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Abstract
Natural language inference (NLI) is challeng-
ing, especially when it is applied to techni-
cal domains such as biomedical settings. In
this paper, we propose a hybrid approach to
biomedical NLI where different types of in-
formation are exploited for this task. Our
base model includes a pre-trained text en-
coder as the core component, and a syntax en-
coder and a feature encoder to capture syn-
tactic and domain-specific information. Then
we combine the output of different base mod-
els to form more powerful ensemble mod-
els. Finally, we design two conflict resolu-
tion strategies when the test data contain mul-
tiple (premise, hypothesis) pairs with the same
premise. We train our models on the MedNLI
dataset, yielding the best performance on the
test set of the MEDIQA 2019 Task 1.

1 Introduction

Natural language inference (NLI) (MacCartney
and Manning, 2009), also known as textual entail-
ment, is an important natural language process-
ing (NLP) task that has long been studied (Bow-
man et al., 2015; Parikh et al., 2016; Chen et al.,
2016; Conneau et al., 2017; Tay et al., 2018).
It aims to capture the relationship between two
sentences, identifying whether a given premise
entails, contradicts, or is neutral to a given hy-
pothesis. Success in NLI is crucial for achiev-
ing semantic comprehension of human language,
which in turn is a prerequisite to accomplish natu-
ral language understanding (NLU). In general, ac-
curate NLI systems facilitate many downstream
tasks, such as commonsense reasoning (Zellers
et al., 2018) and question answering (Abacha and
Demner-Fushman, 2016, 2017).

Most of existing NLI studies are conducted in
the general domain (Marelli et al., 2014; Bowman

et al., 2015; Williams et al., 2018), with limited
attention paid to domain-specific scenarios. Nev-
ertheless, there has been increasing demand for
information processing in the biomedical domain
such as biomedical question answering (Abacha
and Demner-Fushman, 2019) and cohort selec-
tion (Glicksberg et al., 2018). Many biomedical
NLP applications require automatic understand-
ing of symptom descriptions and examination re-
ports (Abacha and Demner-Fushman, 2016, 2017)
and therefore can greatly benefit from accurate
biomedical NLI systems.

In this study, we propose a hybrid approach to
biomedical NLI, which includes three main com-
ponents, as illustrated in Figure 1. The main com-
ponent is the base model (the largest box in the fig-
ure), which includes three encoders: an MT-DNN
(Liu et al., 2019c) based text encoder, a syntax en-
coder that captures structural information, and a
feature encoder which injects some degree of do-
main knowledge into the model (see §3). We con-
duct unsupervised pre-training for the text encoder
on biomedical corpora to compensate for the lack
of domain-specific supervision (Lee et al., 2019).
To enhance our model, we also use model ensem-
ble and conflict resolution strategies, correspond-
ing to the two top dashed boxes in Figure 1 and are
explained in §4. The datasets and implementation
detail are described in §5. The experimental re-
sults on the MedNLI dataset (Romanov and Shiv-
ade, 2018) and the MEDIQA 2019 shared task 1
(Ben Abacha et al., 2019) are reported in §6.1

2 Related Work

A common neural network approach to address
the NLI task is sentence pair modeling (Lan and

1Our code is publicly available at https://github.
com/ZhaofengWu/MEDIQA_WTMED

https://github.com/ZhaofengWu/MEDIQA_WTMED
https://github.com/ZhaofengWu/MEDIQA_WTMED
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Figure 1: Our overall system. Our base model consists of three encoders and a softmax classifier: a syntax
encoder that encodes the constituency parses provided by the dataset to a vector representation via Tree-LSTM;
an MT-DNN based text encoder; a feature encoder that encodes domain and generic string-based features through
fully-connected layers; and a softmax classifier that takes in the concatenation (⊕) of the three encoders’ output
and generates a prediction. The output of base models is sent to the ensemble and conflict resolution modules (the
multimodal attention method is depicted here as an example) to make a final prediction.

