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Abstract

Chemical patents are an important resource for
chemical information. However, few chemi-
cal Named Entity Recognition (NER) systems
have been evaluated on patent documents, due
in part to their structural and linguistic com-
plexity. In this paper, we explore the NER
performance of a BILSTM-CRF model utilis-
ing pre-trained word embeddings, character-
level word representations and contextual-
ized ELMo word representations for chemi-
cal patents. We compare word embeddings
pre-trained on biomedical and chemical patent
corpora. The effect of tokenizers optimized
for the chemical domain on NER performance
in chemical patents is also explored. The re-
sults on two patent corpora show that contex-
tualized word representations generated from
ELMo substantially improve chemical NER
performance w.r.t. the current state-of-the-art.
We also show that domain-specific resources
such as word embeddings trained on chemical
patents and chemical-specific tokenizers have
a positive impact on NER performance.

1 Introduction

Chemical patents are an important starting point
for understanding of chemical compound purpose,
properties, and novelty. New chemical compounds
are often initially disclosed in patent documents;
however it may take 1-3 years for these chemi-
cals to be mentioned in chemical literature (Senger
etal., 2015), suggesting that patents are a valuable
but underutilized resource. As the number of new
chemical patent applications is drastically increas-
ing every year (Muresan et al., 2011), it is becom-
ing increasingly important to develop automatic
natural language processing (NLP) approaches en-
abling information extraction from these patents
(Akhondi et al., 2019). Chemical Named-Entity
Recognition (NER) is a fundamental step for in-
formation extraction from chemical-related texts,
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supporting relation extraction (Wei et al., 2016),
reaction prediction (Schwaller et al., 2018) and
retro-synthesis (Segler et al., 2018).

However, performing NER in chemical patents
can be challenging (Akhondi et al., 2014). As le-
gal documents, patents are written in a very differ-
ent way compared to scientific literature. When
writing scientific papers, authors strive to make
their words as clear and straight-forward as pos-
sible, whereas patent authors often seek to pro-
tect their knowledge from being fully disclosed
(Valentinuzzi, 2017).

In tension with this is the need to claim broad
scope for intellectual property reasons, and hence
patents typically contain more details and are
more exhaustive than scientific papers (Lupu et al.,
2011).

There are a number of characteristics of patent
texts that create challenges for NLP in this con-
text. Long sentences listing names of compounds
in chemical patents are frequently used. The struc-
ture of sentences in patent claims is usually com-
plex, and syntactic parsing in patents can be diffi-
cult (Hu et al., 2016). A quantitative analysis by
Verberne et al. (2010) showed that the average sen-
tence length in a patent corpus is much longer than
in general language use. That work also showed
that the lexicon used in patents usually includes
domain-specific and novel terms that are difficult
to understand. Some patent authorities use Op-
tical Character Recognition (OCR) for digitizing
patents, which can be problematic when applying
automatic NLP approaches as the OCR errors in-
troduces extra noise to the data (Akhondi et al.,
2019).

Most NER systems for the chemical domain
were developed, trained and tested on either chem-
ical literature or only the title and abstract of
chemical patents (Akhondi et al., 2019). There
are substantial linguistic differences between ab-
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stracts and the corresponding full text publications
(Cohen et al., 2010). The performance of NER
approaches on full patent documents has still not
been fully explored (Krallinger et al., 2015).

Hence, this paper will focus on presenting the
best NER performance achieved to date on full
chemical patent corpus.

We use a combination of pre-trained word em-
beddings, a CNN-based character-level word rep-
resentation and contextualized word representa-
tions generated from ELMo, trained on a patent
corpus, as input to a BILSTM-CRF model. The
results show that contextualized word represen-
tations help improve chemical NER performance
substantially. In addition, the impact of the choice
of pre-trained word embeddings and tokenizers is
assessed.

The results show that word embeddings that are
pre-trained on chemical patents outperform em-
beddings pre-trained on biomedical datasets, and
using tokenizers optimized for the chemical do-
main can improve NER performance in chemical
patent corpora.

2 Related work

In this section, we summarize previous methods
and empirical studies on NER in chemical patents.

