiction 396 43 26
Entailment 30 353 82
Neutral 23 85 357

Table 3: Confusion matrix for NLI classes for Infersent
model. Rows denote the true labels and columns denote
the model predictions.

Prior on the dataset: Our dataset analysis on
the validation set revealed that there were three hy-
pothesis for a given premise with mutually exclu-
sive labels. Since we know that for a given premise
there can only be one entailment because of the na-
ture of the dataset, we post-process the model pre-
dictions to add this constraint. For each premise
we collect the prediction probability for each of
the hypothesis and pick the hypothesis having the
highest probability for entailment. We perform the
same selectional preference procedure on the re-
maining two classes. Such a post-processing en-
sures that each premise always has three hypothe-
ses with mutually exclusive labels.

Table 4 documents the results of the different
models on the validation set. We observe that
our method gives the best performance among the
three baselines. Based on these results, our final
submission on the unseen data can be seen in the
last row.

Model Ablation Accuracy
CBOW 74.7
Infersent 79.1
BERT 80.4
Ours 82.1

(Ben Abacha et al., 2019) (Unseen Test) 71.4
Ours (Unseen Test) 79.6
Ours (Unseen Test) + Prior 85.5

Table 4: NLI results on the validation set.

2.3.2 Error Analysis
We perform qualitative analysis of our model and
bucket the errors into the following categories.

1. Lexical Overlap: From Table 6, we see
that there is a high lexical overlap between
the premise and hypothesis, prompting our
model to falsely predict entailment.

2. Disease-Symptom relation: In the second
example, we can see that our model lacks
sufficient domain knowledge to relate hyper-
glycemia (a symptom) to diabetes (a disease).
The model interprets these to be two unre-
lated entities and labels as neutral.

3. Drug-disease relation: In the final example
we see that our model doesn’t detect that the
drug names in the premise actually entail the
condition in hypothesis.

These examples show that NLI in the medi-
cal domain is very challenging and requires in-
tegration of domain knowledge with respect to
understanding complex drug-disease or symptom-
disease relations.

2.4 Recognizing Question Entailment

This task focuses on identifying entailment be-
tween two questions and is referred as recognizing
question entailment (RQE). The task is defined as
: ”a question A entails a question B if every an-
swer to B is also a complete or partial answer to
A”. One of the questions is called CHQ and the
other FAQ.

Data: The data is based on the RQE dataset col-
lected by Abacha and Dina (2016). The dataset
statistics can be seen in Table 7.

Pre-Processing: Similar to the NLI task, we
pre-process the data to expand any abbreviations
in the CHQ and FAQ.
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Type CHQ FAQ Label
Train What is the treatment for What is the treatment for True

tri-iodothyronine thyrotoxicosis? T3 (triiodothyronine) thyrotoxicosis?
Do Coumadin and Augmentin interact? How do you inject the bicipital tendon? False

Validation sepsis. Can sepsis be prevented. Who gets sepsis? True
Can someone get this from a hospital?
medicine and allied. I LIKE TO KNOW What is an Arrhythmia? False
RECENT THERAPY ON ARRHYTHMIA OF HEART

Table 5: Examples of question entailment from train and validation set.

Lexical Overlap

Premise
Hypothesis
Ground truth
Prediction

She is on a low fat diet
She said they also have her on a low salt diet.
Neutral
Entailment

Disease-Symptom relation

Premise
Hypothesis

Ground truth
Prediction

Patient has diabetes
The patient presented with a change in mental status
and hyperglycemia.
Entailment
Neutral

Drug-Disease relation

Premise

Hypothesis
Ground truth
Prediction

She was treated with Magnesium Sulfate, Labetalol, Hydralazine
and bedrest as well as betamethasone.
The patient is pregnant
Entailment
Neutral

Table 6: Qualitative analysis of the outputs produced by our model. We categorize the errors into different buckets
and provide cherry-picked examples to demonstrate each category.

Label Train Set Validation set
True 4655 129
False 3933 173

Table 7: The number of train and validation instances
in each of the categories of the RQE dataset.

Training Procedure: The multi-task MT-DNN
model gave the best performance for the NLI task,
which motivated us to use it for the RQE task as
well. We use the same hyperparamters as Liu et al.
(2019) and train the model for 3 epochs.