Xu, 2018). The premise and hypothesis are sep-
arately embedded (e.g. via GloVe (Pennington
et al., 2014) or ELMo (Peters et al., 2018)) and
encoded (e.g. via CNN or LSTM). Typically an
interaction layer is employed to add information
alignment between the premise and the hypothe-
sis. For example, between the two baseline mod-
els used in the MedNLI dataset, InferSent (Con-
neau et al., 2017) computes the interaction vector
via [p;h; |p − h|; p ∗ h] and ESIM (Chen et al.,
2016) uses an attention matrix to softly align the
two representations. ESIM also appends an infer-
ence composition layer to propagate the local at-
tended information. A softmax layer is used to
classify the final representation.

The recent Transformer-based models have
been demonstrated to be a better encoder at NLI
than CNN and LSTM by fully attending over
the two sentences (Radford, 2018; Devlin et al.,

2018). BERT (Devlin et al., 2018) pre-trains the
model with large unlabeled corpora which allows
better text representations. MT-DNN (Liu et al.,
2019c) leverages multi-task learning (Liu et al.,
2015) to fine-tune the BERT weights using the
GLUE datasets (Wang et al., 2018). The authors
showed that resulting representations outperform
BERT on many NLU tasks.

On top of this sentence pair modeling scheme,
previous studies have independently leveraged
syntax (Chen et al., 2016), external knowledge
(Chen et al., 2018; Lu et al., 2019), ensemble
methods (Ghaeini et al., 2018b), and language
model fine-tuning (Alsentzer et al., 2019) to im-
prove the performance of NLI systems. Nonethe-
less, to our knowledge, there have been no empir-
ical results on the effect of combining these addi-
tions simultaneously. Additionally, as recent stud-
ies have pointed out that pre-trained contextual-
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ized representations contain rich linguistic signals
(Hewitt and Manning, 2019; Liu et al., 2019b), it
is reasonable to ask whether explicitly integrating
knowledge will continue to augment such repre-
sentations. Our work can be seen as an empirical
study to examine the efficacy of applying multiple
additions on top of Transformer-based models.

3 Base Model

NLI is generally treated as a three-way classifica-
tion task that models whether a given premise p
entails, contradicts, or is neutral to a hypothesis h.
A classifier f is learned taking p and h as input to
predict the class probabilities

f(p, h) =
[
Pe Pc Pn

]> (1)

with Pr; r ∈ {e, c, n} representing the probability
for entailment, contradiction, and neutral. The fi-
nal result is the class with the highest probability

yp,h = argmax
r∈{e,c,n}

Pr (2)

As illustrated in Figure 1, our base model con-
tains three modules. The widely used pre-trained
Transformer model (Devlin et al., 2018; Liu et al.,
2019c) serves as the basic text encoder to represent
p and h. A syntax encoder and a feature encoder
are also utilized to augment the basic representa-
tion by extracting and encoding more information
from the input. The details of these encoders and
how they are combined for f are discussed in the
following subsections.

3.1 Text Encoder
Text representation is crucial to facilitate down-
stream tasks (Song et al., 2017, 2018). As a part
of recent advancements in NLP, pre-trained mod-
els provide strong baselines for sentence represen-
tations and allow great generalizability for the rep-
resented text. Therefore, to represent p and h,
we adopt a pre-trained Transformer model, MT-
DNN (Liu et al., 2019c), as the text encoder in our
base model. MT-DNN is based on BERT (Devlin
et al., 2018) and additionally fine-tuned on GLUE
(Wang et al., 2018), a set of NLU datasets includ-
ing NLI subsets. Through its multi-task learning
objective, MT-DNN allows a more general and
powerful representation for natural language un-
derstanding than BERT (Liu et al., 2019c). For-
mally, one can briefly describe the encoder as

VTE(p, h) = MT-DNN(p, h) (3)

with VTE(p, h) referring to the output of the text
encoder, a vector representing p and h.

Pre-training on large unlabeled corpora with a
language modeling objective has facilitated many
recent state-of-the-art advancements (Peters et al.,
2018; Radford, 2018; Devlin et al., 2018; Lee
et al., 2019; Radford et al., 2019). Inspired by
these results, we enhance the MT-DNN represen-
tation by further fine-tuning on unlabeled biomed-
ical data to mitigate the lack of in-domain super-
vision.