Two existing Conditional Random Field (CRF)-
based systems for chemical named entity recog-
nition are tmChem (Leaman et al., 2015) and
ChemSpot (Rocktéschel et al., 2012); each makes
use of numerous hand-crafted features includ-
ing word shape, prefix, suffix, part-of-speech and
character N-grams in an algorithm based on mod-
elling of tag sequences. A previous detailed
empirical study explored the generalization per-
formance of these systems and their ensembles
(Habibi et al., 2016). The application of the tm-
Chem model trained on chemical literature cor-
pora of the BioCreative IV CHEMDNER task
(Krallinger et al., 2015) and the ChemSpot model
trained on a subset of the SCAI corpus (Klinger
et al., 2008) resulted in a significant performance
drop over chemical patent corpora.

Zhang et al. (2016) compared the performance
of CRF- and Support Vector Machine (SVM)-
based models on the CHEMDNER-patents corpus
(Krallinger et al., 2015). The features constructed
in that work included the binarized embedding
(Guo et al., 2014), Brown clustering (Brown et al.,
1992) and domain-specific features extracted by
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detecting common prefixes/suffixes in chemical
words. The obtained results show that the per-
formance of CRF and SVM models can be sig-
nificantly improved by incorporating unsupervised
features (e.g. word embeddings, word cluster-
ing). The study also showed that the SVM model
slightly outperformed the CRF model in the chem-
ical NER task.

To perform chemical NER on the CHEMD-
NER patents corpus, Akhondi et al. (2016)
proposed an ensemble approach combining a
gazetteer-based method and a modified version
of tmChem. Here, the gazetteer-based method
utilized a wide range of chemical dictionaries,
while additional features such as stems, pre-
fixes/suffixes, chemical elements were added to
the original feature set of tmChem. In the en-
semble approach, tokens were predicted as chem-
ical mentions if recognized as positive by either
tmChem or the gazetteer-based method. The re-
sults showed that both gazetteer-based and ensem-
ble approaches were outperformed by the modi-
fied tmChem version in terms of overall I score,
although these two approaches can obtain higher
recall.

Huang et al. (2015) proposed a BiLSTM-CRF
based on the use of a bidirectional long-short
term memory network — BiLSTM (Schuster and
Paliwal, 1997) — to extract (latent) features for a
CREF classifier. The BiLSTM encodes the input in
both forward and backward directions and passes
the concatenation of outputs from both directions
as input to a linear-chain CRF sequence tagging
layer. In this approach, the BiLSTM selectively
encodes information and long-distance dependen-
cies observed while processing input sentences in
both directions, while the CRF layer globally opti-
mizes the model by using information from neigh-
bor labels.

The morphological structures within words are
also important clues for identifying named enti-
ties in biological domain. Such morphological
structures are widely used in systematic chemical
name formats (e.g. [UPAC names) and hence par-
ticularly informative for chemical NER (Klinger
et al., 2008). Character-level word representa-
tions have been developed to leverage information
from these structures by encoding the character se-
quences within tokens. Ma and Hovy (2016) uses
Convolutional Neural Networks (CNNs) to encode
character sequences while Lample et al. (2016)



developed a LSTM-based approach for encoding
character level information.

Habibi et al. (2017) presented an empirical
study comparing three NER models on a large col-
lection of biomedical corpora including the BioSe-
mantics patent corpus: (1) tmChem-the CRF-
based model with hand-crafted features—used as
the baseline; (2) a second CRF model based on
CRFSuite (Okazaki, 2007) using pre-trained word
embeddings; (3) and a BILSTM-CRF model with
additional LSTM-based character-level word em-
beddings (Lample et al., 2016). The performance
of CRFSuite- and BiLSTM-CRF-based models
with different sets of pre-trained biomedical word
embeddings (Pyysalo et al., 2013) were also ex-
plored. The results showed that the BiLSTM-
CRF model with the combination of domain-
specific pre-trained word embedding and LSTM-
based character-level word embeddings outper-
formed the two CRF-based models on chemical
NER tasks in both chemical literature and chem-
ical patent corpora. However, this work used only
a general tokenizer (i.e. OpenNLP) and word em-
beddings pre-trained on biomedical corpora.

Corbett and Boyle (2018) presented word-level
and character-level BiLSTM networks for chem-
ical NER in literature domain. The word-level
model employed word embeddings learned by
GloVe (Pennington et al., 2014) on a corpus of
patent titles and abstracts. The character-level
model used two different transfer learning ap-
proaches to pre-train its character-level encoder.
The first approach attempts to predict neighbor
characters at each time step, while the other tries
to predict whether a given character sequence is
an entry in the chemical database ChEBI (Degt-
yarenko et al., 2007). Experimental results show
that the character-level model can produce better
NER performance than word-level model by lever-
aging transfer learning. In addition, for the word-
level model, using pre-trained word embeddings
learned from a patent corpus helps produce bet-
ter performance than using the pre-trained ones
learned from a general corpus.