Baselines: We compare our model with the fol-
lowing baselines:

• SVM: Similar to Abacha and Dina (2016), we
use a feature based model SVM and Logis-
tic Regression for the task of question en-
tailment. We extract the features presented
in Abacha and Dina (2016) to the best of
our abilities. Their model uses lexical fea-
tures such as word overlap, bigram propor-
tion, Named Entity Recognition (NER) fea-

tures and features from the Unified Medical
Concepts (UMLS) repository. Due to access
issues, we only use the i2b2 2 corpus for ex-
tracting the NER features.

• BERT: Like before, we compare our model
with the pre-trained BERT model. For this
task, we used the bert-base-uncased model
and fine-tuned the last 12 layers for 4 epochs
with learning rate 2e-5. A batch size of 16
was used.

2.4.1 Distribution Mismatch Challenges
The RQE dataset posed many unique challenges,
the main challenge being that of distribution mis-
match between the train and validation distribu-
tion. Table 5 shows some examples from the train-
ing and validation set which illustrate these chal-
lenges. We observe that in the training set, en-
tailing examples always have high lexical overlap.
There were about 1543 datapoints in the training
set where the CHQ and FAQ were exact dupli-
cates. The non-entailing examples in the training

2https://www.i2b2.org/NLP/DataSets/
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set are completely un-related and hence the nega-
tive examples are not strong examples. Whereas in
the validation set the negative examples also have
lexical overlap. Furthermore, the nature of text
in the validation set is more informal with incon-
sistent casing, punctuation and spellings whereas
the training set is more structured. Furthermore,
the length of the CHQ in the validation set is
much longer than those observed in the training
set. Therefore, we design our experimental set-
tings based on these observations.

2.4.2 Data Augmentation
In order to address these challenges, we attempt to
create synthetic data which is similar to our valida-
tion set. Another motivation for data augmentation
was to increase the training size because neural
networks are data hungry. Since most deep neu-
ral models rely on lexical overlap as strong indi-
cator of entailment, we therefore use the UMLS
features to augment our training set, but such that
they help disambiguate the false positives. We use
the following procedure for data augmentation:

1. We retrieve UMLS features for each question
in the training, validation and test datasets,
using the MetaMap 3 classifier.

2. We use the retrieved concept types and
canonical names to create a new question-
pair with the same label as shown in Figure
2, where the phrase primary ciliary dyskine-
sia has been replaced by its canonical name
kartaganer syndrome and concept type Dis-
ease or Syndrome. Since BERT and MT-
DNN have been trained on vast amount of
English data including Wikipedia, the mod-
els are sensitive to language structure. There-
fore, while augmenting data with UMLS fea-
tures, we attempt to maintain the language
structure, as demonstrated in Figure 2. Since
UMLS provides the canonical features for
each phrase in the sentence, we replace the
found phrase with the following template <
UMLS Canonical name >, a <UMLS Con-
cept Type>.

Along with the synthetic data, we also exper-
iment with another question entailment dataset
Quora-Question Pairs (QQP). We describe the dif-
ferent training data used in our experiments:

3https://metamap.nlm.nih.gov

1. Orig: Using only the provided training data.

2. DataAug: Using the validation set aug-
mented with the UMLS features as discussed
above. The provided training data was not
used in this setting because of distribution
mismatch. Despite the validation set being
low-resources (300 sentences), MT-DNN has
shown the capability of domain adaptation
even in low-resource settings.

3. QQP: Quora Question pair 4(QQP) is a
dataset which was released to identify dupli-
cate questions on Quora. Questions are con-
sidered duplicates if the answer to one ques-
tion can be be used as the answer to another
question. We hypothesized that jointly train-
ing the model with the Quora-Question Pairs
dataset should help as it is closest to our RQE
dataset in terms of online forum data. We
choose a subset of approx. 9k data points
from QQP as this dataset has 400k training
data points, in order to match the data points
from the RQE training data. Along with this
we use the validation set to train our model.

4. Paraphrase: Generated paraphrases of the
DataAug using an off-the-shelf tool 5. This
was inspired by the observation that valida-
tion set was in-domain but since it was low-
resourced, this tool provides a cheap way of
creating additional artificial dataset.