3.2 Syntax Encoder

Linguistic understandings, for example corefer-
ence relations (Zhang et al., 2019a,b), could aid
the interpretation of a sentence. Syntactic struc-
tures are often useful for deciding the entailment
of a sentence pair (Chen et al., 2016). There ex-
ist numerous NLI examples where a hypothesis
is merely the premise with adjunct phrases re-
moved. The syntax encoder also mitigates the out-
of-vocabulary issue which is common in specific
domains (Liu et al., 2019a) by capturing the struc-
tural information. Therefore, we include a syntax
encoder in our base model.

We use Tree-LSTM (Tai et al., 2015) to model
constituency parse trees of p and h. For each sen-
tence, we encode it according to its tree structure
and take the final state of the root node to repre-
sent the entire sentence. Formally, taking p as an
example, the syntax encoder can be formulated as

VSE(p) = Tree-LSTM(Parse(p)) (4)

where VSE(p) is the output vector. Once p and h
are encoded, the final output of this encoder is the
concatenation of the two output vectors

VSE(p, h) = VSE(p)⊕ VSE(h) (5)

3.3 Feature Encoder

The explicit integration of entity-level external
knowledge has been used to improve many NLP
models’ performance (Das et al., 2017; Sun et al.,
2018). Domain knowledge has also been demon-
strated to be useful for in-domain tasks (Romanov
and Shivade, 2018; Lu et al., 2019). There-
fore, in addition to generic encoders such as MT-
DNN and Tree-LSTM, we further enhance the
model with domain-specific knowledge through
indirectly leveraging labeled biomedical data for
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other tasks. To do that, we propose a domain fea-
ture encoder that identifies and vectorizes biomed-
ical named entities using pre-trained medical tag-
gers and counts (1) the number of each entity type
in p and h; and (2) the number of shared entities
and shared entity types in a (p, h) pair.

In addition to domain knowledge, inspired by
Bowman et al. (2015) and Abacha and Demner-
Fushman (2016), we also extract generic string
features and use them to capture the similarity be-
tween p and h and then convert the results into
vectors. Such similarity information includes n-
gram overlap, Levenshtein distance (Levenshtein,
1966), Jaccard similarity (Jaccard, 1901), ROUGE
(Lin, 2004) and BLEU (Papineni et al., 2001)
scores, and absolute length difference.2

To encode the aforementioned features into vec-
tors, each extracted feature is represented by a sin-
gle scalar and then grouped with others into an
array, denoted by v(d) and v(g) for domain and
generic features, respectively. Later, they are con-
verted into dense representations by linear trans-
formations and a ReLU nonlinearty. For domain
features, this process can be formulated by

V(d)FE(p, h) = ReLU(W(d)v(d) + b(d)) (6)

and V(g)FE(p, h) is obtained for generic features in a
similar way. As a result, the final output of the fea-
ture encoder is the concatenation of vectors with
domain and generic knowledge

VFE(p, h) = V(d)FE(p, h)⊕ V
(g)
FE(p, h) (7)

3.4 Softmax Classifier
Once the outputs from the aforementioned en-
coders are obtained, a final representation of p and
h is concatenated using the encoded vectors

V(p, h) =

VTE(p, h)
VSE(p, h)
VFE(p, h)

 (8)

Then, a softmax classifier is used to compute the
class-wise probability distribution from V(p, h)

f(p, h) = softmax(WV(p, h) + b) (9)

Among the three encoders, our base model al-
ways includes the text encoder. The other two en-
coders are optional, leading to different base mod-
els, whose performance will be compared in §6.1.

2The choices of metrics are intended to capture a wide
range of similarity information, e.g. BLEU for n-gram preci-
sion and ROUGE for n-gram recall.

4 Model Enhancement

We enhance the base models discussed above with
two techniques, namely model ensemble and con-
flict resolution: ensemble models combine predic-
tions made by different base models, and conflict
resolution takes advantage of NLI datasets where
multiple (p, h) pairs share the same premise p.