3 Our empirical methodology

This section presents our empirical study of NER
chemical on patent datasets. We first outline the
experimental datasets (Section 3.1) and the to-
kenizers (Section 3.2) used to pre-process these
datasets, and then we introduce the BiLSTM-
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CRF-based models (Section 3.3) with pre-trained
word embeddings (Section 3.4), character-level
word embeddings (Section 3.5), contextualized
word embeddings (Section 3.6) and implementa-
tion details (Section 3.7).

3.1 Dataset

We conduct experiments on 2 patent corpora: the
BioSemantics patent corpus (Akhondi et al., 2014)
and Reaxys gold set (Akhondi et al., 2019).

The BioSemantics patent corpus (Akhondi
et al., 2014) consists of 200 full chemical patent
documents with 9 different entity classes. In par-
ticular, this corpus has 170K sentences and and
360K entity annotations, which is much larger
than previously used datasets, e.g. the CHEMD-
NER patent abstract corpus (Krallinger et al.,
2015). Therefore, this corpus can be considered as
a more suitable resource for evaluating deep learn-
ing methods in which a large amount of training
data is required (LeCun et al., 2015). A subset of
47 patents were annotated by multiple groups (at
least 3) of annotators and evaluated through inner-
annotator agreement. By harmonizing the anno-
tations from different annotator groups, these 47
patents formed the “harmonized” set in the BioSe-
mantics patent corpus. We use the harmonized set
for both hyper-parameter tuning and error analysis
as it has known high-quality annotations.

The Reaxys gold set (Akhondi et al., 2019) con-
tains 131 patent snippets (parts of full chemical
patent documents) from several different patent
offices. The tagging scheme of this corpus in-
cludes 2 coarse-grained labels chemical class and
chemical compounds, and 7 fine-grained labels of
chemical compound (e.g. mixture-part, prophetic)
and chemical class (e.g. bio-molecule, Markush,
mixture, mixture-part). This corpus is relatively
small in size, approximately 20,000 sentences in
total, but very richly annotated. The relevancy
score of each chemical entity and the relations be-
tween them were also annotated, which allows this
corpus to be used in other tasks beyond named en-
tity recognition.

In our experiments, each corpus is used sep-
arately. We follow Habibi et al. (2017) to
use a ratio split of 60%/10%/30% for train-
ing/development/test. Note that on the BioSeman-
tic patent corpus, our sampling of datasets may not
be exactly the same as in Habibi et al. (2017).
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Figure 1: Architecture of EBC-CRF

3.2 Tokenizers

The morphological information captured by
character-level word representations can be highly
affected by tokenization quality. General-purpose
tokenizers usually split tokens by spaces and
punctuation. However, strict adherence to such
boundaries may not be suitable for chemi-
cal texts as spaces and punctuation are com-
monly used in the TUPAC format for chemi-
cal names (e.g. 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide) (Jessop et al.,
2011). Hence, the impact of different tokenizers
on NER also needs to be explored.

A pre-processing step is applied to the patent
corpora including sentence detection and tok-
enization. Following Habibi et al. (2017), we use
the OpenNLP (Morton et al., 2005) English sen-
tence detection model. To explore the relation-
ship between tokenization quality and final NER
performance, we apply different tokenizers and
train/test models with each tokenizer individually.
To investigate the effect of a general domain tok-
enizer, following Habibi et al. (2017), we also use
the OpenNLP tokenizer. To investigate whether
NER performance will be affected by tokenization
quality, we employ three tokenizers optimized for
chemical texts including ChemTok (Akkasi et al.,
2016), OSCAR4 (Jessop et al., 2011) and NBIC
UMLSGeneChemTokenizer.!

3.3 Models

We use the BILSTM-CNN-CRF model (Ma and
Hovy, 2016) as our baseline. We extend the base-
line by adding the contextualized word represen-
tations generated from ELMo (Peters et al., 2018).

'NBIC UMLSGeneChemTokenizer is developed by the
Netherlands Bioinformatics Center, available at https://
trac.nbic.nl/data-mining/wiki.
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For convenience, we call the extended version as
EBC-CREF as illustrated in Figure 1. In particu-
lar, for EBC-CRF, we use a concatenation of pre-
trained word embeddings, CNN-based character-
level word embeddings and ELLMo-based contex-
tualized word embeddings as the input of a BilL-
STM encoder. The BiLSTM encoder learns a la-
tent feature vector for each word in the input. Then
each latent feature vector is linearly transformed
before being fed into a linear-chain CRF layer
(Lafferty et al., 2001) for NER tag prediction. We
assume binary potential between tags and unary
potential between tags and words.