2.4.3 Results and Discussion
The results over the validation set are in Table 9.
We see that the MT-DNN model performs the best
amongst all the other models. Addition of the
QQP datasets did not add extra value. We hypoth-
esize that this is due to lack of in-domain medical
data in the QQP dataset.

The results of the MT-DNN model with the dif-
ferent training settings can be seen in Table 10.
The test set comprises of 230 question pairs. We
observe that the DataAug setting where the MT-
DNN model is trained on in-domain validation set
augmented with UMLS features, performs the best
amongst all the strategies. Similar to the valida-
tion set, in this setting we also modify the test
set with the UMLS features by augmenting it us-
ing the procedure of data augmentation described

4https://data.quora.com/First-Quora-Dataset-Release-
Question-Pairs

5https://paraphrasing-tool.com
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CHQ FAQ

UMLS FEATURE EXTRACTOR

DATA PROCESSING

I am suffering from Kartagener's syndrome
...wanted information ... for this syndrome. ...

What is primary ciliary
dyskinesia ?

I am suffering from Kartagener's syndrome, 
a Disease or Syndrome, ...wanted
information... for this syndrome, a Disease or
Syndrome,. ...

what is kartagener syndrome,
a Disease or Syndrome, ?

Figure 2: Data augmentation using domain knowledge for RQE.

Lexical Overlap

CHQ
FAQ
Ground truth
Prediction

Please i want to know the cure to Adenomyosis... I want to see a specialist doctor to help me out.
Do I need to see a doctor for Adenomyosis ?
False
True

Multiple Questions

CHQ

FAQ
Ground truth
Prediction

Bipolar and Generalized Anxiety Disorder I read about Transcranial magnetic stimulation Therapy.
Do you know anything about it? Has it had success? Also wondering about ECT? ...
Is that true for mixed bipolar and generalized anxiety disorder along with meds?
Have you ever heard of this?
How effective is Transcranial magnetic stimulation for GAD?
True
False

Co-reference

CHQ

FAQ
Ground truth
Prediction

spina bifida; vertbral fusion;syrinx tethered cord.
can u help for treatment of these problem.
Does Spina Bifida cause vertebral fusion?
True
True

Table 8: Qualitative analysis of the outputs produced by our RQE model. We categorize the errors into different
buckets and provide cherry-picked examples to prove our claim.

above. Therefore, the test set now comprises of
460 question pairs. We refer to the provided test
set of 230 pairs as original and the augmented test
set as UMLS. We submitted the outputs on both
the original test set and the UMLS augmented test
set and observe that the latter gives +4.3 F1 gain
over the original test set. We hypothesize that the
addition of the UMLS augmented data in the train-
ing process helped the model to disambiguate false
negatives.

Despite training data being about medical ques-
tions, it has a different data distribution and lan-
guage structure. Adding it actually harms the
model, as seen by the + Orig + DataAug + QQP
model. For our final submission, we took an en-
semble of all submissions using a majority vote
strategy. The ensemble model gave us the best per-
formance.

Model Accuracy F1
Abacha and Dina (2016) - 75.0
SVM 71.9 70.0

BERT 76.2 76.2
MT-DNN + Orig 78.1 77.4
MT-DNN + QQP 80.8 77.2

Table 9: Results on the RQE validation set.

Model F1
Ben Abacha et al. (2019) 54.1

MT-DNN + Orig 58.9
+ Orig + DataAug + QQP 60.6
+ DataAug (UMLS) 64.9
+ DataAug (original) 61.5
+ DataAug + QQP (UMLS) 64.9
Ensemble 65.8

Table 10: Results on the RQE test set.
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Questions Avg answer count Avg answer length
Train set 1 104 8 434.8
Train set 2 104 8 432.5

Validation set 25 9 420.4
Test set 150 7 418.0

Table 11: Dataset statistics for re-ranking task.

2.4.4 Error Analysis
Since we used the validation set for training the
model, we cannot directly perform a standard er-
ror analysis. However, we manually analyze 100
question pairs from the test set and look at the
different model predictions. We categorize errors
into the following categories, as shown in Table 8.

1. Lexical Overlap: Most of the models we
used above rely strongly on lexical overlap of
tokens. Therefore, question-pairs with high
orthography overlap have a strong prior for
the True label denoting entailment.