4.1 Model Ensemble

Model ensemble is a common technique to com-
bine predictions of multiple classifiers for better
results (Maclin and Opitz, 1999). In NLI, model
ensemble has also been proven helpful (Ghaeini
et al., 2018a). In our work, when multiple base
models are trained, we follow the strategy in Lee
et al. (2015) and Lakshminarayanan et al. (2017)
and average the models’ predictions by

f (ME)(p, h) =
1

n

n∑
i=1

fi(p, h) (10)

with n denoting the number of ensembled base
models and fi(p, h) being the probability distri-
bution produced by the ith base model.

4.2 Conflict Resolution

Due to the special data collection strategy of
MedNLI (see Romanov and Shivade (2018)), each
premise is always paired with three hypotheses,
each forming an entailment, a neutral, and a con-
tradiction pair with the premise. For example, the
premise “Labs were notable for Cr 1.7 (baseline
0.5 per old records) and lactate 2.4.” appears three
times in the dataset, each pairing with a different
hypothesis: (1) “Patient has elevated Cr” (2) “Pa-
tient has normal Cr” and (3) “Patient has elevated
BUN”. The three hypotheses each forms a distinct
relationship with the premise. We say the three
(p, h) pairs with the same premise form a group.

For every group, there are six possible non-
conflicting combinations of predictions: C =
{〈e,c,n〉, 〈e,n,c〉, 〈n,e,c〉, 〈n,c,e〉, 〈c,n,e〉, 〈c,e,n〉}.
Ideally, a model should yield non-conflicting
group predictions; that is, 〈yp,h1 , yp,h2 , yp,h3〉 ∈
C where h1, h2, h3 are the three hypotheses in
a group. However, our model determines the la-
bel of each pair independently from other pairs in
the same group, and thus the three labels could be
in conflict. To resolve this conflict, we propose
two methods: heuristic processing and multimodal
attention. Note that when resolving the conflict,
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both methods could potentially change the predic-
tions for all three pairs in a group even when only
two pairs have conflicting labels.

Heuristic Processing (HP): We first use our
base or ensemble model to compute the class-wise
probability distribution for each (p, hi) pair

f(p, hi) =
[
P

(i)
e P

(i)
c P

(i)
n

]>
(11)

where i ∈ {1, 2, 3}, and P
(i)
r ; r ∈ {e, c, n} is

the probability of the i-th pair having relationship
r. Then we compute the probability of each non-
conflicting combination under this model by

P〈r1,r2,r3〉 =
1

|C|
(P (1)

r1 + P (2)
r2 + P (3)

r3 ) (12)

where 〈r1, r2, r3〉 ∈ C.
Finally, we adjust the group predictions taking

〈y(HP )
p,h1

, y
(HP )
p,h2

, y
(HP )
p,h3
〉 = argmax

〈r1,r2,r3〉∈C
P〈r1,r2,r3〉

(13)

Intuitively, for each non-conflicting combina-
tion, we add up the prediction probabilities using
the model output to derive a combination probabil-
ity. We take the highest one as the final prediction.

Multimodal Attention (MA): We also trained
an attention-based neural network to be responsi-
ble for conflict resolution so that it can be more
expressive at intra-group interactions. It takes the
probability distribution from the previous model
as well as a positional encoding for input. We
added the positional encoding aiming to capture
patterns present in the dataset. For each pair, the
input of our MA method is

pi =
[
P

(i)
e P

(i)
c P

(i)
n i

]>
(14)

where i ∈ {1, 2, 3} is the index of the pair. We
first map it to a hidden space

hi = W(h)pi + b(h) (15)

We compute intra-group attention by dot-product

aij = hi · hj (16)

Then, we compute attended hidden states by

h′i =

3∑
j=1

exp(aij)∑3
k=1 exp(aik)

hj (17)

The output probability distribution of i-th pair is

f (MA)(p, hi) = softmax(W(o)h′i + b(o)) (18)

Finally, the prediction is computed by Eq. (2).

Train Dev Test
# of pairs 11,232 1,395 1,422
# of tokens in p 215k 29k 26k
# of tokens in h 66k 8k 8k
Max. p length 176 110 87
Max. h length 18 15 16
Avg. p length 19.2 20.4 18.6
Avg. h length 5.8 5.7 5.7

Table 1: Key statistics of the MedNLI dataset. We tok-
enize the sentences with NLTK (Loper and Bird, 2002).