3.4 Pre-trained word embeddings

Dai et al. (2019) showed that NER performance is
significantly affected by the overlap between pre-
trained word embedding vocabulary and the target
NER data. Therefore, we explore the effects of
different sets of pre-trained word embeddings on
the NER performance.

We use 200-dimensional pre-trained PubMed-
PMC and Wiki-PubMed-PMC word embeddings
(Pyysalo et al., 2013), which are widely used
for NLP tasks in biomedical domain. Both the
PubMed-PMC and Wiki-PubMed-PMC embed-
dings word embeddings were generated by train-
ing the Word2Vec skip-gram model (Mikolov
et al., 2013) on a collection of PubMed abstracts
and PubMed Central articles. Here, an additional
Wikipedia dump was also used to learn the Wiki-
PubMed-PMC word embeddings.

To explore whether word embeddings trained in
the same domain can produce better performance
in NER tasks, we learn another set of word em-
beddings, which we called ChemPatent embed-
dings, by applying the same model and hyper-
parameters from Pyysalo et al. (2013) on a collec-
tion of 84,076 full patent documents (1B tokens)
across 7 patent offices (see Table 1 for details).

The pre-trained PubMed-PMC, Wiki-PubMed-
PMC and ChemPatent word embeddings are fixed
during training of the NER models. For a more
concrete comparison, a set of 200-dimensional
trainable word embeddings initialized from nor-
mal distribution is used as a baseline.

The 200-dimensional baseline word embed-
dings contain all words in the vocabulary of the
dataset and are initialized from a normal distri-
bution, the baseline word embeddings are learned
during training process. The vocabulary of models
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Patent Office | Document | Sentence | Tokens Hyper-para. Value Hyper-para. Value
AU 7,743 4,662,375 | 156,137,670 Optimizer Adam charEmbedSize | 50
CA 1,962 463,123 16,109,776 Learning rate | 0.001 filter length 3

EP 19,274 3,478,258 | 117,992,191 Mini-batch size | 16 # of filters 30
GB 918 182,627 6,038,837 Clip Norm(L2) | 1 output size 30

IN 1,913 261,260 | 9,015,238 Dropout [0.25,0.25]

US 41,131 19,800,123 | 628,256,609 ,

WO 11,135 | 4,830,708 | 159,286,325 (a) BILSTM-CRF (b) CNN-char
Total 84,076 33,687,474 | 1,092,836,646

Table 1: Statistics of the unannotated patent corpus
used for training ChemPatent embeddings and ELMo.

using pre-trained word embeddings is built by tak-
ing the union of words in the pre-traied word em-
bedding file and words with frequency more than
3 in training and development sets. We do not up-
date weights for word embeddings if pre-trained
word embeddings were used.

3.5 Character-level representation

The BiLSTM-CRF model with character-level
word representations (Lample et al., 2016; Ma and
Hovy, 2016) has been shown to have state-of-the-
art performance in NER tasks on chemical patent
datasets (Habibi et al., 2017). It has been shown
that the choice of using LSTM-based or CNN-
based character-level word representation has lit-
tle effect on final NER performance in both gen-
eral and biomedical domain while the CNN-based
approach has the advantage of reduced training
time (Reimers and Gurevych, 2017b; Zhai et al.,
2018). Hence, we use the CNN-based approach
with the same hyper-parameter settings of Reimers
and Gurevych (2017b) for capturing character-
level information (see Table 2 for details).

3.6 ELMo

ELMo (Peters et al., 2018) and BERT (Devlin
et al.,, 2019) can be used to generate contextu-
alized word representations by combining inter-
nal states of different layers in neural language
models. Contextualized word representation can
help to improve performance in various NLP tasks
by incorporating contextual information, essen-
tially allowing for the same word to have distinct
context-dependent meanings. This could be par-
ticularly powerful for chemical NER since generic
chemical names (e.g. salts, acid) may have dif-
ferent meanings in other domains. We therefore
explore the impact of using contextualized word
representations for chemical patents.