2. Multiple-Questions: Often CHQ questions
contained multiple sub-questions. We hy-
pothesize that multiple questions tend to con-
fuse the model. Furthermore, as seen in Table
8, the FAQ entails from two sub-questions in
the CHQ. This shows that the model lacks the
ability to perform multi-hop reasoning.

3. Co-reference: The model is required to per-
form entity co-reference as part of the en-
tailment. In the example shown in Table 8,
majority of our models marked this as entail-
ment purely because of lexical overlap. How-
ever, there was a need for the model to iden-
tify co-reference between these problem and
the problems mentioned in the previous sen-
tence.

2.5 Question-Answering
In this section, we focus on building a re-ranker
for question-answering systems. In particular, we
attempt to use the NLI and RQE models for this
task. In the ACL MediQA challenge, the question-
answering system CHiQA 6 provides a possible set
of answers and the task is to rank them in the order
of relevance.

Data: The task-3 dataset comprises of 2 training
sets and a validation set. The distribution of the
data across train, validation and test was consistent

6https://chiqa.nlm.nih.gov/

in terms of average number of answer candidates
and average answer length per questio can be seen
in Table 11.

2.5.1 Our Method
We implement the following re-ranking methods.

BM25: This is a ranking algorithm used for rele-
vance based ranking given query. The formulation
is given below:

score(D,Q) =
n∑

i=1

IDF (qi) ·
f (qi, D) · (k1 + 1)

f (qi, D) + k1 ·
(
1 − b + b · |D|

avgd

)
(1)

IDF (qi) = log
N − n (qi) + 0.5

n (qi) + 0.5
(2)

Here D is the answer. Q is a list of all words in
the question. qi refers to a single word. f(qi, D)
is the term frequency of qi in document D. avgd is
the average answer length. The hyper-parameters
used for this experiment were b = 0.75 and k1=
1.2. As shown in table 12 this gave an accuracy of
66.6 on the validation set.

NLI-RQE based model: In our second ap-
proach we leverage the pre-built NLI and RQE
models from Task 1 and 2 by including the NLI
and RQE scores for each question-answer pair as
a feature. For instance, given a question, for each
answer snippet we compute NLI scores for each
sentence in the answer with the question. Since
the answer snippet also contains sub-questions, we
use the RQE scores to compute entailment with
the question. This is illustrated below:
Question: ”about uveitis. IS THE UVEITIS, AN
AUTOIMMUNE DISEASE”

For the NLI scoring we would consider state-
ments from the answer which might predict entail,
contradict or neutral for the pair. Such as Uveitis is
caused by inflammatory responses inside the eye.

Similarly we use the question phrases from the
answer to give the particular answer a RQE score
based on the number of entailments Facts About
Uveitis (What Causes Uveitis?)
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Finally, we use the BM25 score for the given an-
swer and concatenate with the above features and
use SVM as the classifier.

Model Accuracy %
BM-25 66.6

RQE+NLI+Source 67.5

Ben Abacha et al. (2019) (Unseen Test) 51.7
Ours 56.5

Table 12: Accuracy for task 3 on both validation set
(top) and test set (bottom).

2.5.2 Results
Table 12 documents the results of our experiments.
We observe that adding NLI and RQE as features
show some improvement over the BM25 model.

3 Conclusion and Future Work

In this work, we present a multi-task learning ap-
proach for textual inference and question entail-
ment tailored for the medical domain. We observe
that incorporating domain knowledge for special-
ized domains such as the medical domain is nec-
essary. This is because models such as BERT and
MT-DNN have been pre-trained on large amounts
of generic domains, leading to possible domain
mismatch. In order to achieve domain adaptation,
we explore techniques such as data augmentation
using UMLS features, abbreviation expansion and
observe a gain of +10.8 F1 for RQE. There are
still many standing challenges such as incorporat-
ing common-sense knowledge apart from domain
knowledge and multi-hop reasoning which pose an
interesting future direction.

In the future, we also plan to explore other
ranking methods based on relevancy feedback or
priority ranking for task 3. We believe using
MedQuad (Ben Abacha and Demner-Fushman,
2019) as training set could further help improve
the performance.
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