5 Experiment Settings

5.1 Data
We use MedNLI as our main training dataset, for
it is the official training set of MEDIQA. We also
pre-train the text encoder on MIMIC-III discharge
summaries (Johnson et al., 2016) using BERT’s
language modeling objectives (see §3.1).

MedNLI: The MedNLI dataset (Romanov and
Shivade, 2018) presents unique challenges that re-
quire reasoning over biomedical domain knowl-
edge. We use it to train out models and show its
statistics in Table 1.

MIMIC-III: MIMIC-III (Medical Information
Mart for Intensive Care) (Johnson et al., 2016)
is a large database with information about patient
admission to critical care units. We pre-train on
its discharge summaries portion to obtain a better
biomedical text representation. After some basic
text cleaning, we obtain a corpus with around 7M
sentences, 83M words, and 546M characters.

5.2 Data Pre-Processing
For pre-processing, we lowercase all our data and
use the uncased pre-trained models unless other-
wise specified. We replace masked patient health
information (PHI) in the form of “[** text **]”
with pseudo-value generated from gazetteers ac-
cording to the PHI type3. For example, “[** Last
Name **]” is replaced with a random last name
such as “Smith”.

5.3 Implementation
For MT-DNN, we use its own hyperparame-
ters without modification. By default, we use
300-dimensional GloVe embeddings trained on
Wikipedia and Gigawords (Pennington et al.,

3With the tool https://github.com/jtourille/mimic-tools
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2014) to initialize the Tree-LSTM, which reduces
each parse tree into a 100-dimensional vector. In
the feature encoder, we use scispaCy (Neumann
et al., 2019) to extract 38 domain features4. We
also extract 27 linguistic features from the 6 cate-
gories specified in §3.3. We project the 38 domain
features into 38×20 = 760 dimensions and the 27
linguistic features into 27× 20 = 540 dimensions
with fully-connected layers (See Equation (6)).

We fine-tune the text encoder with MIMIC-III
discharge summaries using the same objectives as
BERT, i.e. masked language model and next sen-
tence prediction, for 8 epochs.

For training, we use the AdaMax optimizer
(Kingma and Ba, 2014) with learning rate 5 ×
10−5. We use a batch size of 16 and train each
model for 15 epochs. All other training hyperpa-
rameters are the same as the MT-DNN work.

6 Experimental Results

For our experiments, we first find the best configu-
ration for a single base model, and then apply en-
semble and conflict resolution on top of it. We
run all these experiments with MT-DNN base for
faster iterations. In order to maximally leverage
the MedNLI dataset, unless otherwise specified,
all experiments use the MedNLI training and de-
velopment sets as the training data, and evaluate
the performance directly on the MedNLI test set.

After obtaining the best configuration accord-
ing to the development set performance, we re-
train the whole system with that configuration on
MT-DNN large using the whole MedNLI dataset
(i.e. training+development+test). We run it on the
MEDIQA Task 1 test set for the final submission
(§6.4).

6.1 Base Model Results
The base model has many configurations depend-
ing on choices of the three encoders, whether to
perform language model fine-tuning, and the em-
bedding to use for Tree-LSTM initialization. To
find a good, albeit not necessarily optimal, model
configuration, we experiment with each modeling
decision individually, and greedily use the best op-
tion found in the preceding experiments for the
ones that follow. We then report ablation results
to show the resulting configuration to be a local
optimum.

4 We use scispaCy to identify 18 types of biomedical
named entities and turn them into features as mentioned in
§3.3. Thus, there are totally 18× 2 + 2 = 38 features.

Text Encoder SE FE Acc.

BERT

79.68
79.89
79.54
79.96

BioBERT

80.87
81.01
81.01
81.29

MT-DNN

81.22
81.43
81.58
81.72

Table 2: Performance of the base model with differ-
ent configurations of the three encoders: text encoder
(TE), syntax encoder (SE), and feature encoder (FE).
We use GloVe (Embedding I) for Tree-LSTM initial-
ization, and the experiments do not include language
model fine-tuning and conflict resolution.

Pre-Training Acc.
w/o LM fine tuning 81.72
with LM fine tuning 83.26

Table 3: The effect of pre-training. The first row is the
best configuration from Table 2 (MT-DNN + SE + FE
+ Embedding I). The second row is the same system
but pre-trained on MIMIC-III discharge summaries.