We train ELMo on the same corpus of 84K
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Table 2: Fixed hyper-parameter configurations.

patents (detailed in Table 1), which we use for
training the ChemPatent embeddings (described
in Section 3.4). We use the ELMo implementa-
tion provided by Peters et al. (2018) with default
hyper-parameters.> Such neural language models
require a large amount of computational resources
to train. In ELMo, a maximum character sequence
length of tokens is set to make training feasible.
However, systematic chemical names in chemical
patents are often longer than the typical maximum
sequence length of these neural language models.
As very long tokens tend to be systematic chem-
ical names, we reduced the max length of word
from 50 to 25 and replace tokens longer than 25
characters by a special token “Long_Token”.

3.7 Implementation details

Our NER model implementation is based on the
AllenNLP system (Gardner et al., 2017). We learn
model parameters using the training set, and we
use the overall F7 score over development set as
indicator for performance improvement. All mod-
els in this paper are trained with 50 epochs in max-
imum, and an early stopping is applied if there are
no overall I} score improvement observed after
10 epochs.

In Reimers and Gurevych (2017a) and Zhai
et al. (2018), optimal hyper-parameters of
BiLSTM-CRF models in NER tasks were ex-
plored. Hence, we fix the hyper-parameters shown
in Table 2 to the suggested values in our exper-
iments, which means that only models with 2-
stacked LSTM of size 250 are evaluated.

In this study, we also consider the choice of
tokenizer and word embedding source as hyper-
parameters. To compare the performance of dif-
ferent tokenizers, we tokenize the same split of
datasets with different tokenizers and evaluate the
overall F score over development set. After the
best tokenizer for pre-processing patent corpus is
determined, we use datasets tokenized by the best

https://github.com/allenai/bilm-tf
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Tokenizer | BioSemantics | Reaxys | Avg.

OpenNLP | 89.36 89.43 89.40
NBIC +0.86 -0.13 +0.37
ChemTok | +0.04 +1.68 +0.86
OSCAR4 | +0.08 +1.86 +0.97

Table 3: Best F; of EBC-CRF model with differ-
ent tokenizations on development sets of BioSeman-
tics patent (harmonized set) and Reaxys Gold with
ChemPatent embeddings in use. Recall that the har-
monized set of 47 patents is a subset of BioSemantics,
which were annotated by multiple groups (i.e. better
annotation quality than remaining patents).

Embeddings BioSemantics | Reaxys | Avg.

Baseline 88.54 90.05 89.30
PubMed-PMC +0.61 +1.03 +0.82
Wiki-PubMed-PMC | +1.24 +0.95 +1.10
ChemPatent +1.68 +1.24 +1.46

Table 4: Best F}; of EBC-CRF model with different
word embeddings on development sets of BioSeman-
tics patent (harmonized set) and Reaxys Gold (tok-
enized by NBIC and OSCAR 4 tokenizer respectively)

tokenizer to train models with different pre-trained
word embeddings. The best set of pre-trained
word embeddings for patent corpus is determined
based on the overall F} score over development
set. We then take the best performing tokenizer
and pre-trained word embeddings by comparing
the marco-average F7 score improvement on both
experimental datasets.

4 Results
4.1 Main Results

Effects of different tokenizers: Table 3 shows
that all 3 tokenizers optimized for the chemical do-
main outperform the baseline general-purpose to-
kenizer (i.e. OpenNLP). The best performance on
BioSemantics and Reaxys Gold are achieved by
using the NBIC tokenizer (+1.86 F score) and the
OSCAR4 tokenizer (+0.86 F7 score), respectively.
The best overall tokenizer is OSCAR4 which ob-
tains about 1.0 absolute macro-averaged F} im-
provement in comparison to the baseline.

Effects of different sets of word embeddings:
Table 4 shows results obtained by training EBC-
CRF with different sets of pre-trained word em-
beddings. On both BioSemantics and Reaxys
Gold, it is not surprising that our ChemPatent
word embeddings help produce the best perfor-
mance on the development set, obtaining (on av-
erage) a higher Fj score of 1.5 as compared to the
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Model P R Fi

tmChem 72.56 78.37 75.35
CRFSuite 81.93 78.38 80.12
BiLSTM-CRF + LSTM-char | 79.72 84.42 82.01
BiLSTM-CNN-CRF 83.76 85.01 84.38
EBC-CRF 84.30 87.11 85.68

Table 5: NER scores on full BioSemantics test set
(Akhondi et al., 2014). Results in the first 3 rows
were reported in Habibi et al. (2017). BILSTM-CRF +
LSTM-char denotes the BILSTM-CRF model with ad-
ditional LSTM-based character-level word embeddings
(Lample et al., 2016). Recall that our models use the
OSCAR4 tokenizer and pre-trained ChemPatent word
embeddings.

baseline embeddings. Specifically, ChemPatent
does better than the second best Wiki-PubMed-
PMC with about 0.4 improvement. In the rest
of the Results section, obtained results are re-
ported with the use of the OSCAR4 tokenizer and
the ChemPatent embeddings on both experimental
datasets.’