Encoders: Among the three encoders, the text
encoder is the most important, so we will always
include it in the base model. We compare three
text encoders, including BERT, BioBERT5 (Lee
et al., 2019), and MT-DNN. As for syntax and fea-
ture encoders, we compare base models with or
without them. The performance of all the combi-
nations are in Table 2, which shows that MT-DNN
outperforms BERT and BioBERT, and adding syn-
tax and feature encoders to MT-DNN provides a
small improvement6. The best result (81.72%) is
in the last row and we will refer its configuration
as MT-DNN + SE + FE from now on.

Language Model Fine-Tuning (LMFT): Us-
ing language modeling objective, we fine-tune
the text encoder with MIMIC-III discharge sum-
maries. The result is in Table 3, and it demon-
strates that the language model fine-tuning scheme

5Because the BioBERT authors only released cased mod-
els, we maintain our data casing in relevant experiments.

6We also experimented with initializing text encoder word
embedding weights with pre-trained static embeddings but it
degraded the performance significantly.
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Embedding for Tree-LSTM Acc.
Embedding I 83.26
Embedding II 82.91
Embedding III 82.84

Table 4: Effect of different embeddings for Tree-
LSTM initialization in the syntax encoder. The first
row is the best result from Table 3. The last two rows
are the same system but with different embeddings.

brings a significant performance increase. This
finding aligns with previous studies (Radford
et al., 2019; Devlin et al., 2018; Lee et al., 2019;
Alsentzer et al., 2019).

Syntax Encoder Embeddings: We used 300-
dimensional GloVe embeddings to initialize the
Tree-LSTM for Table 2 and 3, and we call it
Embedding I. Romanov and Shivade (2018) used
embeddings trained on biomedical corpora and
observed non-trivial accuracy gain over general-
domain embeddings. Thus, we also experimented
with two domain-specific word embeddings that
they used and released to initialize the Tree-
LSTM, and we will call them Embedding II and
III. Here is a quick summary of the embeddings:

I. GloVe embedding trained on Wikipedia 2014
+ Gigaword 5;

II. Embedding initialized with common crawl7

GloVe and fine-tuned on BioASQ and then
MIMIC-III;

III. Embedding initialized with fastText (Bo-
janowski et al., 2017) trained on Wikipedia
and fine-tuned on MIMIC-III.

Table 4 shows the effect of these embeddings.
The first row is the best result from Table 3, which
uses Embedding I, and the next two rows are the
results when the embedding is changed. The table
shows that using specific in-domain embeddings
(the second and the third rows in Table 4) does
not improve the performance. This is somewhat
surprising, but also understandable since these in-
domain embeddings are used only in the syntax
encoder, instead of being used to initialize the
main encoder as in Romanov and Shivade (2018).

Single Model Ablation: Table 2-4 show that the
best configuration for the base model is MT-DNN
+ SE + FE + LMFT + Embedding I; that is, it uses

7https://commoncrawl.org, a corpus that contains 840 bil-
lion tokens of web data.

Base Model Configuration Acc.
MT-DNN + SE + FE + LMFT + Emb I 83.26
MT-DNN→ BERT 82.14
MT-DNN→ BioBERT 82.84
– SE 82.28
– FE 82.49
– LMFT 81.72
Emb I→ Emb II 82.91
Emb I→ Emb III 82.84

Table 5: The ablation results on top of the best base
model. LMFT denotes language model fine tuning.

all three encoders, is fine-tuned with MIMIC-III
discharge summaries, and uses regular GloVe em-
beddings to initialize the Tree-LSTM.

Because we followed a greedy process for vari-
ous modeling decisions, there is no guarantee that
this configuration is globally or even locally opti-
mal. To test the optimality of the resulting model,
we conducted ablations by individually changing
each modeling decision on top of the best base
model and compare the performance. The re-
sults are in Table 5, which show that the greed-
ily found configuration is still the best-performing
one among the ablations. In other words, while
this configuration is still not guaranteed to be glob-
ally optimal, it is at least a locally optimal one.