Final results: Table 5 compared results reported
in Habibi et al. (2017) and our approach on the
full BioSemantics test set. It is clear that all neu-
ral models outperform conventional CRF-based
models tmChem and CRFSuite. Our EBC-CRF
model outperforms the BiLSTM-CRF + LSTM-
char model with a 3.7 F} score improvement.
Compared to the baseline model BiLSTM-CNN-
CREF, the ELMo-based contextualized word em-
beddings help to produce an F} improvement of
1.3 points.

Table 6 details our F; scores for BiLSTM-
CNN-CRF and EBC-CRF with respect to each en-
tity label on both the BioSemantics patent cor-
pus and the Reaxys Gold set. The overall results
show that ELMo-based contextualized word em-
beddings help improve the baseline by 1.3 and 4.8
absolute F score on BioSemantics and Reaxys,
respectively.

In BioSemantics patent corpus, we obtain 1+
F score improvements on frequent entity labels
(i.e. > 3,000 instances) except for the entity la-
bel Formula, which has 0.4 absolute improvement.
Higher improvements can be observed on rare en-
tity labels (e.g. 4 points on Mode of Actions, 6
points on Registry numbers and Trademarks). The
highest improvement at 9 points is found for the
most rare entity label CAS Number.

30SCAR4 helped produce the highest “macro-averaged”
improvement on both datasets.



T i - -
Entity label CO;lnt - BngTM CII:N CR}E1 5 +EL1\1;I0 . Ap
B (Abbreviation) 6,558 5.78 | 8590 87.02 86.46 | 85.78 89.98 87.83 | +1.37
C (CAS Number) 13 0.01 | 5455 46.15 50.00 | 57.14 61.54 59.26 | +9.26
D (Trademark) 2,290 2.01 | 62.58 61.79 62.18 | 66.44 7140 68.83 | +6.65
F (Formula) 7,935 6.99 | 86.05 86.81 86.42 | 83.07 9091 86.82 | +0.40
G (Generic) 51,313 4520 | 81.45 8456 82.98 | 83.84 84.44 84.14 | +1.16
M (IUPAC) 39,806 35.14 | 88.40 87.77 88.09 | 87.25 91.20 89.18 | +1.09
MOA (Mode of Action) 1,137 1.00 | 68.97 63.32 66.02 | 67.62 72.74 70.08 | +4.06
R (Registry #) 96 0.08 | 55.68 51.04 53.26 | 65.82 54.17 59.43 | +6.17
T (Target) 4290 378 | 77.77 7732 77.55 | 77.21 82.68 79.85 | +2.30
Micro Avg. 113,528 100.0 | 83.76 85.01 84.38 | 84.30 87.11 85.68 | +1.30
(a) BioSemantics
T i - -
Entity label C(;unt - BlLsTM CEN CRFI:; . +ELI\I;[0 = Ap
1 (chemClass) 1,476 12.36 | 7835 66.46 7192 | 81.96 75.75 78.73 | +6.81
2 (chemClasSpiomolecule) 951 7.96 | 71.86 70.50 71.17 | 76.27 78.76 77.50 | +6.33
3 (chemClassmarkush) 38 032 | 4286 4737 45.00 | 42.86 47.37 45.00 | +0.00
4 (chemClassmixure) 387 324 | 7649 59.69 67.05 | 74.18 64.60 69.06 | +2.01
5 (chemClasSmixture-part) 161 1.35 | 71.00 44.10 54.41 | 78.10 5093 61.65 | +7.24
6 (chemClasspolymer) 609 5.10 | 81.40 72.82 76.87 | 89.20 84.07 86.56 | +13.74
7 (chemCompound) 6,988 58.53 | 89.02 92.01 90.49 | 91.01 94.58 92.76 | +2.27
8 (chemCompoundixture-part) 904  7.57 | 90.02 81.86 85.75 | 90.63 85.62 88.05 | +2.27
9 (chemCompoundyrophetics) 426 3571852 235 417 | 7775 7958 78.65 | +74.48
Micro Avg. 11,940 100.0 | 85.12 80.36 82.67 | 87.41 87.53 87.47 | +4.80
(b) Reaxys Gold

Table 6: F; score with respect to each entity label. “Count’” denotes gold-entity counts in test sets.“+ELMo”

denotes scores obtained by EBC-CRF.