6.2 Model Enhancement Results

We want a diverse set of member models to
achieve better ensemble performance. We present
ones that lead to better ensemble performance in
Table 6. We also report the ensemble models and
conflict resolution results in Table 6.

Ensemble: With the large number of possible
configurations for the base model, it is infeasible
to test out all ensemble combinations. On the other
hand, the performance of different ensembles does
not vary much. We ran all 29 − 1 = 511 ensem-
bles corresponding to all the non-empty subset of
the 9 base models A-I, and found that on aver-
age on the development set (i.e. original MedNLI
test set), ensemble models improve over their best-
performing member by 0.86%± 0.51%, and over
the member average by 1.47% ± 0.60%. These
results demonstrate the general usefulness of the
ensemble stage. In Table 6, we show some of the
ensemble models, most of which outperform their
member models.
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Model ID Dev (i.e. MedNLI Test) MEDIQA Test
(R & S, 2018) TE SE FE LMFT Emb Prepro Raw HP MA Raw HP MA

InferSent * 73.5 - - - - -
InferSent III 76.6 - - - - -

Base Model TE SE FE LMFT Emb Prepro Raw HP MA Raw HP MA
A MT-DNN I 81.36 85.16 96.20 80.49 87.16 97.28
B MT-DNN II 81.50 85.94 96.62 78.77 87.41 97.53
C MT-DNN I 82.28 87.90 97.61 82.47 90.86 98.02
D MT-DNN I 82.49 86.36 97.75 82.47 88.64 97.53
E MT-DNN I 82.35 86.57 97.47 80.99 88.40 99.51
F MT-DNN I 83.26 87.62 98.17 81.23 86.91 97.53
G MT-DNN II 82.91 86.57 97.61 81.48 89.88 98.52
H MT-DNN III 82.84 86.50 97.61 80.49 89.38 98.02
I BioBERT I 82.84 88.96 98.31 78.03 83.46 99.01

Ensemble Members Raw HP MA Raw HP MA
J A + C + E 83.68 88.19 98.17 83.95 93.33 99.01
K A + B + C + E 83.47 88.82 97.68 83.46 93.33 98.02
L A + C + D 83.76 88.40 97.89 82.96 92.84 98.52
M F + G + H 83.54 87.62 98.03 80.99 88.89 98.02
N F + I 83.97 89.94 98.17 82.22 88.64 99.01

Avg Gain - - 4.59 14.79 - 7.80 16.82

Table 6: The performance of different ensemble combinations and conflict resolution strategies on our develop-
ment set (i.e., the original MedNLI test set) and on the MEDIQA shared task test set. All our models in this table
(i.e. the Base Model and Ensemble sections) use MedNLI training and development sets as the training set, while
(R & S, 2018) models (Romanov and Shivade, 2018) use only the MedNLI training set for training and MedNLI
development set for tuning. The Prepro column refers to whether data pre-processing is used (see §5.2). The
Raw, HP, and MA columns refer to model performance without and with the two conflict resolution strategies.
The results on the MEDIQA test set are computed after the shared task ended and its gold-standard labels were
distributed. We report the baseline result and the best extension from Romanov and Shivade (2018) in the first two
rows of the table. Their baseline uses the Common Crawl Glove embedding (denoted as *). Note that their results
are not directly comparable with ours because they used the MedNLI Test as their test set whereas we use it as our
development set. Finally, the last row, Avg Gain, is the average gain of HP and MA over Raw when averaged over
all the base models and ensembles.

Conflict Resolution: We apply heuristic pro-
cessing (HP) and multimodal attention (MA) to
the base models or the ensembles. Both methods
improve the performance by large margins.

To our surprise, multimodal attention works
much better than heuristic processing, with around
10% absolute difference in accuracy. After a close
examination of the training data and the model
output, we realize that the MedNLI dataset has
a clear label pattern8 for pairs in the same group
(the label sequence being entailment, contradic-
tion, and neutral). Such a pattern is captured by
the MA model, but not by the HP one. This find-
ing not only explains the different performance of
the two methods, but also reminds us that the high
performance of the MA method is largely due to
the pattern (or the bias) of this particular dataset.