In the Reaxys Gold set, with ELMo we obtain
2+ I score improvements on entity labels chem-
Compound, chemCompound-mixture part and
chemClass-mixture. Higher improvements (>
6 points) can be seen on some rare entity la-
bels such as chemClass, chemClass-biomolecule,
chemclass-mixture-part and chemClass-polymer.
The improvements on entity label chemClass-
Markush and chemCompound-prophetics are ir-
regular compared to others. In particular, an abso-
lute F; improvement of 74+ is achieved on entity
label chemCompound-prophetics, while we do not
find any improvement on chemClass-Markush.

4.2 Error Analysis

To perform error analysis on BioSemantics, we
use its harmonized subset. Figure 2 (a) shows that
most of the errors are confusions between non-
chemical words and generic chemical names (e.g.
water, salt, acid). For example, as illustrated in
Figure 3 (a), the word “salf” which appears at
the end of a systematic name should be identi-
fied as a part of the systematic name. However,
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the same word is also widely used to describe a
class of chemicals, e.g. “pharmaceutically accept-
able salt” in Figure 3 (b). Disambiguation be-
tween chemical class and chemical compound is
a challenging task even for human annotators, and
is thus particularly difficult for a statistical model
to learn. The confusion matrix of Reaxys Gold
set in Figure 2 (b) also supports this point since
most confusions are between non-chemical words,
chemical classes and chemical compounds.

The Reaxys Gold set has a more complex tag
set than the BioSemantics patent corpus, as it as-
signs separate fine-grained tags for subcategories
of chemical classes (chemClass) and chemical
compounds (chemCompound). As illustrated in
Table 6, there is not sufficient training data for
fine-grained sub-category labels. It is difficult for
a high complexity neural model to learn charac-
teristics of these sub-category labels and the key
difference between the main categories and their
subcategories. Figure 2 (b) shows that 50% the er-
rors for “chemical compound prophetics” and 80%
errors for “chemical compound mixture part” are
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(a) BioSemantics harmonized set
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Figure 2: Confusion matrix of EBC-CRF model on BioSemantics (harmonized) and Reaxys Gold. z-axis: true
labels; y-axis: predicted labels; numbers on cell where x = y represent confusion between B (Begin) and I (Inside)

tags. In (b) Labels 1-9 are detailed in Table 6 (b).

)
[1S-[1q,2q,3B,5B(1S*,2R*)]]-3-(Aminomethyl)-5-[7-[(2-phenylcyclopropyl)amino]-5-(propylthio)-3H-1,2,3-triazolo[4,5-d]pyrimidin-3-yl]-cyclopentane-1,2-diol , Hydrochloride salt

(a) Salt describing chemical compound was not detected.

——
a pharmaceutically acceptable salt , solvate , solvate of such a salt or a prodrug thereof .

(b) Salt describing chemical class being predicted as chemical compound.

Figure 3: Example of confusions caused by generic chemical names. (E: false negatives, [@, M: false positives)

due to confusion with their parent category “chem-
ical compound”.

Another typical error observed frequently in
BioSemantics and Reaxys is caused by partici-
ples. The most common example is word ’sub-
stituted’. In “substituted or un-substituted alkyl”,
the token “substituted” refers to a specific chemi-
cal compound “substituted alkyl”. Whereas in “2-
pyridinyl is optionally substituted with 1-3 sub-
stituents”, the token “substituted” refers to the
substitution reaction.

We also observe that in both patent corpora,
there are long sequences of systematic chemical
names connected by comma only. Since there are
no narrative words between the chemical names in
such sequences, it is unlikely that the model can
capture any contextual information when tagging
them. This can potentially cause a “chain reac-
tion” as shown in Figure 4, in which all chemical
names fail to be recognized when the first chemi-
cal name is not tagged correctly.

4.3 Discussion

The results in Table 3 show that all chemical tok-
enizers outperform the OpenNLP general domain
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tokenizer. This is not surprising because tokeniz-
ers optimized for the chemical domain usually use
either rule-based method or gazetteer-based meth-
ods to ensure that long systematic chemical names
will be treated as a single token instead of be-
ing split into several tokens by symbols. This is
reasonable as the character-level word representa-
tion will not be able to capture the morphological
structures in a long chemical name if it is split into
several tokens.