Taking the best ensemble model N as an exam-

8We checked the percentage of groups observing this pat-
tern after the gold standard for test set is released, and it turns
out 100% of the groups follow this pattern.

ple, we study exactly how the two conflict reso-
lution strategies help on the development set. We
show relevant statistics in Table 7. As expected,
the less conflict there is in a group, the higher the
raw accuracy is. We also see that the majority
of HP changes are correct for groups with 2 con-
flicting predictions, but HP does not help groups
where all raw predictions are the same. In con-
trast, because MA takes advantage of the inher-
ent bias of the dataset, all its produced labels are
correct. Nevertheless, MA accuracy is still below
100%, because it does not process groups with no
conflicts, and raw accuracy on such groups is not
at 100%.

6.3 Error Analysis

In real use cases, the input to an NLI system is
more likely to be standalone (p, h) pairs instead of
groups of three (p, h) pairs. Therefore, we con-
duct error analysis on the output of ensemble sys-
tems without conflict resolution. Figure 2 shows
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Conflict # of # of Raw HP MA
Type Groups Pairs Acc. 7→ 3 3→ 7 7→ 7 7→ 3 3→ 7 7→ 7

0 295 885 97.06% 0 0 0 0 0 0
2 172 516 63.57% 124 43 8 188 0 0
3 7 21 33.33% 7 3 4 14 0 0

Table 7: Conflict resolution results on model N on our development set (i.e., the MedNLI test set). Groups are
categorized by Conflict Type (i.e., the number of sentence pairs with the same label), which could be 0, 2, or
3. Each group always has three sentence pairs. “Raw Acc.” refers to the accuracy without post-processing. For
each conflict resolution strategy, we find the (p, h) pairs whose labels are modified by HP or MA, categorize them
based on how the updated predictions differ from the raw predictions, and report the number of (p, h) pairs in each
category.

Figure 2: The confusion matrix of Model N before ap-
plying conflict resolution strategies.

the confusion matrix for Model N, the best per-
forming ensemble model in Table 6, before con-
flict resolution. The confusion matrix shows that
the model tends to confuse between entailment
and neutral. Below are two examples where the
model misidentifies entailment pairs to be neutral:

1. p: The patient now presents with metastatic
recurrence of squamous cell carcinoma of
the right mandible with extensive lymph
node involvement.

h: The patient has oropharyngeal

2. p: In the ED, initial VS revealed T 98.9, HR
73, BP 121/90, RR 15, O2 sat 98% on RA.

h: The patient is hemodynamically stable.

Both examples contain many medical terms and
determining the relationship for the (p, h) pairs is
challenging for anyone without medical expertise.
Many errors made by the model fall into this cate-
gory, and fixing them would require the model to
be enhanced with deeper domain knowledge.

Model ID Conflict Resolution Acc.
J None 87.2
K HP 94.8
L MA 98.0

Table 8: The results of three models we submitted to
MEDIQA Task 1. Model ID refers to the model ID in
Table 6. The 2nd column denotes different conflict res-
olution strategies. The Acc column is the accuracy on
MEDIQA Task 1 test set, which was calculated auto-
matically by the shared task submission site.

6.4 Results on MEDIQA Task 1 Test Set
At the time of the shared task submission, we
had not completed the systematic experiments
as laid out in this paper. We used our then-
best ensemble models, re-trained them on MT-
DNN large using the whole MedNLI set (i.e.
training+development+test), and ran them on the
MEDIQA Task 1 test set. The results are shown in
Table 8. Our best model achieves 98.0% accuracy
on the MEDIQA Task 1 test set, the best among
all participants.

7 Conclusion

We have presented a hybrid architecture for in-
domain NLI. Our approach extends current efforts
in biomedical NLP (Romanov and Shivade, 2018;
Lee et al., 2019) through incorporating auxiliary
encoders, domain-specific language model fine-
tuning, ensembling, and conflict resolution. We
dissected the usefulness of these modeling deci-
sions and provided detailed and systematic abla-
tions. These components work together to form
the best performing model on MEDIQA Task 1.

The current system tends to make wrong predic-
tions when in-depth domain-specific knowledge or
reasoning is required. For future work, we plan to
extend the system to incorporate deeper domain
knowledge.
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