In the BioSemantics patent corpus, 80% of
all entities are annotated as Generic or IUPAC.
When adding ELMo-based word representations,
we obtain smaller improvements in F) score for
Generic and IUPAC than for remaining entity la-
bels/types. This makes sense, as there are already
enough training instances for these two labels in
the dataset. By contrast, for rare entity labels
with frequencies of less than 2 (e.g. CAS Numbers,
Trademarks, Mode of Actions, Registry numbers),
we obtain improvements of 4+ points when ex-
ploiting external information conveyed via ELMo.

The global F7 score improvements on both ex-
perimental datasets confirm further this observa-
tion, viz., that score improvements due to ELMo



] jcH El @ E
= —
Salts denved from organic bases include , but are not limited to , salts of primary , secondary and tertiary amines , such as alkyl amines , dialkyl amines , tnalkyl amines ,

clg e Elg 6@ el

substituted alkyl amines , di(substituted alkyl ) amines , tn(substituted alkyl ) amines , alkenyl amines , dialkenyl amines , trialkenyl amines , substituted alkenyl amines ,

@) @
di(substituted alkenyl ) amines , tri(substituted alkenyl ) amines , cycloalkyl amines , di(cycloalkyl) amines , tn(cycloalkyl) amines , substituted cycloalkyl amines ,

@ Fl© ] ja]
disubstituted cycloalkyl amine , tnsubstituted cycloalkyl amines , cycloalkenyl amines , di(cycloalkenyl) amines , tri(cycloalkenyl) amines , substituted cycloalkenyl amines ,

g
disubstituted cycloalkenyl amine , tnsubstituted cycloalkenyl amines , aryl amines , diaryl amines , tnaryl amines , heteroaryl amines , diheteroaryl amines , tnheteroaryl amines
G E d

, heterocyclic amines , diheterocyclic amines , tnheterocychc amines , mixed di - and tn-ammes where at least two of the substituents on the amine are different and are

selected from the group consisting of alkyl , substituted alkyl , alkenyl , substituted alkenyl , cycloalkyl , substituted cycloalkyl , cycloalkenyl , substituted cycloalkenyl , aryl ,
heteroaryl , heterocyclic , and the like .

Figure 4: Example of “chain reaction” like errors. ([E: false negatives, ©: false positives, [El: true positives)

decrease in inverse proportion to label frequency morphological structures in systematic chem-

and training set size. Since the BioSemantics ical names.

patent corpus contains 10 times more training in- 3. We demonstrate that word embeddings pre-

stances than the Reaxys Gold set, we obtain an ab- trained on an in-domain chemical patent cor-

solute improvement of 4.8 on Reaxys Gold set but pus help produce better performance than the

of 1.3 points on the BioSemantics patent corpus. word embeddings pre-trained on biomedical
Adding ELMo substantially improves the F} literature corpora.

score on chemCompound-prophetics. This is be- 4. We show that chemical NER performance

cause chemCompound-prophetics named entities can be improved by using contextualized

are all long systematic chemical names which word representations.

are arranged in lists. Since we replace all to- 5. We release our ChemPatent word embed-

kens longer than 25 characters with “Long_Token” dings and an ELMo model trained from

when training ELMo, almost all sentences con- scratch on a newly collected corpus of 84K

taining chemCompound-prophetics entities appear unannotated chemical patents, which can be

in the “Long_Token” style. This makes the ELMo- utilized for downstream NLP tasks on chem-

based representations of such long entities almost ical patents.*

identical, and particularly easy to predict, thus re-

sulting in an F} score improvement of 74 points Inspired by the patterns uncovered by our er-

for chemCompound-prophetics. We also observe ~ Tor analysis, our future work on chemical NER
no improvement for the chemClass-Markush 1la- ~ Will focus on developing models which can be
bel. The Markush structures are figures describ- ~ used to support disambiguation of general chem-
ing the structure of chemical compounds in which ~ ical words. In addition, it would be interesting to
only a few parts/functional groups are labeled. explore contextualized word embeddings learned
When transforming to text, only the textual labels ~ by other neural models such as BERT (Devlin
in the Markush structure are preserved. Thus, itis ¢t al., 2019) or OpenAl GPT models (Radford
difficult for ELMo to learn any useful information ¢t al., 2019) in future work.
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